pyerualjetwork 4.0.0__py3-none-any.whl → 4.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -56,8 +56,8 @@ days, seconds = divmod(remaining_time.total_seconds(), 86400)
56
56
  hours, seconds = divmod(seconds, 3600)
57
57
  minutes, seconds = divmod(seconds, 60)
58
58
 
59
- __version__ = "4.0.0"
60
- __update__ = f"\033[33m --- IMPORTANT NOTE! --- \n pyerualjetwork==4.0.0 inludes anaplan==2.6.1. Name changed. Full support starting January 10, 2025. TIME REMAINING TO FULL SUPPORT: {int(days)} days, {int(hours):02} hours, {int(minutes):02} minutes, {int(seconds):02} seconds\033[0m\n* Changes: https://github.com/HCB06/Anaplan/blob/main/CHANGES\n* Anaplan document: https://github.com/HCB06/Anaplan/blob/main/Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf.\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
59
+ __version__ = "4.0.1"
60
+ __update__ = f"\033[33m --- IMPORTANT NOTE! --- \n 'anaplan' name changed to 'pyerualjetwork'. Full 'pyerualjetwork' support starting January 10, 2025. TIME REMAINING TO END OF SUPPORT ANAPLAN: {int(days)} days, {int(hours):02} hours, {int(minutes):02} minutes, {int(seconds):02} seconds\033[0m\n* Changes: https://github.com/HCB06/Anaplan/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf.\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
61
61
 
62
62
  def print_version(__version__):
63
63
  print(f"PyerualJetwork Version {__version__}" + '\n')
@@ -265,17 +265,44 @@ def predict_model_ssd(Input, model_name, model_path):
265
265
 
266
266
  Input = standard_scaler(None, Input, scaler_params)
267
267
 
268
- Wc = np.copy(W)
269
-
270
268
  neural_layer = Input
271
269
  neural_layer = np.array(neural_layer)
272
270
  neural_layer = neural_layer.ravel()
273
271
 
272
+ try:
273
+ neural_layer = feed_forward(neural_layer, np.copy(W), is_training=False, Class='?', activation_potentiation=activation_potentiation)
274
+ return neural_layer
275
+ except:
276
+ print(Fore.RED + "ERROR: Unexpected Output or wrong model parameters from: predict_model_ssd." + Style.RESET_ALL)
277
+ sys.exit()
278
+
279
+
280
+ def reverse_predict_model_ssd(output, model_name, model_path):
281
+
282
+ """
283
+ Function to make a prediction using a divided potentiation learning artificial neural network (PLAN).
284
+
285
+ Arguments:
286
+
287
+ output (list or ndarray): output layer for the model (single probability vector, output layer of trained model).
288
+
289
+ model_name (str): Name of the model.
290
+
291
+ Returns:
292
+ ndarray: Input from the model.
293
+ """
294
+
295
+ model = load_model(model_name, model_path)
274
296
 
275
- neural_layer = feed_forward(neural_layer, W, is_training=False, Class='?', activation_potentiation=activation_potentiation)
297
+ W = model[get_weights()]
276
298
 
277
- W = np.copy(Wc)
278
- return neural_layer
299
+ try:
300
+ Input = np.dot(output, np.copy(W))
301
+ return Input
302
+ except:
303
+ print(Fore.RED + "ERROR: Unexpected Output or wrong model parameters from: reverse_predict_model_ssd." + Style.RESET_ALL)
304
+ sys.exit()
305
+
279
306
 
280
307
 
281
308
  def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['linear']):
@@ -302,8 +329,6 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
302
329
  from .plan import feed_forward
303
330
 
304
331
  Input = standard_scaler(None, Input, scaler_params)
305
-
306
- Wc = np.copy(W)
307
332
 
308
333
  try:
309
334
 
@@ -311,15 +336,38 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
311
336
  neural_layer = np.array(neural_layer)
312
337
  neural_layer = neural_layer.ravel()
313
338
 
314
- neural_layer = feed_forward(neural_layer, W, is_training=False, Class='?', activation_potentiation=activation_potentiation)
339
+ neural_layer = feed_forward(neural_layer, np.copy(W), is_training=False, Class='?', activation_potentiation=activation_potentiation)
315
340
 
316
- W = np.copy(Wc)
317
341
  return neural_layer
318
342
 
319
343
  except:
320
344
  print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." + Style.RESET_ALL)
321
345
  sys.exit()
322
346
 
347
+ def reverse_predict_model_ram(output, W):
348
+
349
+ """
350
+ Function to make a prediction using a divided potentiation learning artificial neural network (PLAN).
351
+ from weights and parameters stored in memory.
352
+
353
+ Arguments:
354
+
355
+ output (list or ndarray): output layer for the model (single probability vector, output layer of trained model).
356
+
357
+ W (list of ndarrays): Weights of the model.
358
+
359
+ Returns:
360
+ ndarray: Input from the model.
361
+ """
362
+
363
+ try:
364
+ Input = np.dot(output, np.copy(W))
365
+ return Input
366
+
367
+ except:
368
+ print(Fore.RED + "ERROR: Unexpected Output or wrong model parameters from: reverse_predict_model_ram." + Style.RESET_ALL)
369
+ sys.exit()
370
+
323
371
 
324
372
  def get_weights():
325
373
 
pyerualjetwork/plan.py CHANGED
@@ -47,7 +47,7 @@ bar_format_learner = loading_bars()[1]
47
47
  def fit(
48
48
  x_train,
49
49
  y_train,
50
- val=None,
50
+ val=False,
51
51
  val_count=None,
52
52
  activation_potentiation=['linear'],
53
53
  x_val=None,
@@ -580,14 +580,11 @@ def evaluate(
580
580
 
581
581
  try:
582
582
 
583
- Wc = [0] * len(W) # Wc = Weight copy
584
583
  true_predict = 0
585
584
  y_preds = []
586
585
  y_preds_raw = []
587
586
  acc_list = []
588
587
 
589
- Wc = np.copy(W)
590
-
591
588
 
592
589
  if loading_bar_status == True:
593
590
 
@@ -600,10 +597,6 @@ def evaluate(
600
597
 
601
598
 
602
599
  neural_layer = feed_forward(neural_layer, W, is_training=False, Class='?', activation_potentiation=activation_potentiation)
603
-
604
-
605
- W = np.copy(Wc)
606
-
607
600
  neural_layer = Softmax(neural_layer)
608
601
 
609
602
  max_value = max(neural_layer)
@@ -633,13 +626,10 @@ def evaluate(
633
626
  if show_metrics == True:
634
627
 
635
628
  loading_bar.close()
636
- plot_evaluate(x_test, y_test, y_preds, acc_list, W=W, activation_potentiation=activation_potentiation)
637
-
638
- W = np.copy(Wc)
629
+ plot_evaluate(x_test, y_test, y_preds, acc_list, W=np.copy(W), activation_potentiation=activation_potentiation)
639
630
 
640
631
  except Exception as e:
641
632
 
642
- print(Fore.RED + 'ERROR:' + str(e) + Style.RESET_ALL)
643
- sys.exit()
633
+ raise(e)
644
634
 
645
635
  return W, y_preds, acc, None, None, y_preds_raw
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.0.0
3
+ Version: 4.0.1
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,15 +1,15 @@
1
- pyerualjetwork/__init__.py,sha256=vTHUnMi8HRbKs_rQEDajOTcQiDqtaUVcj2g3y3YKAO8,2846
1
+ pyerualjetwork/__init__.py,sha256=E7mNgAbXBll7aKAgJSKMSkqaXNLIVUjK3PNhBVrUUYA,2878
2
2
  pyerualjetwork/activation_functions.py,sha256=iJpdsX8FqZ3lB3x-YG7d9-em8xHD0y1ciJLNWmI7Y6A,9941
3
3
  pyerualjetwork/data_operations.py,sha256=mph66_qGQHxhg_gQtTuOzP2PjTwJsxTGzmRmvrzlQn4,12747
4
4
  pyerualjetwork/help.py,sha256=5Du_Cja5iPvGeVS9dAoehKTJmRgb_7c6Qsn7Cy2ZfTs,823
5
5
  pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
6
6
  pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
7
- pyerualjetwork/model_operations.py,sha256=f_k_wdPAYXVmzH01kQ2UTbcYO89DaU6_8UbK-XSX-z8,10492
8
- pyerualjetwork/plan.py,sha256=R8e8-S5F9eQOb9YZA6VQ9BCu94gJXMfn_nKkl4ZNpQE,31848
7
+ pyerualjetwork/model_operations.py,sha256=zkEP6wkrLMq0U09SgnrGpOEkaWCTlYzioMM4qUgQgRM,12067
8
+ pyerualjetwork/plan.py,sha256=PfsSNFe1qY_MIF1MoM_pbP-1s_HrADSLUsW9AI15nIk,31621
9
9
  pyerualjetwork/planeat.py,sha256=3l4c-sMqTY6mQvW9u2OarcccUYcMxqASQXgx1GjNZSA,38061
10
10
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
11
11
  pyerualjetwork/visualizations.py,sha256=DvbiQGlvlKNAgBJ3O3ukAi6uxSheha9SRFh5YX7ZxIA,26678
12
- pyerualjetwork-4.0.0.dist-info/METADATA,sha256=5JzOCtHCqNLV5_TT9Pp8Ld1fZYT-Qys0vIfYWNXq1n8,6430
13
- pyerualjetwork-4.0.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
14
- pyerualjetwork-4.0.0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
15
- pyerualjetwork-4.0.0.dist-info/RECORD,,
12
+ pyerualjetwork-4.0.1.dist-info/METADATA,sha256=zHIFEFV70kHBhmHlnbxfQRylHQ4XufhM8j30w0SDhnE,6430
13
+ pyerualjetwork-4.0.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
14
+ pyerualjetwork-4.0.1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
15
+ pyerualjetwork-4.0.1.dist-info/RECORD,,