pyerualjetwork 4.1.8b1__py3-none-any.whl → 4.1.8b3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ for package_name in package_names:
48
48
 
49
49
  print(f"PyerualJetwork is ready to use with {err} errors")
50
50
 
51
- __version__ = "4.1.8b1"
51
+ __version__ = "4.1.8b3"
52
52
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
53
53
 
54
54
  def print_version(__version__):
pyerualjetwork/plan.py CHANGED
@@ -102,8 +102,6 @@ def fit(
102
102
  Returns:
103
103
  numpyarray([num]): (Weight matrix).
104
104
  """
105
-
106
- from model_operations import get_acc
107
105
 
108
106
  # Pre-checks
109
107
 
@@ -256,7 +254,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
256
254
 
257
255
  """
258
256
 
259
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
257
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
260
258
 
261
259
  activation_potentiation = all_activations()
262
260
 
@@ -336,22 +334,21 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
336
334
  best_acc_per_gen_list = []
337
335
  postfix_dict = {}
338
336
  loss_list = []
339
- weight_pop = []
340
337
  target_pop = []
341
338
 
342
339
  for i in range(len(activation_potentiation)):
343
340
  print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
344
-
341
+
342
+ x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
343
+ W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
344
+ model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
345
+
345
346
  if i == 0 and start_this_act is not None:
346
347
  act_pop[0] = activation_potentiation[i]
347
348
  weight_pop[0] = W
348
349
  else:
349
350
  act_pop.append(activation_potentiation[i])
350
351
  weight_pop.append(W)
351
-
352
- x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
353
- W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
354
- model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
355
352
 
356
353
  if strategy == 'accuracy': target_pop.append(model[get_acc()])
357
354
  elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
@@ -107,8 +107,6 @@ def fit(
107
107
  numpyarray([num]): (Weight matrix).
108
108
  """
109
109
  # Pre-checks
110
-
111
- from memory_operations import transfer_to_gpu, transfer_to_cpu
112
110
 
113
111
  if train_bar and val:
114
112
  train_progress = initialize_loading_bar(total=len(x_train), ncols=71, desc='Fitting', bar_format=bar_format_normal)
@@ -274,7 +272,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
274
272
 
275
273
  """
276
274
 
277
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
275
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
278
276
 
279
277
  activation_potentiation = all_activations()
280
278
 
@@ -352,7 +350,11 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
352
350
 
353
351
  for i in range(len(activation_potentiation)):
354
352
  print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
355
-
353
+
354
+ x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
355
+ W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
356
+ model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
357
+
356
358
  if i == 0 and start_this_act is not None:
357
359
  act_pop[0] = activation_potentiation[i]
358
360
  weight_pop[0] = W
@@ -360,10 +362,6 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
360
362
  act_pop.append(activation_potentiation[i])
361
363
  weight_pop.append(W)
362
364
 
363
- x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
364
- W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
365
- model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
366
-
367
365
  if strategy == 'accuracy': target_pop.append(model[get_acc()])
368
366
  elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
369
367
  precision_score, recall_score, f1_score = metrics(y_test_batch, model[get_preds()])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.8b1
3
+ Version: 4.1.8b3
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=oroCPYREyLkdAV9z-6EW8beNYhimUdntMjWc1Uhd0mM,2177
1
+ pyerualjetwork/__init__.py,sha256=6F0i-PLMNQfAWeUcHe5ihUv0V1mMY9ib6d76t-Tcx4o,2177
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
4
  pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=atpdeF1wDu4HIngP9RN6iUBLKOzkmrFwHyCJQKUj_38,35419
15
- pyerualjetwork/plan_cuda.py,sha256=sl2Od8-STwAr6GQmwisryU-IsOvWIGSHeFSwHuEa1iM,36035
14
+ pyerualjetwork/plan.py,sha256=DnhHTkpYq8YC4CJhrE7mYjMN41a7lK6pXF5uM8uxeNU,35352
15
+ pyerualjetwork/plan_cuda.py,sha256=i8XxTxzTiWy6iRVgfN2tzMOrxLnBXZmJ0GdegIOArOY,35967
16
16
  pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
17
17
  pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
21
- pyerualjetwork-4.1.8b1.dist-info/METADATA,sha256=_mbbAWUIEQ5V5T_iqWlzkZX2IQyKtWdTETlMSvvPw2g,7795
22
- pyerualjetwork-4.1.8b1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.1.8b1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.1.8b1.dist-info/RECORD,,
21
+ pyerualjetwork-4.1.8b3.dist-info/METADATA,sha256=3Ic8Lm-bDZW7hIJ_nccIlZibzu3TZ__JMTIjbgW_WhA,7795
22
+ pyerualjetwork-4.1.8b3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.1.8b3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.1.8b3.dist-info/RECORD,,