pyerualjetwork 4.1.8b2__py3-none-any.whl → 4.1.8b3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +5 -7
- pyerualjetwork/plan_cuda.py +5 -7
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b3.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b3.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b3.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b3.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -48,7 +48,7 @@ for package_name in package_names:
|
|
48
48
|
|
49
49
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
50
50
|
|
51
|
-
__version__ = "4.1.
|
51
|
+
__version__ = "4.1.8b3"
|
52
52
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
53
53
|
|
54
54
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -102,8 +102,6 @@ def fit(
|
|
102
102
|
Returns:
|
103
103
|
numpyarray([num]): (Weight matrix).
|
104
104
|
"""
|
105
|
-
|
106
|
-
from model_operations import get_acc
|
107
105
|
|
108
106
|
# Pre-checks
|
109
107
|
|
@@ -340,17 +338,17 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
340
338
|
|
341
339
|
for i in range(len(activation_potentiation)):
|
342
340
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
343
|
-
|
341
|
+
|
342
|
+
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
343
|
+
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
344
|
+
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
|
345
|
+
|
344
346
|
if i == 0 and start_this_act is not None:
|
345
347
|
act_pop[0] = activation_potentiation[i]
|
346
348
|
weight_pop[0] = W
|
347
349
|
else:
|
348
350
|
act_pop.append(activation_potentiation[i])
|
349
351
|
weight_pop.append(W)
|
350
|
-
|
351
|
-
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
352
|
-
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
353
|
-
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
|
354
352
|
|
355
353
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
356
354
|
elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -107,8 +107,6 @@ def fit(
|
|
107
107
|
numpyarray([num]): (Weight matrix).
|
108
108
|
"""
|
109
109
|
# Pre-checks
|
110
|
-
|
111
|
-
from memory_operations import transfer_to_gpu, transfer_to_cpu
|
112
110
|
|
113
111
|
if train_bar and val:
|
114
112
|
train_progress = initialize_loading_bar(total=len(x_train), ncols=71, desc='Fitting', bar_format=bar_format_normal)
|
@@ -352,7 +350,11 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
352
350
|
|
353
351
|
for i in range(len(activation_potentiation)):
|
354
352
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
355
|
-
|
353
|
+
|
354
|
+
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
355
|
+
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
|
356
|
+
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
|
357
|
+
|
356
358
|
if i == 0 and start_this_act is not None:
|
357
359
|
act_pop[0] = activation_potentiation[i]
|
358
360
|
weight_pop[0] = W
|
@@ -360,10 +362,6 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
360
362
|
act_pop.append(activation_potentiation[i])
|
361
363
|
weight_pop.append(W)
|
362
364
|
|
363
|
-
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
364
|
-
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
|
365
|
-
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
|
366
|
-
|
367
365
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
368
366
|
elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
|
369
367
|
precision_score, recall_score, f1_score = metrics(y_test_batch, model[get_preds()])
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.8b3
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=6F0i-PLMNQfAWeUcHe5ihUv0V1mMY9ib6d76t-Tcx4o,2177
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
4
|
pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=DnhHTkpYq8YC4CJhrE7mYjMN41a7lK6pXF5uM8uxeNU,35352
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=i8XxTxzTiWy6iRVgfN2tzMOrxLnBXZmJ0GdegIOArOY,35967
|
16
16
|
pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
|
21
|
-
pyerualjetwork-4.1.
|
22
|
-
pyerualjetwork-4.1.
|
23
|
-
pyerualjetwork-4.1.
|
24
|
-
pyerualjetwork-4.1.
|
21
|
+
pyerualjetwork-4.1.8b3.dist-info/METADATA,sha256=3Ic8Lm-bDZW7hIJ_nccIlZibzu3TZ__JMTIjbgW_WhA,7795
|
22
|
+
pyerualjetwork-4.1.8b3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.1.8b3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.1.8b3.dist-info/RECORD,,
|
File without changes
|
File without changes
|