pyerualjetwork 4.0.7__py3-none-any.whl → 4.0.8__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -47,7 +47,7 @@ for package_name in package_names:
47
47
 
48
48
  print(f"PyerualJetwork is ready to use with {err} errors")
49
49
 
50
- __version__ = "4.0.7"
50
+ __version__ = "4.0.8"
51
51
  __update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
52
52
 
53
53
  def print_version(__version__):
@@ -120,9 +120,22 @@ def fit(
120
120
  if len(x_train) != len(y_train):
121
121
  raise ValueError("x_train and y_train must have the same length.")
122
122
 
123
- if val and (x_val is None or y_val is None):
123
+ if val and (x_val is None and y_val is None):
124
124
  x_val, y_val = x_train, y_train
125
125
 
126
+ elif val and (x_val is not None and y_val is not None):
127
+ x_val = cp.array(x_val, copy=False).astype(dtype, copy=False)
128
+
129
+ if len(y_val[0]) < 256:
130
+ if y_val.dtype != cp.uint8:
131
+ y_val = cp.array(y_val, copy=False).astype(cp.uint8, copy=False)
132
+ elif len(y_val[0]) <= 32767:
133
+ if y_val.dtype != cp.uint16:
134
+ y_val = cp.array(y_val, copy=False).astype(cp.uint16, copy=False)
135
+ else:
136
+ if y_val.dtype != cp.uint32:
137
+ y_val = cp.array(y_val, copy=False).astype(cp.uint32, copy=False)
138
+
126
139
  val_list = [] if val else None
127
140
  val_count = val_count or 10
128
141
  # Defining weights
@@ -284,9 +297,9 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
284
297
 
285
298
  # Initialize progress bar
286
299
  if batch_size == 1:
287
- ncols = 100
300
+ ncols = 90
288
301
  else:
289
- ncols = 140
302
+ ncols = 103
290
303
  progress = initialize_loading_bar(total=len(activation_potentiation), desc="", ncols=ncols, bar_format=bar_format_learner)
291
304
 
292
305
  # Initialize variables
@@ -297,8 +310,8 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
297
310
  else:
298
311
  best_activations = start_this
299
312
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
300
- W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization)
301
- model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations)
313
+ W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
314
+ model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations, dtype=dtype)
302
315
 
303
316
  if loss == 'categorical_crossentropy':
304
317
  test_loss = categorical_crossentropy(y_true_batch=y_test_batch, y_pred_batch=model[get_preds_softmax()])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.0.7
3
+ Version: 4.0.8
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=i_pt-vpEDdNMFEVgM_LjkJ-_bmhTswIYaZTUC-LsRps,2542
1
+ pyerualjetwork/__init__.py,sha256=AnIsSN-QVGesbcS34--yvJhkK8-MsnCh_Rk_NWYO_Js,2542
2
2
  pyerualjetwork/activation_functions.py,sha256=UeuuagJWcSoFfmwikDU7O8ph--oySnWDJNqKbEh4SlE,12043
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5F49gKkiRngo0hAaS1KfarxQ7wEyub13WAX_apxf8j8,12069
4
4
  pyerualjetwork/data_operations.py,sha256=rnOYLLK3YnRdWpEsEQABU0RE950lQQI7971eBLBpqOQ,16536
@@ -11,13 +11,13 @@ pyerualjetwork/metrics_cuda.py,sha256=TCwn5Z_4jQjqPCURX_xtcz9cjsYVzlahgKDA-qCgpU
11
11
  pyerualjetwork/model_operations.py,sha256=k_53BJladPm9fBWdlVpS6Uf5IQzpNlJWLH746DXGq_M,13036
12
12
  pyerualjetwork/model_operations_cuda.py,sha256=Guo0lFaaLiAXwKmnOi8Fz_bL_p38qR46CIhGOg_V1Sw,13138
13
13
  pyerualjetwork/plan.py,sha256=iF0zIaO2KrPYF8G__-Q2wMYbgQEIdRWap3BBMRZ1Fpo,34746
14
- pyerualjetwork/plan_cuda.py,sha256=JF2LK5BgDZAQb3LuPDCyz8G7ICEvEg8BWezeZdw8X-4,33920
14
+ pyerualjetwork/plan_cuda.py,sha256=Yke5vsmhrsKIpCOYoPNBqLzBHfjqsXuT7RrmMXNNmQc,34541
15
15
  pyerualjetwork/planeat.py,sha256=8cwWboJtXgFTKq6nFl1T9McbLDmBquKUr12y168PmcM,39513
16
16
  pyerualjetwork/planeat_cuda.py,sha256=boN-HFwm_D9cT1z0eAR8zgkiD_XOg-J2T2jNFvZweG4,39570
17
17
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
18
18
  pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
19
19
  pyerualjetwork/visualizations_cuda.py,sha256=dA0u85ZIyKqjtoSJ6p3EbEpJs4V4vS5W5ftR6eif8yg,26713
20
- pyerualjetwork-4.0.7.dist-info/METADATA,sha256=BWCx6dmY3FC-ud-gC_8ukAcE6-4o-wrU1xIItVeadDw,6357
21
- pyerualjetwork-4.0.7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
- pyerualjetwork-4.0.7.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
- pyerualjetwork-4.0.7.dist-info/RECORD,,
20
+ pyerualjetwork-4.0.8.dist-info/METADATA,sha256=Gbx5Brb9cXOwggDZFBuU_0piRCBEUbZigIE_gwmsZw8,6357
21
+ pyerualjetwork-4.0.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
+ pyerualjetwork-4.0.8.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
+ pyerualjetwork-4.0.8.dist-info/RECORD,,