pyerualjetwork 4.1.2b1__py3-none-any.whl → 4.1.4__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -47,7 +47,7 @@ for package_name in package_names:
47
47
 
48
48
  print(f"PyerualJetwork is ready to use with {err} errors")
49
49
 
50
- __version__ = "4.1.2b1"
50
+ __version__ = "4.1.4"
51
51
  __update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
52
52
 
53
53
  def print_version(__version__):
@@ -6,7 +6,7 @@ import pickle
6
6
  from scipy import io
7
7
  import scipy.io as sio
8
8
  import pandas as pd
9
-
9
+ import gc
10
10
 
11
11
  def save_model(model_name,
12
12
  W,
@@ -207,14 +207,17 @@ def load_model(model_name,
207
207
  activation_potentiation = [x for x in activation_potentiation if not (isinstance(x, float) and cp.isnan(x))]
208
208
  activation_potentiation = [item for item in activation_potentiation if item != '']
209
209
 
210
- scaler_params = df['STANDARD SCALER'].tolist()
210
+ scaler_params_cpu = df['STANDARD SCALER'].tolist()
211
211
 
212
212
  try:
213
- if scaler_params[0] == None:
214
- scaler_params = scaler_params[0]
213
+ if scaler_params_cpu[0] == None: # model not scaled
214
+ scaler_params = scaler_params_cpu[0]
215
215
 
216
216
  except:
217
- scaler_params = [item for item in scaler_params if isinstance(item, cp.ndarray)]
217
+ scaler_params = cp.array(scaler_params_cpu)
218
+ del scaler_params_cpu
219
+ gc.collect()
220
+ scaler_params = [item for item in scaler_params if isinstance(item, cp.ndarray)] # model scaled
218
221
 
219
222
 
220
223
  model_name = str(df['MODEL NAME'].iloc[0])
pyerualjetwork/plan.py CHANGED
@@ -223,7 +223,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
223
223
  tuple: A list for model parameters: [Weight matrix, Test loss, Test Accuracy, [Activations functions]].
224
224
 
225
225
  """
226
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
226
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
227
227
 
228
228
  activation_potentiation = all_activations()
229
229
 
@@ -219,7 +219,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
219
219
  tuple: A list for model parameters: [Weight matrix, Preds, Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
220
220
 
221
221
  """
222
- print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
222
+ print(Fore.WHITE + "\nRemember, optimization on large datasets can be very time-consuming and computationally expensive. Therefore, if you are working with such a dataset, our recommendation is to include activation function: ['circular', 'spiral'] in the 'except_this' parameter unless absolutely necessary, as they can significantly prolong the process. from: learner\n" + Fore.RESET)
223
223
 
224
224
  activation_potentiation = all_activations()
225
225
 
@@ -299,7 +299,7 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
299
299
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
300
300
  W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
301
301
  model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations, dtype=dtype)
302
-
302
+
303
303
  if loss == 'categorical_crossentropy':
304
304
  test_loss = categorical_crossentropy(y_true_batch=y_test_batch, y_pred_batch=model[get_preds_softmax()])
305
305
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.2b1
3
+ Version: 4.1.4
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=pCoTvtZKD12fzGO8VJN76K9BOL6Lt7W3LCGyhNfB0Zo,2544
1
+ pyerualjetwork/__init__.py,sha256=5meSyUa9UeGibBpOiMqRwmxpHW4RmbScrSfbeCc02zg,2542
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=7U69VfwAIE8STUng2zEwPPQES9NgnkAXsDtVh-EzaZE,11803
4
4
  pyerualjetwork/data_operations.py,sha256=2julEScuHsL_ueeJ-JE3hiqw3wibZQW_L2bwwdoXTN0,16552
@@ -9,15 +9,15 @@ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqd
9
9
  pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
10
10
  pyerualjetwork/metrics_cuda.py,sha256=Hz4PCeE5GcVUllZdsgXXdIw-UNqUVpqNxMIlPBNTSKY,5069
11
11
  pyerualjetwork/model_operations.py,sha256=eWYiYlXYZzsRgVfF-4CFvjCHaZOGB2378evre8yCzYk,13084
12
- pyerualjetwork/model_operations_cuda.py,sha256=Hryk2Qi6BwHY9K9G_muDxHW9ILK8dIW6lmwZfioKqYM,13246
13
- pyerualjetwork/plan.py,sha256=1PDMyBnCsQgyks4esnPobcUNBHbex54JG2oFEV_Q_9g,34336
14
- pyerualjetwork/plan_cuda.py,sha256=bpI4HVMexL5WiGU30Nj1mzp8f9sOyxuDw7Ka7LqQR7g,33958
12
+ pyerualjetwork/model_operations_cuda.py,sha256=1082RJ-b8PS9g3VV8NIE0E7MepkMSJzC6uJWbcrHcWw,13407
13
+ pyerualjetwork/plan.py,sha256=MNXCFZ7zaIsdveKKopJL1DGQh1MGxwrCat0_r0S6hbo,34346
14
+ pyerualjetwork/plan_cuda.py,sha256=uMJh-mmkmvDFw5jKOJvlRPRn_w3ybLD2WE6at4Okigs,33976
15
15
  pyerualjetwork/planeat.py,sha256=6uEcCF4bV1_W1aQUTKQjfnDgWp6rP2oluKFo5Y37k7o,39517
16
16
  pyerualjetwork/planeat_cuda.py,sha256=GXYt_00rDKkDKJrhjE8hHOtu4U_pQZM1yZ6XrMpQo2c,39574
17
17
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
18
18
  pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
19
19
  pyerualjetwork/visualizations_cuda.py,sha256=hH2FMjbsImAxTLIAUS2pfGSufigV-SbgpVMVrj4lYOE,26733
20
- pyerualjetwork-4.1.2b1.dist-info/METADATA,sha256=Z32eWF-79VvQwYd0Wz2dDyDtTbTKjIcbSFlKxMacJaM,6359
21
- pyerualjetwork-4.1.2b1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
- pyerualjetwork-4.1.2b1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
- pyerualjetwork-4.1.2b1.dist-info/RECORD,,
20
+ pyerualjetwork-4.1.4.dist-info/METADATA,sha256=8ItGOfbEs19ScFDU4n1uNj_qjS2bRKnxcyZbIyq9vc8,6357
21
+ pyerualjetwork-4.1.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
+ pyerualjetwork-4.1.4.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
+ pyerualjetwork-4.1.4.dist-info/RECORD,,