pyerualjetwork 4.0.6__py3-none-any.whl → 4.0.8__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +18 -10
- pyerualjetwork/plan_cuda.py +18 -5
- {pyerualjetwork-4.0.6.dist-info → pyerualjetwork-4.0.8.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.0.6.dist-info → pyerualjetwork-4.0.8.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.0.6.dist-info → pyerualjetwork-4.0.8.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.0.6.dist-info → pyerualjetwork-4.0.8.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -47,7 +47,7 @@ for package_name in package_names:
|
|
47
47
|
|
48
48
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
49
49
|
|
50
|
-
__version__ = "4.0.
|
50
|
+
__version__ = "4.0.8"
|
51
51
|
__update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
52
52
|
|
53
53
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -125,7 +125,15 @@ def fit(
|
|
125
125
|
|
126
126
|
elif val and (x_val is not None and y_val is not None):
|
127
127
|
x_val = x_val.astype(dtype, copy=False)
|
128
|
-
y_val
|
128
|
+
if len(y_val[0]) < 256:
|
129
|
+
if y_val.dtype != np.uint8:
|
130
|
+
y_val = np.array(y_val, copy=False).astype(np.uint8, copy=False)
|
131
|
+
elif len(y_val[0]) <= 32767:
|
132
|
+
if y_val.dtype != np.uint16:
|
133
|
+
y_val = np.array(y_val, copy=False).astype(np.uint16, copy=False)
|
134
|
+
else:
|
135
|
+
if y_val.dtype != np.uint32:
|
136
|
+
y_val = np.array(y_val, copy=False).astype(np.uint32, copy=False)
|
129
137
|
|
130
138
|
val_list = [] if val else None
|
131
139
|
val_count = val_count or 10
|
@@ -244,15 +252,15 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
244
252
|
if x_test is not None:
|
245
253
|
x_test = x_test.astype(dtype, copy=False)
|
246
254
|
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
255
|
+
if len(y_test[0]) < 256:
|
256
|
+
if y_test.dtype != np.uint8:
|
257
|
+
y_test = np.array(y_test, copy=False).astype(np.uint8, copy=False)
|
258
|
+
elif len(y_test[0]) <= 32767:
|
259
|
+
if y_test.dtype != np.uint16:
|
260
|
+
y_test = np.array(y_test, copy=False).astype(np.uint16, copy=False)
|
261
|
+
else:
|
262
|
+
if y_test.dtype != np.uint32:
|
263
|
+
y_test = np.array(y_test, copy=False).astype(np.uint32, copy=False)
|
256
264
|
|
257
265
|
if x_test is None and y_test is None:
|
258
266
|
x_test = x_train
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -120,9 +120,22 @@ def fit(
|
|
120
120
|
if len(x_train) != len(y_train):
|
121
121
|
raise ValueError("x_train and y_train must have the same length.")
|
122
122
|
|
123
|
-
if val and (x_val is None
|
123
|
+
if val and (x_val is None and y_val is None):
|
124
124
|
x_val, y_val = x_train, y_train
|
125
125
|
|
126
|
+
elif val and (x_val is not None and y_val is not None):
|
127
|
+
x_val = cp.array(x_val, copy=False).astype(dtype, copy=False)
|
128
|
+
|
129
|
+
if len(y_val[0]) < 256:
|
130
|
+
if y_val.dtype != cp.uint8:
|
131
|
+
y_val = cp.array(y_val, copy=False).astype(cp.uint8, copy=False)
|
132
|
+
elif len(y_val[0]) <= 32767:
|
133
|
+
if y_val.dtype != cp.uint16:
|
134
|
+
y_val = cp.array(y_val, copy=False).astype(cp.uint16, copy=False)
|
135
|
+
else:
|
136
|
+
if y_val.dtype != cp.uint32:
|
137
|
+
y_val = cp.array(y_val, copy=False).astype(cp.uint32, copy=False)
|
138
|
+
|
126
139
|
val_list = [] if val else None
|
127
140
|
val_count = val_count or 10
|
128
141
|
# Defining weights
|
@@ -284,9 +297,9 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
284
297
|
|
285
298
|
# Initialize progress bar
|
286
299
|
if batch_size == 1:
|
287
|
-
ncols =
|
300
|
+
ncols = 90
|
288
301
|
else:
|
289
|
-
ncols =
|
302
|
+
ncols = 103
|
290
303
|
progress = initialize_loading_bar(total=len(activation_potentiation), desc="", ncols=ncols, bar_format=bar_format_learner)
|
291
304
|
|
292
305
|
# Initialize variables
|
@@ -297,8 +310,8 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
|
|
297
310
|
else:
|
298
311
|
best_activations = start_this
|
299
312
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
300
|
-
W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization)
|
301
|
-
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations)
|
313
|
+
W = fit(x_train, y_train, activation_potentiation=best_activations, train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
314
|
+
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=activations, dtype=dtype)
|
302
315
|
|
303
316
|
if loss == 'categorical_crossentropy':
|
304
317
|
test_loss = categorical_crossentropy(y_true_batch=y_test_batch, y_pred_batch=model[get_preds_softmax()])
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.0.
|
3
|
+
Version: 4.0.8
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256
|
1
|
+
pyerualjetwork/__init__.py,sha256=AnIsSN-QVGesbcS34--yvJhkK8-MsnCh_Rk_NWYO_Js,2542
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=UeuuagJWcSoFfmwikDU7O8ph--oySnWDJNqKbEh4SlE,12043
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5F49gKkiRngo0hAaS1KfarxQ7wEyub13WAX_apxf8j8,12069
|
4
4
|
pyerualjetwork/data_operations.py,sha256=rnOYLLK3YnRdWpEsEQABU0RE950lQQI7971eBLBpqOQ,16536
|
@@ -10,14 +10,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
10
10
|
pyerualjetwork/metrics_cuda.py,sha256=TCwn5Z_4jQjqPCURX_xtcz9cjsYVzlahgKDA-qCgpU4,5072
|
11
11
|
pyerualjetwork/model_operations.py,sha256=k_53BJladPm9fBWdlVpS6Uf5IQzpNlJWLH746DXGq_M,13036
|
12
12
|
pyerualjetwork/model_operations_cuda.py,sha256=Guo0lFaaLiAXwKmnOi8Fz_bL_p38qR46CIhGOg_V1Sw,13138
|
13
|
-
pyerualjetwork/plan.py,sha256=
|
14
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
13
|
+
pyerualjetwork/plan.py,sha256=iF0zIaO2KrPYF8G__-Q2wMYbgQEIdRWap3BBMRZ1Fpo,34746
|
14
|
+
pyerualjetwork/plan_cuda.py,sha256=Yke5vsmhrsKIpCOYoPNBqLzBHfjqsXuT7RrmMXNNmQc,34541
|
15
15
|
pyerualjetwork/planeat.py,sha256=8cwWboJtXgFTKq6nFl1T9McbLDmBquKUr12y168PmcM,39513
|
16
16
|
pyerualjetwork/planeat_cuda.py,sha256=boN-HFwm_D9cT1z0eAR8zgkiD_XOg-J2T2jNFvZweG4,39570
|
17
17
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
18
18
|
pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
|
19
19
|
pyerualjetwork/visualizations_cuda.py,sha256=dA0u85ZIyKqjtoSJ6p3EbEpJs4V4vS5W5ftR6eif8yg,26713
|
20
|
-
pyerualjetwork-4.0.
|
21
|
-
pyerualjetwork-4.0.
|
22
|
-
pyerualjetwork-4.0.
|
23
|
-
pyerualjetwork-4.0.
|
20
|
+
pyerualjetwork-4.0.8.dist-info/METADATA,sha256=Gbx5Brb9cXOwggDZFBuU_0piRCBEUbZigIE_gwmsZw8,6357
|
21
|
+
pyerualjetwork-4.0.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
22
|
+
pyerualjetwork-4.0.8.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
23
|
+
pyerualjetwork-4.0.8.dist-info/RECORD,,
|
File without changes
|
File without changes
|