pyerualjetwork 4.0.6__py3-none-any.whl → 4.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -47,7 +47,7 @@ for package_name in package_names:
47
47
 
48
48
  print(f"PyerualJetwork is ready to use with {err} errors")
49
49
 
50
- __version__ = "4.0.6"
50
+ __version__ = "4.0.7"
51
51
  __update__ = "* Note: CUDA modules need cupy. Enter this command in your terminal: 'pip install cupy-cuda12x' or your cuda version.\n* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
52
52
 
53
53
  def print_version(__version__):
pyerualjetwork/plan.py CHANGED
@@ -125,7 +125,15 @@ def fit(
125
125
 
126
126
  elif val and (x_val is not None and y_val is not None):
127
127
  x_val = x_val.astype(dtype, copy=False)
128
- y_val = y_val.astype(dtype, copy=False)
128
+ if len(y_val[0]) < 256:
129
+ if y_val.dtype != np.uint8:
130
+ y_val = np.array(y_val, copy=False).astype(np.uint8, copy=False)
131
+ elif len(y_val[0]) <= 32767:
132
+ if y_val.dtype != np.uint16:
133
+ y_val = np.array(y_val, copy=False).astype(np.uint16, copy=False)
134
+ else:
135
+ if y_val.dtype != np.uint32:
136
+ y_val = np.array(y_val, copy=False).astype(np.uint32, copy=False)
129
137
 
130
138
  val_list = [] if val else None
131
139
  val_count = val_count or 10
@@ -244,15 +252,15 @@ def learner(x_train, y_train, x_test=None, y_test=None, strategy='accuracy', bat
244
252
  if x_test is not None:
245
253
  x_test = x_test.astype(dtype, copy=False)
246
254
 
247
- if len(y_test[0]) < 256:
248
- if y_test.dtype != np.uint8:
249
- y_test = np.array(y_test, copy=False).astype(np.uint8, copy=False)
250
- elif len(y_test[0]) <= 32767:
251
- if y_test.dtype != np.uint16:
252
- y_test = np.array(y_test, copy=False).astype(np.uint16, copy=False)
253
- else:
254
- if y_test.dtype != np.uint32:
255
- y_test = np.array(y_test, copy=False).astype(np.uint32, copy=False)
255
+ if len(y_test[0]) < 256:
256
+ if y_test.dtype != np.uint8:
257
+ y_test = np.array(y_test, copy=False).astype(np.uint8, copy=False)
258
+ elif len(y_test[0]) <= 32767:
259
+ if y_test.dtype != np.uint16:
260
+ y_test = np.array(y_test, copy=False).astype(np.uint16, copy=False)
261
+ else:
262
+ if y_test.dtype != np.uint32:
263
+ y_test = np.array(y_test, copy=False).astype(np.uint32, copy=False)
256
264
 
257
265
  if x_test is None and y_test is None:
258
266
  x_test = x_train
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.0.6
3
+ Version: 4.0.7
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=-LtEvQHZJBa1NlftOFTJPxgnQ0IJIgtVENLXoISrnQY,2542
1
+ pyerualjetwork/__init__.py,sha256=i_pt-vpEDdNMFEVgM_LjkJ-_bmhTswIYaZTUC-LsRps,2542
2
2
  pyerualjetwork/activation_functions.py,sha256=UeuuagJWcSoFfmwikDU7O8ph--oySnWDJNqKbEh4SlE,12043
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5F49gKkiRngo0hAaS1KfarxQ7wEyub13WAX_apxf8j8,12069
4
4
  pyerualjetwork/data_operations.py,sha256=rnOYLLK3YnRdWpEsEQABU0RE950lQQI7971eBLBpqOQ,16536
@@ -10,14 +10,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
10
10
  pyerualjetwork/metrics_cuda.py,sha256=TCwn5Z_4jQjqPCURX_xtcz9cjsYVzlahgKDA-qCgpU4,5072
11
11
  pyerualjetwork/model_operations.py,sha256=k_53BJladPm9fBWdlVpS6Uf5IQzpNlJWLH746DXGq_M,13036
12
12
  pyerualjetwork/model_operations_cuda.py,sha256=Guo0lFaaLiAXwKmnOi8Fz_bL_p38qR46CIhGOg_V1Sw,13138
13
- pyerualjetwork/plan.py,sha256=cM02lR8SD7VaefXKVsxzxOGJsJKybGDxSifQ0fZzWd8,34300
13
+ pyerualjetwork/plan.py,sha256=iF0zIaO2KrPYF8G__-Q2wMYbgQEIdRWap3BBMRZ1Fpo,34746
14
14
  pyerualjetwork/plan_cuda.py,sha256=JF2LK5BgDZAQb3LuPDCyz8G7ICEvEg8BWezeZdw8X-4,33920
15
15
  pyerualjetwork/planeat.py,sha256=8cwWboJtXgFTKq6nFl1T9McbLDmBquKUr12y168PmcM,39513
16
16
  pyerualjetwork/planeat_cuda.py,sha256=boN-HFwm_D9cT1z0eAR8zgkiD_XOg-J2T2jNFvZweG4,39570
17
17
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
18
18
  pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
19
19
  pyerualjetwork/visualizations_cuda.py,sha256=dA0u85ZIyKqjtoSJ6p3EbEpJs4V4vS5W5ftR6eif8yg,26713
20
- pyerualjetwork-4.0.6.dist-info/METADATA,sha256=MAGihGi3dJ2cKp14b8kDFGs3-d6nVHBVckfqYs8Stq8,6357
21
- pyerualjetwork-4.0.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
- pyerualjetwork-4.0.6.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
- pyerualjetwork-4.0.6.dist-info/RECORD,,
20
+ pyerualjetwork-4.0.7.dist-info/METADATA,sha256=BWCx6dmY3FC-ud-gC_8ukAcE6-4o-wrU1xIItVeadDw,6357
21
+ pyerualjetwork-4.0.7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
22
+ pyerualjetwork-4.0.7.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
23
+ pyerualjetwork-4.0.7.dist-info/RECORD,,