pyerualjetwork 4.0.7__py3-none-any.whl → 4.0.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations_cuda.py +1 -2
- pyerualjetwork/plan_cuda.py +18 -5
- {pyerualjetwork-4.0.7.dist-info → pyerualjetwork-4.0.9.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.0.7.dist-info → pyerualjetwork-4.0.9.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.0.7.dist-info → pyerualjetwork-4.0.9.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.0.7.dist-info → pyerualjetwork-4.0.9.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -47,7 +47,7 @@ for package_name in package_names:
|
|
47
47
|
|
48
48
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
49
49
|
|
50
|
-
__version__ = "4.0.
|
50
|
+
__version__ = "4.0.9"
|
51
51
|
__update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
52
52
|
|
53
53
|
def print_version(__version__):
|
@@ -322,8 +322,7 @@ def synthetic_augmentation(x_train, y_train, dtype=cp.float32):
|
|
322
322
|
class_count = len(classes)
|
323
323
|
class_distribution = {i: 0 for i in range(class_count)}
|
324
324
|
|
325
|
-
|
326
|
-
for label in y_cpu:
|
325
|
+
for label in y:
|
327
326
|
class_distribution[cp.argmax(label).item()] += 1
|
328
327
|
|
329
328
|
max_class_count = max(class_distribution.values())
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -120,9 +120,22 @@ def fit(
|
|
120
120
|
if len(x_train) != len(y_train):
|
121
121
|
raise ValueError("x_train and y_train must have the same length.")
|
122
122
|
|
123
|
-
if val and (x_val is None
|
123
|
+
if val and (x_val is None and y_val is None):
|
124
124
|
x_val, y_val = x_train, y_train
|
125
125
|
|
126
|
+
elif val and (x_val is not None and y_val is not None):
|
127
|
+
x_val = cp.array(x_val, copy=False).astype(dtype, copy=False)
|
128
|
+
|
129
|
+
if len(y_val[0]) < 256:
|
130
|
+
if y_val.dtype != cp.uint8:
|
131
|
+
y_val = cp.array(y_val, copy=False).astype(cp.uint8, copy=False)
|
132
|
+
elif len(y_val[0]) <= 32767:
|
133
|
+
if y_val.dtype != cp.uint16:
|
134
|
+
y_val = cp.array(y_val, copy=False).astype(cp.uint16, copy=False)
|
135
|
+
else:
|
136
|
+
if y_val.dtype != cp.uint32:
|
137
|
+
y_val = cp.array(y_val, copy=False).astype(cp.uint32, copy=False)
|
138
|
+
|
126
139
|
val_list = [] if val else None
|
127
140
|
val_count = val_count or 10
|
128
141
|
# Defining weights
|
@@ -284,9 +297,9 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
284
297
|
|
285
298
|
# Initialize progress bar
|
286
299
|
if batch_size == 1:
|
287
|
-
ncols =
|
300
|
+
ncols = 90
|
288
301
|
else:
|
289
|
-
ncols =
|
302
|
+
ncols = 103
|
290
303
|
progress = initialize_loading_bar(total=len(activation_potentiation), desc="", ncols=ncols, bar_format=bar_format_learner)
|
291
304
|
|
292
305
|
# Initialize variables
|
@@ -297,8 +310,8 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
297
310
|
else:
|
298
311
|
best_activations = start_this
|
299
312
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
300
|
-
W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization)
|
301
|
-
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations)
|
313
|
+
W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
314
|
+
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations, dtype=dtype)
|
302
315
|
|
303
316
|
if loss == 'categorical_crossentropy':
|
304
317
|
test_loss = categorical_crossentropy(y_true_batch=y_test_batch, y_pred_batch=model[get_preds_softmax()])
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.0.
|
3
|
+
Version: 4.0.9
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,8 +1,8 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=uZmH51cnYfltC9nx5AYHXyAXxiWAXcLzjiCJ7K0uO_4,2542
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=UeuuagJWcSoFfmwikDU7O8ph--oySnWDJNqKbEh4SlE,12043
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5F49gKkiRngo0hAaS1KfarxQ7wEyub13WAX_apxf8j8,12069
|
4
4
|
pyerualjetwork/data_operations.py,sha256=rnOYLLK3YnRdWpEsEQABU0RE950lQQI7971eBLBpqOQ,16536
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=8jooTsRCC-pEYvtw8c6CsfUUnztDy8DI8-yLf9aX27A,17108
|
6
6
|
pyerualjetwork/help.py,sha256=pZs7hIhgFkovGLle97d9Qu9m5zKhMh7-OAIphIoSxBg,830
|
7
7
|
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
8
8
|
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
@@ -11,13 +11,13 @@ pyerualjetwork/metrics_cuda.py,sha256=TCwn5Z_4jQjqPCURX_xtcz9cjsYVzlahgKDA-qCgpU
|
|
11
11
|
pyerualjetwork/model_operations.py,sha256=k_53BJladPm9fBWdlVpS6Uf5IQzpNlJWLH746DXGq_M,13036
|
12
12
|
pyerualjetwork/model_operations_cuda.py,sha256=Guo0lFaaLiAXwKmnOi8Fz_bL_p38qR46CIhGOg_V1Sw,13138
|
13
13
|
pyerualjetwork/plan.py,sha256=iF0zIaO2KrPYF8G__-Q2wMYbgQEIdRWap3BBMRZ1Fpo,34746
|
14
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan_cuda.py,sha256=Yke5vsmhrsKIpCOYoPNBqLzBHfjqsXuT7RrmMXNNmQc,34541
|
15
15
|
pyerualjetwork/planeat.py,sha256=8cwWboJtXgFTKq6nFl1T9McbLDmBquKUr12y168PmcM,39513
|
16
16
|
pyerualjetwork/planeat_cuda.py,sha256=boN-HFwm_D9cT1z0eAR8zgkiD_XOg-J2T2jNFvZweG4,39570
|
17
17
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
18
18
|
pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
|
19
19
|
pyerualjetwork/visualizations_cuda.py,sha256=dA0u85ZIyKqjtoSJ6p3EbEpJs4V4vS5W5ftR6eif8yg,26713
|
20
|
-
pyerualjetwork-4.0.
|
21
|
-
pyerualjetwork-4.0.
|
22
|
-
pyerualjetwork-4.0.
|
23
|
-
pyerualjetwork-4.0.
|
20
|
+
pyerualjetwork-4.0.9.dist-info/METADATA,sha256=Lcj4n5zrTRr_NnHyPJhqu8CvNRLc7TgbD9qRF7Rt07s,6357
|
21
|
+
pyerualjetwork-4.0.9.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
22
|
+
pyerualjetwork-4.0.9.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
23
|
+
pyerualjetwork-4.0.9.dist-info/RECORD,,
|
File without changes
|
File without changes
|