pyerualjetwork 4.1.8b1__py3-none-any.whl → 4.1.8b3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +6 -9
- pyerualjetwork/plan_cuda.py +6 -8
- {pyerualjetwork-4.1.8b1.dist-info → pyerualjetwork-4.1.8b3.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.8b1.dist-info → pyerualjetwork-4.1.8b3.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.1.8b1.dist-info → pyerualjetwork-4.1.8b3.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.8b1.dist-info → pyerualjetwork-4.1.8b3.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -48,7 +48,7 @@ for package_name in package_names:
|
|
48
48
|
|
49
49
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
50
50
|
|
51
|
-
__version__ = "4.1.
|
51
|
+
__version__ = "4.1.8b3"
|
52
52
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
53
53
|
|
54
54
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -102,8 +102,6 @@ def fit(
|
|
102
102
|
Returns:
|
103
103
|
numpyarray([num]): (Weight matrix).
|
104
104
|
"""
|
105
|
-
|
106
|
-
from model_operations import get_acc
|
107
105
|
|
108
106
|
# Pre-checks
|
109
107
|
|
@@ -256,7 +254,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
256
254
|
|
257
255
|
"""
|
258
256
|
|
259
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
257
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
260
258
|
|
261
259
|
activation_potentiation = all_activations()
|
262
260
|
|
@@ -336,22 +334,21 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
336
334
|
best_acc_per_gen_list = []
|
337
335
|
postfix_dict = {}
|
338
336
|
loss_list = []
|
339
|
-
weight_pop = []
|
340
337
|
target_pop = []
|
341
338
|
|
342
339
|
for i in range(len(activation_potentiation)):
|
343
340
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
344
|
-
|
341
|
+
|
342
|
+
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
343
|
+
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
344
|
+
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
|
345
|
+
|
345
346
|
if i == 0 and start_this_act is not None:
|
346
347
|
act_pop[0] = activation_potentiation[i]
|
347
348
|
weight_pop[0] = W
|
348
349
|
else:
|
349
350
|
act_pop.append(activation_potentiation[i])
|
350
351
|
weight_pop.append(W)
|
351
|
-
|
352
|
-
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
353
|
-
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
354
|
-
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
|
355
352
|
|
356
353
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
357
354
|
elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -107,8 +107,6 @@ def fit(
|
|
107
107
|
numpyarray([num]): (Weight matrix).
|
108
108
|
"""
|
109
109
|
# Pre-checks
|
110
|
-
|
111
|
-
from memory_operations import transfer_to_gpu, transfer_to_cpu
|
112
110
|
|
113
111
|
if train_bar and val:
|
114
112
|
train_progress = initialize_loading_bar(total=len(x_train), ncols=71, desc='Fitting', bar_format=bar_format_normal)
|
@@ -274,7 +272,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
274
272
|
|
275
273
|
"""
|
276
274
|
|
277
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
275
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
278
276
|
|
279
277
|
activation_potentiation = all_activations()
|
280
278
|
|
@@ -352,7 +350,11 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
352
350
|
|
353
351
|
for i in range(len(activation_potentiation)):
|
354
352
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
355
|
-
|
353
|
+
|
354
|
+
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
355
|
+
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
|
356
|
+
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
|
357
|
+
|
356
358
|
if i == 0 and start_this_act is not None:
|
357
359
|
act_pop[0] = activation_potentiation[i]
|
358
360
|
weight_pop[0] = W
|
@@ -360,10 +362,6 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
360
362
|
act_pop.append(activation_potentiation[i])
|
361
363
|
weight_pop.append(W)
|
362
364
|
|
363
|
-
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
364
|
-
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
|
365
|
-
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
|
366
|
-
|
367
365
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
368
366
|
elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
|
369
367
|
precision_score, recall_score, f1_score = metrics(y_test_batch, model[get_preds()])
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.8b3
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=6F0i-PLMNQfAWeUcHe5ihUv0V1mMY9ib6d76t-Tcx4o,2177
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
4
|
pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=DnhHTkpYq8YC4CJhrE7mYjMN41a7lK6pXF5uM8uxeNU,35352
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=i8XxTxzTiWy6iRVgfN2tzMOrxLnBXZmJ0GdegIOArOY,35967
|
16
16
|
pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
|
21
|
-
pyerualjetwork-4.1.
|
22
|
-
pyerualjetwork-4.1.
|
23
|
-
pyerualjetwork-4.1.
|
24
|
-
pyerualjetwork-4.1.
|
21
|
+
pyerualjetwork-4.1.8b3.dist-info/METADATA,sha256=3Ic8Lm-bDZW7hIJ_nccIlZibzu3TZ__JMTIjbgW_WhA,7795
|
22
|
+
pyerualjetwork-4.1.8b3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.1.8b3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.1.8b3.dist-info/RECORD,,
|
File without changes
|
File without changes
|