pyerualjetwork 4.1.2b1__py3-none-any.whl → 4.1.4__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/model_operations_cuda.py +8 -5
- pyerualjetwork/plan.py +1 -1
- pyerualjetwork/plan_cuda.py +2 -2
- {pyerualjetwork-4.1.2b1.dist-info → pyerualjetwork-4.1.4.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.2b1.dist-info → pyerualjetwork-4.1.4.dist-info}/RECORD +8 -8
- {pyerualjetwork-4.1.2b1.dist-info → pyerualjetwork-4.1.4.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.2b1.dist-info → pyerualjetwork-4.1.4.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -47,7 +47,7 @@ for package_name in package_names:
|
|
47
47
|
|
48
48
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
49
49
|
|
50
|
-
__version__ = "4.1.
|
50
|
+
__version__ = "4.1.4"
|
51
51
|
__update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
52
52
|
|
53
53
|
def print_version(__version__):
|
@@ -6,7 +6,7 @@ import pickle
|
|
6
6
|
from scipy import io
|
7
7
|
import scipy.io as sio
|
8
8
|
import pandas as pd
|
9
|
-
|
9
|
+
import gc
|
10
10
|
|
11
11
|
def save_model(model_name,
|
12
12
|
W,
|
@@ -207,14 +207,17 @@ def load_model(model_name,
|
|
207
207
|
activation_potentiation = [x for x in activation_potentiation if not (isinstance(x, float) and cp.isnan(x))]
|
208
208
|
activation_potentiation = [item for item in activation_potentiation if item != '']
|
209
209
|
|
210
|
-
|
210
|
+
scaler_params_cpu = df['STANDARD SCALER'].tolist()
|
211
211
|
|
212
212
|
try:
|
213
|
-
if
|
214
|
-
scaler_params =
|
213
|
+
if scaler_params_cpu[0] == None: # model not scaled
|
214
|
+
scaler_params = scaler_params_cpu[0]
|
215
215
|
|
216
216
|
except:
|
217
|
-
scaler_params =
|
217
|
+
scaler_params = cp.array(scaler_params_cpu)
|
218
|
+
del scaler_params_cpu
|
219
|
+
gc.collect()
|
220
|
+
scaler_params = [item for item in scaler_params if isinstance(item, cp.ndarray)] # model scaled
|
218
221
|
|
219
222
|
|
220
223
|
model_name = str(df['MODEL NAME'].iloc[0])
|
pyerualjetwork/plan.py
CHANGED
@@ -223,7 +223,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
223
223
|
tuple: A list for model parameters: [Weight matrix, Test loss, Test Accuracy, [Activations functions]].
|
224
224
|
|
225
225
|
"""
|
226
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
226
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
227
227
|
|
228
228
|
activation_potentiation = all_activations()
|
229
229
|
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -219,7 +219,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
219
219
|
tuple: A list for model parameters: [Weight matrix, Preds, Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
|
220
220
|
|
221
221
|
"""
|
222
|
-
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
222
|
+
print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
|
223
223
|
|
224
224
|
activation_potentiation = all_activations()
|
225
225
|
|
@@ -299,7 +299,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
299
299
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
300
300
|
W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
301
301
|
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations, dtype=dtype)
|
302
|
-
|
302
|
+
|
303
303
|
if loss == 'categorical_crossentropy':
|
304
304
|
test_loss = categorical_crossentropy(y_true_batch=y_test_batch, y_pred_batch=model[get_preds_softmax()])
|
305
305
|
else:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.4
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=5meSyUa9UeGibBpOiMqRwmxpHW4RmbScrSfbeCc02zg,2542
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=7U69VfwAIE8STUng2zEwPPQES9NgnkAXsDtVh-EzaZE,11803
|
4
4
|
pyerualjetwork/data_operations.py,sha256=2julEScuHsL_ueeJ-JE3hiqw3wibZQW_L2bwwdoXTN0,16552
|
@@ -9,15 +9,15 @@ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqd
|
|
9
9
|
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
10
10
|
pyerualjetwork/metrics_cuda.py,sha256=Hz4PCeE5GcVUllZdsgXXdIw-UNqUVpqNxMIlPBNTSKY,5069
|
11
11
|
pyerualjetwork/model_operations.py,sha256=eWYiYlXYZzsRgVfF-4CFvjCHaZOGB2378evre8yCzYk,13084
|
12
|
-
pyerualjetwork/model_operations_cuda.py,sha256=
|
13
|
-
pyerualjetwork/plan.py,sha256=
|
14
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
12
|
+
pyerualjetwork/model_operations_cuda.py,sha256=1082RJ-b8PS9g3VV8NIE0E7MepkMSJzC6uJWbcrHcWw,13407
|
13
|
+
pyerualjetwork/plan.py,sha256=MNXCFZ7zaIsdveKKopJL1DGQh1MGxwrCat0_r0S6hbo,34346
|
14
|
+
pyerualjetwork/plan_cuda.py,sha256=uMJh-mmkmvDFw5jKOJvlRPRn_w3ybLD2WE6at4Okigs,33976
|
15
15
|
pyerualjetwork/planeat.py,sha256=6uEcCF4bV1_W1aQUTKQjfnDgWp6rP2oluKFo5Y37k7o,39517
|
16
16
|
pyerualjetwork/planeat_cuda.py,sha256=GXYt_00rDKkDKJrhjE8hHOtu4U_pQZM1yZ6XrMpQo2c,39574
|
17
17
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
18
18
|
pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
|
19
19
|
pyerualjetwork/visualizations_cuda.py,sha256=hH2FMjbsImAxTLIAUS2pfGSufigV-SbgpVMVrj4lYOE,26733
|
20
|
-
pyerualjetwork-4.1.
|
21
|
-
pyerualjetwork-4.1.
|
22
|
-
pyerualjetwork-4.1.
|
23
|
-
pyerualjetwork-4.1.
|
20
|
+
pyerualjetwork-4.1.4.dist-info/METADATA,sha256=8ItGOfbEs19ScFDU4n1uNj_qjS2bRKnxcyZbIyq9vc8,6357
|
21
|
+
pyerualjetwork-4.1.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
22
|
+
pyerualjetwork-4.1.4.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
23
|
+
pyerualjetwork-4.1.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|