pyerualjetwork 4.1.3__py3-none-any.whl → 4.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -47,7 +47,7 @@ for package_name in package_names:
47
47
 
48
48
  print(f"PyerualJetwork is ready to use with {err} errors")
49
49
 
50
- __version__ = "4.1.3"
50
+ __version__ = "4.1.4"
51
51
  __update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
52
52
 
53
53
  def print_version(__version__):
@@ -6,7 +6,7 @@ import pickle
6
6
  from scipy import io
7
7
  import scipy.io as sio
8
8
  import pandas as pd
9
-
9
+ import gc
10
10
 
11
11
  def save_model(model_name,
12
12
  W,
@@ -207,14 +207,17 @@ def load_model(model_name,
207
207
  activation_potentiation = [x for x in activation_potentiation if not (isinstance(x, float) and cp.isnan(x))]
208
208
  activation_potentiation = [item for item in activation_potentiation if item != '']
209
209
 
210
- scaler_params = df['STANDARD SCALER'].tolist()
210
+ scaler_params_cpu = df['STANDARD SCALER'].tolist()
211
211
 
212
212
  try:
213
- if scaler_params[0] == None:
214
- scaler_params = scaler_params[0]
213
+ if scaler_params_cpu[0] == None: # model not scaled
214
+ scaler_params = scaler_params_cpu[0]
215
215
 
216
216
  except:
217
- scaler_params = [item for item in scaler_params if isinstance(item, cp.ndarray)]
217
+ scaler_params = cp.array(scaler_params_cpu)
218
+ del scaler_params_cpu
219
+ gc.collect()
220
+ scaler_params = [item for item in scaler_params if isinstance(item, cp.ndarray)] # model scaled
218
221
 
219
222
 
220
223
  model_name = str(df['MODEL NAME'].iloc[0])
@@ -299,7 +299,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
299
299
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
300
300
  W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
301
301
  model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations, dtype=dtype)
302
-
302
+
303
303
  if loss == 'categorical_crossentropy':
304
304
  test_loss = categorical_crossentropy(y_true_batch=y_test_batch, y_pred_batch=model[get_preds_softmax()])
305
305
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.3
3
+ Version: 4.1.4
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=5IjRO3gyn2Vme9ds0lqW62uQgrN1Xn1W9Lc-fRpBvx4,2542
1
+ pyerualjetwork/__init__.py,sha256=5meSyUa9UeGibBpOiMqRwmxpHW4RmbScrSfbeCc02zg,2542
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=7U69VfwAIE8STUng2zEwPPQES9NgnkAXsDtVh-EzaZE,11803
4
4
  pyerualjetwork/data_operations.py,sha256=2julEScuHsL_ueeJ-JE3hiqw3wibZQW_L2bwwdoXTN0,16552
@@ -9,15 +9,15 @@ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqd
9
9
  pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
10
10
  pyerualjetwork/metrics_cuda.py,sha256=Hz4PCeE5GcVUllZdsgXXdIw-UNqUVpqNxMIlPBNTSKY,5069
11
11
  pyerualjetwork/model_operations.py,sha256=eWYiYlXYZzsRgVfF-4CFvjCHaZOGB2378evre8yCzYk,13084
12
- pyerualjetwork/model_operations_cuda.py,sha256=Hryk2Qi6BwHY9K9G_muDxHW9ILK8dIW6lmwZfioKqYM,13246
12
+ pyerualjetwork/model_operations_cuda.py,sha256=1082RJ-b8PS9g3VV8NIE0E7MepkMSJzC6uJWbcrHcWw,13407
13
13
  pyerualjetwork/plan.py,sha256=MNXCFZ7zaIsdveKKopJL1DGQh1MGxwrCat0_r0S6hbo,34346
14
- pyerualjetwork/plan_cuda.py,sha256=yh3_HM9UJ-mtxlv9xEQx3DS-FkVNP2s4jXbUfauQy7Y,33968
14
+ pyerualjetwork/plan_cuda.py,sha256=uMJh-mmkmvDFw5jKOJvlRPRn_w3ybLD2WE6at4Okigs,33976
15
15
  pyerualjetwork/planeat.py,sha256=6uEcCF4bV1_W1aQUTKQjfnDgWp6rP2oluKFo5Y37k7o,39517
16
16
  pyerualjetwork/planeat_cuda.py,sha256=GXYt_00rDKkDKJrhjE8hHOtu4U_pQZM1yZ6XrMpQo2c,39574
17
17
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
18
18
  pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
19
19
  pyerualjetwork/visualizations_cuda.py,sha256=hH2FMjbsImAxTLIAUS2pfGSufigV-SbgpVMVrj4lYOE,26733
20
- pyerualjetwork-4.1.3.dist-info/METADATA,sha256=W7zKW0UOJNqwAxEjrd-UcZgAwfs-p-v3XsP58hSyi3w,6357
21
- pyerualjetwork-4.1.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
- pyerualjetwork-4.1.3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
- pyerualjetwork-4.1.3.dist-info/RECORD,,
20
+ pyerualjetwork-4.1.4.dist-info/METADATA,sha256=8ItGOfbEs19ScFDU4n1uNj_qjS2bRKnxcyZbIyq9vc8,6357
21
+ pyerualjetwork-4.1.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
+ pyerualjetwork-4.1.4.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
+ pyerualjetwork-4.1.4.dist-info/RECORD,,