pyerualjetwork 3.3.3__py3-none-any.whl → 4.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py DELETED
@@ -1,2173 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- Created on Tue Jun 18 23:32:16 2024
4
-
5
- @author: hasan can
6
- """
7
-
8
- import pandas as pd
9
- import numpy as np
10
- import time
11
- from colorama import Fore, Style
12
- from typing import List, Union
13
- from scipy.special import expit, softmax
14
- import matplotlib.pyplot as plt
15
- import seaborn as sns
16
- from tqdm import tqdm
17
- from scipy.spatial import ConvexHull
18
- from datetime import datetime
19
- from scipy import io
20
- import scipy.io as sio
21
- from matplotlib.animation import ArtistAnimation
22
- import networkx as nx
23
- import sys
24
-
25
- # BUILD -----
26
-
27
-
28
- def fit(
29
- x_train: List[Union[int, float]],
30
- y_train: List[Union[int, float]], # One hot encoded
31
- val= None,
32
- val_count = None,
33
- activation_potentiation=[None], # activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
34
- x_val= None,
35
- y_val= None,
36
- show_training = None,
37
- visible_layer=None, # For the future [DISABLED]
38
- interval=100,
39
- LTD = 0 # LONG TERM DEPRESSION
40
- ) -> str:
41
-
42
- infoPLAN = """
43
- Creates and configures a PLAN model.
44
-
45
- fit Args:
46
- x_train (list[num]): List or numarray of input data.
47
- y_train (list[num]): List or numarray of target labels. (one hot encoded)
48
- val (None or True): validation in training process ? None or True default: None (optional)
49
- val_count (None or int): After how many examples learned will an accuracy test be performed? default: 10=(%10) it means every approximately 10 step (optional)
50
- activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: help(plan.activation_functions_list) default: [None] (optional)
51
- x_val (list[num]): List of validation data. (optional) Default: %10 of x_train (auto_balanced) it means every %1 of train progress starts validation default: x_train (optional)
52
- y_val (list[num]): (list[num]): List of target labels. (one hot encoded) (optional) Default: %10 of y_train (auto_balanced) it means every %1 of train progress starts validation default: y_train (optional)
53
- show_training (bool, str): True or None default: None (optional)
54
- visible_layer: For the future [DISABLED]
55
- LTD (int): Long Term Depression Hyperparameter for train PLAN neural network (optional)
56
- interval (float, int): frame delay (milisecond) parameter for Training Report (show_training=True) This parameter effects to your Training Report performance. Lower value is more diffucult for Low end PC's (33.33 = 30 FPS, 16.67 = 60 FPS) default: 100 (optional)
57
-
58
- Returns:
59
- list([num]): (Weight matrix).
60
- error handled ?: Process status ('e')
61
- """
62
-
63
- fit.__doc__ = infoPLAN
64
-
65
- visible_layer = None
66
-
67
- if len(x_train) != len(y_train):
68
-
69
- print(Fore.RED + "ERROR301: x_train list and y_train list must be same length. from: fit", infoPLAN + Style.RESET_ALL)
70
- sys.exit()
71
-
72
- if val == True:
73
-
74
- try:
75
-
76
- if x_val == None and y_val == None:
77
-
78
- x_val = x_train
79
- y_val = y_train
80
-
81
- except:
82
-
83
- pass
84
-
85
- if val_count == None:
86
-
87
- val_count = 10
88
-
89
- val_bar = tqdm(total=1, desc="Validating Accuracy", ncols=120)
90
- v_iter = 0
91
- val_list = [] * val_count
92
-
93
- if show_training == True:
94
-
95
- G = nx.Graph()
96
-
97
- fig, ax = plt.subplots(2, 2)
98
- fig.suptitle('Train Report')
99
-
100
- artist1 = []
101
- artist2 = []
102
- artist3 = []
103
- artist4 = []
104
-
105
- if val != True:
106
-
107
- print(Fore.RED + "ERROR115: For showing training, val parameter must be True. from: fit",
108
- infoPLAN + Style.RESET_ALL)
109
- sys.exit()
110
-
111
-
112
- class_count = set()
113
-
114
- for sublist in y_train:
115
-
116
- class_count.add(tuple(sublist))
117
-
118
- class_count = list(class_count)
119
-
120
- y_train = [tuple(sublist) for sublist in y_train]
121
-
122
- if visible_layer == None:
123
-
124
- layers = ['fex']
125
- else:
126
-
127
- layers = ['fex'] * visible_layer
128
-
129
- x_train_0 = np.array(x_train[0])
130
-
131
- x_train__0_vec = x_train_0.ravel()
132
-
133
- x_train_size = len(x_train__0_vec)
134
-
135
- if visible_layer == None:
136
-
137
- STPW = [None]
138
- STPW[0] = np.ones((len(class_count), x_train_size)) # STPW = SHORT TIME POTENTIATION WEIGHT
139
-
140
- else:
141
-
142
- if visible_layer == 1:
143
- fex_count = visible_layer
144
- else:
145
- fex_count = visible_layer - 1
146
-
147
- fex_neurons = [None] * fex_count
148
-
149
- for i in range(fex_count):
150
-
151
- fex_neurons[i] = [x_train_size]
152
-
153
- cat_neurons = [len(class_count), x_train_size]
154
-
155
- STPW = weight_identification(
156
- len(layers), len(class_count), fex_neurons, cat_neurons, x_train_size) # STPW = SHORT TIME POTENTIATION WEIGHT
157
-
158
- LTPW = [0] * len(STPW) # LTPW = LONG TIME POTENTIATION WEIGHT
159
-
160
- y = decode_one_hot(y_train)
161
-
162
- train_progress = tqdm(total=len(x_train),leave=False, desc="Training",ncols= 120)
163
-
164
- max_w = len(STPW) - 1
165
-
166
- for index, inp in enumerate(x_train):
167
-
168
- progress = index / len(x_train) * 100
169
-
170
- inp = np.array(inp)
171
- inp = inp.ravel()
172
-
173
- if x_train_size != len(inp):
174
- print(Fore.RED + "ERROR304: All input matrices or vectors in x_train list, must be same size. from: fit",
175
- infoPLAN + Style.RESET_ALL)
176
- sys.exit()
177
-
178
- neural_layer = inp
179
-
180
- for Lindex, Layer in enumerate(STPW):
181
-
182
-
183
- STPW[Lindex] = fex(neural_layer, STPW[Lindex], True, y[index], activation_potentiation, index=Lindex, max_w=max_w, LTD=LTD)
184
-
185
-
186
- for i in range(len(STPW)):
187
- STPW[i] = normalization(STPW[i])
188
-
189
- for i, w in enumerate(STPW):
190
- LTPW[i] = LTPW[i] + w
191
-
192
- if val == True:
193
-
194
- if int(progress) % val_count == 1:
195
-
196
- validation_model = evaluate(x_val, y_val, LTPW ,bar_status=False, activation_potentiation=activation_potentiation, show_metrices=None)
197
- val_acc = validation_model[get_acc()]
198
-
199
- val_list.append(val_acc)
200
-
201
- if show_training == True:
202
-
203
-
204
- mat = LTPW[0]
205
- art2 = ax[0, 0].imshow(mat, interpolation='sinc', cmap='viridis')
206
- suptitle_info = 'Weight Learning Progress'
207
-
208
- ax[0, 0].set_title(suptitle_info)
209
-
210
- artist2.append([art2])
211
-
212
- artist1 = plot_decision_boundary(ax, x_val, y_val, activation_potentiation, LTPW, artist=artist1)
213
-
214
- period = list(range(1, len(val_list) + 1))
215
-
216
- art3 = ax[1, 1].plot(
217
- period,
218
- val_list,
219
- linestyle='--',
220
- color='g',
221
- marker='o',
222
- markersize=6,
223
- linewidth=2,
224
- label='Validation Accuracy'
225
- )
226
-
227
- ax[1, 1].set_title('Validation History')
228
- ax[1, 1].set_xlabel('Time')
229
- ax[1, 1].set_ylabel('Validation Accuracy')
230
- ax[1, 1].set_ylim([0, 1])
231
-
232
- artist3.append(art3)
233
-
234
- for i in range(LTPW[0].shape[0]):
235
- for j in range(LTPW[0].shape[1]):
236
- if LTPW[0][i, j] != 0:
237
- G.add_edge(f'Motor Neuron{i}', f'Sensory Neuron{j}', ltpw=LTPW[0][i, j])
238
-
239
- edges = G.edges(data=True)
240
- weights = [edata['ltpw'] for _, _, edata in edges]
241
- pos = generate_fixed_positions(G, layout_type='circular')
242
-
243
- art4_1 = nx.draw_networkx_nodes(G, pos, ax=ax[0, 1], node_size=1000, node_color='lightblue')
244
- art4_2 = nx.draw_networkx_edges(G, pos, ax=ax[0, 1], edge_color=weights, edge_cmap=plt.cm.Blues)
245
- art4_3 = nx.draw_networkx_labels(G, pos, ax=ax[0, 1], font_size=10, font_weight='bold')
246
- ax[0, 1].set_title('Neural Web')
247
-
248
- art4_list = [art4_1] + [art4_2] + list(art4_3.values())
249
-
250
- artist4.append(art4_list)
251
-
252
-
253
- if v_iter == 0:
254
-
255
- val_bar.update(val_acc)
256
-
257
- if v_iter != 0:
258
-
259
- val_acc = val_acc - val_list[v_iter - 1]
260
- val_bar.update(val_acc)
261
-
262
- v_iter += 1
263
-
264
- if visible_layer == None:
265
- STPW = [None]
266
- STPW[0] = np.ones((len(class_count), x_train_size)) # STPW = SHORT TIME POTENTIATION WEIGHT
267
-
268
- else:
269
- STPW = weight_identification(
270
- len(layers), len(class_count), fex_neurons, cat_neurons, x_train_size)
271
-
272
- train_progress.update(1)
273
-
274
- if show_training == True:
275
-
276
- mat = LTPW[0]
277
-
278
- for i in range(30):
279
-
280
- art2 = ax[0, 0].imshow(mat, interpolation='sinc', cmap='viridis')
281
- suptitle_info = 'Weight Learning Progress:'
282
-
283
- ax[0, 0].set_title(suptitle_info)
284
-
285
- artist2.append([art2])
286
-
287
- art3 = ax[1, 1].plot(
288
- period,
289
- val_list,
290
- linestyle='--',
291
- color='g',
292
- marker='o',
293
- markersize=6,
294
- linewidth=2,
295
- label='Validation Accuracy'
296
- )
297
-
298
- ax[1, 1].set_title('Validation History')
299
- ax[1, 1].set_xlabel('Time')
300
- ax[1, 1].set_ylabel('Validation Accuracy')
301
- ax[1, 1].set_ylim([0, 1])
302
-
303
- artist3.append(art3)
304
-
305
- for i in range(28):
306
-
307
- art4_1 = nx.draw_networkx_nodes(G, pos, ax=ax[0, 1], node_size=1000, node_color='lightblue')
308
- art4_2 = nx.draw_networkx_edges(G, pos, ax=ax[0, 1], edge_color=weights, edge_cmap=plt.cm.Blues)
309
- art4_3 = nx.draw_networkx_labels(G, pos, ax=ax[0, 1], font_size=10, font_weight='bold')
310
- ax[0, 1].set_title('Neural Web')
311
-
312
- art4_list = [art4_1] + [art4_2] + list(art4_3.values())
313
-
314
- artist4.append(art4_list)
315
-
316
-
317
- artist1 = plot_decision_boundary(ax, x_val, y_val, activation_potentiation, LTPW, artist=artist1, draw_is_finished=True)
318
-
319
- ani1 = ArtistAnimation(fig, artist1, interval=interval, blit=True)
320
- ani2 = ArtistAnimation(fig, artist2, interval=interval, blit=True)
321
- ani3 = ArtistAnimation(fig, artist3, interval=interval, blit=True)
322
- ani4 = ArtistAnimation(fig, artist4, interval=interval, blit=True)
323
-
324
- plt.show()
325
-
326
- LTPW = normalization(LTPW)
327
-
328
- return LTPW
329
-
330
- # FUNCTIONS -----
331
-
332
- def generate_fixed_positions(G, layout_type='circular'):
333
- pos = {}
334
- num_nodes = len(G.nodes())
335
-
336
- if layout_type == 'circular':
337
- angles = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False)
338
- radius = 10
339
- for i, node in enumerate(G.nodes()):
340
- pos[node] = (radius * np.cos(angles[i]), radius * np.sin(angles[i]))
341
- elif layout_type == 'grid':
342
- grid_size = int(np.ceil(np.sqrt(num_nodes)))
343
- for i, node in enumerate(G.nodes()):
344
- pos[node] = (i % grid_size, i // grid_size)
345
- else:
346
- raise ValueError("Unsupported layout_type. Use 'circular' or 'grid'.")
347
-
348
- return pos
349
-
350
- def weight_normalization(
351
- W,
352
- class_count
353
- ) -> str:
354
- """
355
- Row(Neuron) based normalization. For unbalanced models.
356
-
357
- Args:
358
- W (list(num)): Trained weight matrix list.
359
- class_count (int): Class count of model.
360
-
361
- Returns:
362
- list([numpy_arrays],[...]): posttrained weight matices of the model. .
363
- """
364
-
365
- for i in range(class_count):
366
-
367
- W[0][i,:] = normalization(W[0][i,:])
368
-
369
- return W
370
-
371
- def weight_identification(
372
- fex_neurons,
373
- cat_neurons, # list[num]: List of neuron counts for each layer.
374
- ) -> str:
375
- """
376
- Identifies the weights for a neural network model.
377
-
378
- Args:
379
- layer_count (int): Number of layers in the neural network.
380
- class_count (int): Number of classes in the classification task.
381
- neurons (list[num]): List of neuron counts for each layer.
382
- x_train_size (int): Size of the input data.
383
-
384
- Returns:
385
- list([numpy_arrays],[...]): pretrained weight matices of the model. .
386
- """
387
-
388
- W = [None] * (len(fex_neurons) + 1)
389
-
390
- for i in range(len(fex_neurons)):
391
- W[i] = np.ones((fex_neurons[i]))
392
-
393
- W[i + 1] = np.ones((cat_neurons[0], cat_neurons[1]))
394
-
395
- return W
396
-
397
- # ACTIVATION FUNCTIONS -----
398
-
399
- def spiral_activation(x):
400
-
401
- r = np.sqrt(np.sum(x**2))
402
-
403
- theta = np.arctan2(x[1:], x[:-1])
404
-
405
- spiral_x = r * np.cos(theta + r)
406
- spiral_y = r * np.sin(theta + r)
407
-
408
-
409
- spiral_output = np.concatenate(([spiral_x[0]], spiral_y))
410
-
411
- return spiral_output
412
-
413
- def Softmax(
414
- x # num: Input data to be transformed using softmax function.
415
- ):
416
- """
417
- Applies the softmax function to the input data.
418
-
419
- Args:
420
- (num): Input data to be transformed using softmax function.
421
-
422
- Returns:
423
- (num): Transformed data after applying softmax function.
424
- """
425
-
426
- return softmax(x)
427
-
428
-
429
- def Sigmoid(
430
- x # num: Input data to be transformed using sigmoid function.
431
- ):
432
- """
433
- Applies the sigmoid function to the input data.
434
-
435
- Args:
436
- (num): Input data to be transformed using sigmoid function.
437
-
438
- Returns:
439
- (num): Transformed data after applying sigmoid function.
440
- """
441
- return expit(x)
442
-
443
-
444
- def Relu(
445
- x # num: Input data to be transformed using ReLU function.
446
- ):
447
- """
448
- Applies the Rectified Linear Unit (ReLU) function to the input data.
449
-
450
- Args:
451
- (num): Input data to be transformed using ReLU function.
452
-
453
- Returns:
454
- (num): Transformed data after applying ReLU function.
455
- """
456
-
457
- return np.maximum(0, x)
458
-
459
- def tanh(x):
460
- return np.tanh(x)
461
-
462
- def swish(x):
463
- return x * (1 / (1 + np.exp(-x)))
464
-
465
- def circular_activation(x):
466
- return (np.sin(x) + 1) / 2
467
-
468
- def modular_circular_activation(x, period=2*np.pi):
469
- return np.mod(x, period) / period
470
-
471
- def tanh_circular_activation(x):
472
- return (np.tanh(x) + 1) / 2
473
-
474
- def leaky_relu(x, alpha=0.01):
475
- return np.where(x > 0, x, alpha * x)
476
-
477
- def softplus(x):
478
- return np.log(1 + np.exp(x))
479
-
480
- def elu(x, alpha=1.0):
481
- return np.where(x > 0, x, alpha * (np.exp(x) - 1))
482
-
483
- def gelu(x):
484
- return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
485
-
486
- def selu(x, lambda_=1.0507, alpha=1.6733):
487
- return lambda_ * np.where(x > 0, x, alpha * (np.exp(x) - 1))
488
-
489
- # 1. Sinusoids Activation (SinAkt)
490
- def sinakt(x):
491
- return np.sin(x) + np.cos(x)
492
-
493
- # 2. Parametric Squared Activation (P-Squared)
494
- def p_squared(x, alpha=1.0, beta=0.0):
495
- return alpha * x**2 + beta * x
496
-
497
- def sglu(x, alpha=1.0):
498
- return softmax(alpha * x) * x
499
-
500
- # 4. Double Leaky ReLU (DLReLU)
501
- def dlrelu(x):
502
- return np.maximum(0.01 * x, x) + np.minimum(0.01 * x, 0.1 * x)
503
-
504
- # 5. Exponential Sigmoid (ExSig)
505
- def exsig(x):
506
- return 1 / (1 + np.exp(-x**2))
507
-
508
- # 6. Adaptive Cosine Activation (ACos)
509
- def acos(x, alpha=1.0, beta=0.0):
510
- return np.cos(alpha * x + beta)
511
-
512
- # 7. Gaussian-like Activation (GLA)
513
- def gla(x, alpha=1.0, mu=0.0):
514
- return np.exp(-alpha * (x - mu)**2)
515
-
516
- # 8. Swish ReLU (SReLU)
517
- def srelu(x):
518
- return x * (1 / (1 + np.exp(-x))) + np.maximum(0, x)
519
-
520
- # 9. Quadratic Exponential Linear Unit (QELU)
521
- def qelu(x):
522
- return x**2 * np.exp(x) - 1
523
-
524
- # 10. Inverse Square Root Activation (ISRA)
525
- def isra(x):
526
- return x / np.sqrt(np.abs(x) + 1)
527
-
528
- def waveakt(x, alpha=1.0, beta=2.0, gamma=3.0):
529
- return np.sin(alpha * x) * np.cos(beta * x) * np.sin(gamma * x)
530
-
531
- def arctan(x):
532
- return np.arctan(x)
533
-
534
- def bent_identity(x):
535
- return (np.sqrt(x**2 + 1) - 1) / 2 + x
536
-
537
- def sech(x):
538
- return 2 / (np.exp(x) + np.exp(-x))
539
-
540
- def softsign(x):
541
- return x / (1 + np.abs(x))
542
-
543
- def pwl(x, alpha=0.5, beta=1.5):
544
- return np.where(x <= 0, alpha * x, beta * x)
545
-
546
- def cubic(x):
547
- return x**3
548
-
549
- def gaussian(x, alpha=1.0, mu=0.0):
550
- return np.exp(-alpha * (x - mu)**2)
551
-
552
- def sine(x, alpha=1.0):
553
- return np.sin(alpha * x)
554
-
555
- def tanh_square(x):
556
- return np.tanh(x)**2
557
-
558
- def mod_sigmoid(x, alpha=1.0, beta=0.0):
559
- return 1 / (1 + np.exp(-alpha * x + beta))
560
-
561
- def quartic(x):
562
- return x**4
563
-
564
- def square_quartic(x):
565
- return (x**2)**2
566
-
567
- def cubic_quadratic(x):
568
- return x**3 * (x**2)
569
-
570
- def exp_cubic(x):
571
- return np.exp(x**3)
572
-
573
- def sine_square(x):
574
- return np.sin(x)**2
575
-
576
- def logarithmic(x):
577
- return np.log(x**2 + 1)
578
-
579
- def scaled_cubic(x, alpha=1.0):
580
- return alpha * x**3
581
-
582
- def sine_offset(x, beta=0.0):
583
- return np.sin(x + beta)
584
-
585
- def activations_list():
586
- """
587
- spiral,
588
- sigmoid,
589
- relu,
590
- tanh,: good for general datasets
591
- swish,
592
- circular,
593
- mod_circular,
594
- tanh_circular,
595
- leaky_relu,
596
- softplus,
597
- elu,
598
- gelu,
599
- selu,
600
- sinakt,
601
- p_squared,
602
- sglu,
603
- dlrelu,
604
- exsig,
605
- acos,
606
- gla,
607
- srelu,
608
- qelu,
609
- isra,
610
- waveakt,
611
- arctan,
612
- bent_identity,: good for image datasets
613
- sech,
614
- softsign,
615
- pwl,
616
- cubic,
617
- gaussian,
618
- sine,
619
- tanh_square,
620
- mod_sigmoid,
621
- quartic,
622
- square_quartic,
623
- cubic_quadratic,
624
- exp_cubic,
625
- sine_square,
626
- logarithmic,
627
- scaled_cubic,
628
- sine_offset
629
- """
630
-
631
-
632
- def fex(
633
- Input, # list[num]: Input data.
634
- w, # num: Weight matrix of the neural network.
635
- is_training, # bool: Flag indicating if the function is called during training (True or False).
636
- Class, # int: Which class is, if training.
637
- activation_potentiation, # (list): Activation potentiation list for deep PLAN. (optional)
638
- index,
639
- max_w,
640
- LTD=0
641
- ) -> tuple:
642
- """
643
- Applies feature extraction process to the input data using synaptic potentiation.
644
-
645
- Args:
646
- Input (num): Input data.
647
- w (num): Weight matrix of the neural network.
648
- is_training (bool): Flag indicating if the function is called during training (True or False).
649
- Class (int): if is during training then which class(label) ? is isnt then put None.
650
- # activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
651
-
652
- Returns:
653
- tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
654
- or
655
- num: neural network output
656
- """
657
-
658
- Output = np.zeros(len(Input))
659
-
660
- for activation in activation_potentiation:
661
-
662
- if activation == 'sigmoid':
663
- Output += Sigmoid(Input)
664
-
665
- elif activation == 'swish':
666
- Output += swish(Input)
667
-
668
- elif activation == 'circular':
669
- Output += circular_activation(Input)
670
-
671
- elif activation == 'mod_circular':
672
- Output += modular_circular_activation(Input)
673
-
674
- elif activation == 'tanh_circular':
675
- Output += tanh_circular_activation(Input)
676
-
677
- elif activation == 'leaky_relu':
678
- Output += leaky_relu(Input)
679
-
680
- elif activation == 'relu':
681
- Output += Relu(Input)
682
-
683
- elif activation == 'softplus':
684
- Output += softplus(Input)
685
-
686
- elif activation == 'elu':
687
- Output += elu(Input)
688
-
689
- elif activation == 'gelu':
690
- Output += gelu(Input)
691
-
692
- elif activation == 'selu':
693
- Output += selu(Input)
694
-
695
- elif activation == 'softmax':
696
- Output += Softmax(Input)
697
-
698
- elif activation == 'tanh':
699
- Output += tanh(Input)
700
-
701
- elif activation == 'sinakt':
702
- Output += sinakt(Input)
703
-
704
- elif activation == 'p_squared':
705
- Output += p_squared(Input)
706
-
707
- elif activation == 'sglu':
708
- Output += sglu(Input, alpha=1.0)
709
-
710
- elif activation == 'dlrelu':
711
- Output += dlrelu(Input)
712
-
713
- elif activation == 'exsig':
714
- Output += exsig(Input)
715
-
716
- elif activation == 'acos':
717
- Output += acos(Input, alpha=1.0, beta=0.0)
718
-
719
- elif activation == 'gla':
720
- Output += gla(Input, alpha=1.0, mu=0.0)
721
-
722
- elif activation == 'srelu':
723
- Output += srelu(Input)
724
-
725
- elif activation == 'qelu':
726
- Output += qelu(Input)
727
-
728
- elif activation == 'isra':
729
- Output += isra(Input)
730
-
731
- elif activation == 'waveakt':
732
- Output += waveakt(Input)
733
-
734
- elif activation == 'arctan':
735
- Output += arctan(Input)
736
-
737
- elif activation == 'bent_identity':
738
- Output += bent_identity(Input)
739
-
740
- elif activation == 'sech':
741
- Output += sech(Input)
742
-
743
- elif activation == 'softsign':
744
- Output += softsign(Input)
745
-
746
- elif activation == 'pwl':
747
- Output += pwl(Input)
748
-
749
- elif activation == 'cubic':
750
- Output += cubic(Input)
751
-
752
- elif activation == 'gaussian':
753
- Output += gaussian(Input)
754
-
755
- elif activation == 'sine':
756
- Output += sine(Input)
757
-
758
- elif activation == 'tanh_square':
759
- Output += tanh_square(Input)
760
-
761
- elif activation == 'mod_sigmoid':
762
- Output += mod_sigmoid(Input)
763
-
764
- elif activation == None or activation == 'linear':
765
- Output += Input
766
-
767
- elif activation == 'quartic':
768
- Output += quartic(Input)
769
-
770
- elif activation == 'square_quartic':
771
- Output += square_quartic(Input)
772
-
773
- elif activation == 'cubic_quadratic':
774
- Output += cubic_quadratic(Input)
775
-
776
- elif activation == 'exp_cubic':
777
- Output += exp_cubic(Input)
778
-
779
- elif activation == 'sine_square':
780
- Output += sine_square(Input)
781
-
782
- elif activation == 'logarithmic':
783
- Output += logarithmic(Input)
784
-
785
- elif activation == 'scaled_cubic':
786
- Output += scaled_cubic(Input, 1.0)
787
-
788
- elif activation == 'sine_offset':
789
- Output += sine_offset(Input, 1.0)
790
-
791
- elif activation == 'spiral':
792
- Output += spiral_activation(Input)
793
-
794
- else:
795
-
796
- print(Fore.RED + 'ERROR120:' + '"' + activation + '"'+ 'is not available. Please enter this code for avaliable activation function list: help(plan.activations_list)' + '' + Style.RESET_ALL)
797
- sys.exit()
798
-
799
-
800
- Input = Output
801
-
802
-
803
- if is_training == True:
804
-
805
- for i in range(LTD):
806
-
807
- depression_vector = np.random.rand(*Input.shape)
808
-
809
- Input -= depression_vector
810
-
811
- w[Class, :] = Input
812
-
813
- return w
814
-
815
-
816
- elif is_training == False:
817
-
818
- neural_layer = np.dot(w, Input)
819
-
820
- return neural_layer
821
-
822
- elif is_training == False and max_w != 0:
823
-
824
-
825
- if index == max_w:
826
-
827
- neural_layer = np.dot(w, Input)
828
- return neural_layer
829
-
830
- else:
831
-
832
- neural_layer = [None] * len(w)
833
-
834
- for i in range(len(w)):
835
-
836
- neural_layer[i] = Input[i] * w[i]
837
-
838
- neural_layer = np.array(neural_layer)
839
-
840
- return neural_layer
841
-
842
-
843
- def normalization(
844
- Input # num: Input data to be normalized.
845
- ):
846
- """
847
- Normalizes the input data using maximum absolute scaling.
848
-
849
- Args:
850
- Input (num): Input data to be normalized.
851
-
852
- Returns:
853
- (num) Scaled input data after normalization.
854
- """
855
-
856
- MaxAbs = np.max(np.abs(Input)) # Direkt maksimumu hesapla
857
- return Input / MaxAbs # Normalizasyonu geri döndür
858
-
859
-
860
- def evaluate(
861
- x_test, # list[num]: Test input data.
862
- y_test, # list[num]: Test labels.
863
- W, # list[num]: Weight matrix list of the neural network.
864
- activation_potentiation=[None], # (list): Activation potentiation list for deep PLAN. (optional)
865
- bar_status=True, # bar_status (bool): Loading bar for accuracy (True or None) (optional) Default: True
866
- show_metrices=None # show_metrices (bool): (True or None) (optional) Default: None
867
- ) -> tuple:
868
- infoTestModel = """
869
- Tests the neural network model with the given test data.
870
-
871
- Args:
872
- x_test (list[num]): Test input data.
873
- y_test (list[num]): Test labels.
874
- W (list[num]): Weight matrix list of the neural network.
875
- activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: help(plan.activation_functions_list) default: [None]
876
- bar_status (bool): Loading bar for accuracy (True or None) (optional) Default: True
877
- show_metrices (bool): (True or None) (optional) Default: None
878
-
879
- Returns:
880
- tuple: A tuple containing the predicted labels and the accuracy of the model.
881
- """
882
- evaluate.__doc__ = infoTestModel
883
-
884
- predict_probabilitys = []
885
- real_classes = []
886
- predict_classes = []
887
-
888
- layer_count = len(W)
889
-
890
- try:
891
- layers = ['fex'] * layer_count
892
-
893
- Wc = [0] * len(W) # Wc = Weight copy
894
- true = 0
895
- y_preds = []
896
- acc_list = []
897
- max_w = len(W) - 1
898
-
899
- for i, w in enumerate(W):
900
- Wc[i] = np.copy(w)
901
-
902
-
903
- if bar_status == True:
904
-
905
- test_progress = tqdm(total=len(x_test),leave=False, desc='Testing',ncols=120)
906
- acc_bar = tqdm(total=1, desc="Test Accuracy", ncols=120)
907
-
908
-
909
- for inpIndex, Input in enumerate(x_test):
910
- Input = np.array(Input)
911
- Input = Input.ravel()
912
- neural_layer = Input
913
-
914
- for index, Layer in enumerate(W):
915
-
916
-
917
- neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation, index=index, max_w=max_w)
918
-
919
-
920
- for i, w in enumerate(Wc):
921
- W[i] = np.copy(w)
922
-
923
- neural_layer = Softmax(neural_layer)
924
-
925
- max_value = max(neural_layer)
926
-
927
- predict_probabilitys.append(max_value)
928
-
929
-
930
- RealOutput = np.argmax(y_test[inpIndex])
931
- real_classes.append(RealOutput)
932
- PredictedOutput = np.argmax(neural_layer)
933
- predict_classes.append(PredictedOutput)
934
-
935
- if RealOutput == PredictedOutput:
936
- true += 1
937
- acc = true / len(y_test)
938
-
939
-
940
- acc_list.append(acc)
941
- y_preds.append(PredictedOutput)
942
-
943
- if bar_status == True:
944
- test_progress.update(1)
945
- if inpIndex == 0:
946
- acc_bar.update(acc)
947
-
948
- else:
949
- acc = acc - acc_list[inpIndex - 1]
950
- acc_bar.update(acc)
951
-
952
- if show_metrices == True:
953
- plot_evaluate(x_test, y_test, y_preds, acc_list, W=W, activation_potentiation=activation_potentiation)
954
-
955
-
956
- for i, w in enumerate(Wc):
957
- W[i] = np.copy(w)
958
-
959
- except:
960
-
961
- print(Fore.RED + 'ERROR:' + infoTestModel + Style.RESET_ALL)
962
- sys.exit()
963
-
964
- return W, y_preds, acc
965
-
966
-
967
- def multiple_evaluate(
968
- x_test, # list[num]: Test input data.
969
- y_test, # list[num]: Test labels.
970
- show_metrices, # show_metrices (bool): Visualize test progress ? (True or False)
971
- MW, # list[list[num]]: Weight matrix of the neural network.
972
- activation_potentiation=None # (float or None): Threshold value for comparison. (optional)
973
- ) -> tuple:
974
- infoTestModel = """
975
- Tests the neural network model with the given test data.
976
-
977
- Args:
978
- x_test (list[num]): Test input data.
979
- y_test (list[num]): Test labels.
980
- show_metrices (bool): (True or False)
981
- MW (list(list[num])): Multiple Weight matrix list of the neural network. (Multiple model testing)
982
-
983
- Returns:
984
- tuple: A tuple containing the predicted labels and the accuracy of the model.
985
- """
986
-
987
- layers = ['fex', 'cat']
988
-
989
- try:
990
- y_preds = [-1] * len(y_test)
991
- acc_list = []
992
- print(Fore.GREEN + "\n\nTest Started with 0 ERROR\n" + Style.RESET_ALL)
993
- start_time = time.time()
994
- true = 0
995
- for inpIndex, Input in enumerate(x_test):
996
-
997
- output_layer = 0
998
-
999
- for m, Model in enumerate(MW):
1000
-
1001
- W = Model
1002
-
1003
- Wc = [0] * len(W) # Wc = weight copy
1004
-
1005
- y_preds = [None] * len(y_test)
1006
- for i, w in enumerate(W):
1007
- Wc[i] = np.copy(w)
1008
-
1009
- Input = np.array(Input)
1010
- Input = Input.ravel()
1011
- uni_start_time = time.time()
1012
- neural_layer = Input
1013
-
1014
- for index, Layer in enumerate(layers):
1015
-
1016
- neural_layer = normalization(neural_layer)
1017
-
1018
- if Layer == 'fex':
1019
- neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
1020
-
1021
- output_layer += neural_layer
1022
-
1023
- for i, w in enumerate(Wc):
1024
- W[i] = np.copy(w)
1025
- for i, w in enumerate(Wc):
1026
- W[i] = np.copy(w)
1027
- RealOutput = np.argmax(y_test[inpIndex])
1028
- PredictedOutput = np.argmax(output_layer)
1029
- if RealOutput == PredictedOutput:
1030
- true += 1
1031
- acc = true / len(y_test)
1032
- if show_metrices == True:
1033
- acc_list.append(acc)
1034
- y_preds[inpIndex] = PredictedOutput
1035
-
1036
-
1037
- uni_end_time = time.time()
1038
-
1039
- calculating_est = round(
1040
- (uni_end_time - uni_start_time) * (len(x_test) - inpIndex), 3)
1041
-
1042
- if calculating_est < 60:
1043
- print('\rest......(sec):', calculating_est, '\n', end="")
1044
- print('\rTest accuracy: ', acc, "\n", end="")
1045
-
1046
- elif calculating_est > 60 and calculating_est < 3600:
1047
- print('\rest......(min):', calculating_est/60, '\n', end="")
1048
- print('\rTest accuracy: ', acc, "\n", end="")
1049
-
1050
- elif calculating_est > 3600:
1051
- print('\rest......(h):', calculating_est/3600, '\n', end="")
1052
- print('\rTest accuracy: ', acc, "\n", end="")
1053
- if show_metrices == True:
1054
- plot_evaluate(y_test, y_preds, acc_list)
1055
-
1056
- EndTime = time.time()
1057
- for i, w in enumerate(Wc):
1058
- W[i] = np.copy(w)
1059
-
1060
- calculating_est = round(EndTime - start_time, 2)
1061
-
1062
- print(Fore.GREEN + "\nTest Finished with 0 ERROR\n")
1063
-
1064
- if calculating_est < 60:
1065
- print('Total testing time(sec): ', calculating_est)
1066
-
1067
- elif calculating_est > 60 and calculating_est < 3600:
1068
- print('Total testing time(min): ', calculating_est/60)
1069
-
1070
- elif calculating_est > 3600:
1071
- print('Total testing time(h): ', calculating_est/3600)
1072
-
1073
- if acc >= 0.8:
1074
- print(Fore.GREEN + '\nTotal Test accuracy: ',
1075
- acc, '\n' + Style.RESET_ALL)
1076
-
1077
- elif acc < 0.8 and acc > 0.6:
1078
- print(Fore.MAGENTA + '\nTotal Test accuracy: ',
1079
- acc, '\n' + Style.RESET_ALL)
1080
-
1081
- elif acc <= 0.6:
1082
- print(Fore.RED + '\nTotal Test accuracy: ',
1083
- acc, '\n' + Style.RESET_ALL)
1084
-
1085
- except:
1086
-
1087
- print(Fore.RED + "ERROR: Testing model parameters like 'activation_potentiation' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: evaluate" + infoTestModel + Style.RESET_ALL)
1088
-
1089
- sys.exit()
1090
-
1091
- return W, y_preds, acc
1092
-
1093
-
1094
- def save_model(model_name,
1095
- model_type,
1096
- test_acc,
1097
- weights_type,
1098
- weights_format,
1099
- model_path,
1100
- W,
1101
- scaler_params=None,
1102
- activation_potentiation=[None]
1103
- ):
1104
-
1105
- infosave_model = """
1106
- Function to save a potentiation learning model.
1107
-
1108
- Arguments:
1109
- model_name (str): Name of the model.
1110
- model_type (str): Type of the model.(options: PLAN)
1111
- test_acc (float): Test accuracy of the model.
1112
- weights_type (str): Type of weights to save (options: 'txt', 'npy', 'mat').
1113
- WeightFormat (str): Format of the weights (options: 'd', 'f', 'raw').
1114
- model_path (str): Path where the model will be saved. For example: C:/Users/beydili/Desktop/denemePLAN/
1115
- scaler_params (list[num, num]): standard scaler params list: mean,std. If not used standard scaler then be: None.
1116
- W: Weights of the model.
1117
- activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: help(plan.activation_functions_list) default: [None]
1118
-
1119
- Returns:
1120
- str: Message indicating if the model was saved successfully or encountered an error.
1121
- """
1122
-
1123
- save_model.__doc__ = infosave_model
1124
-
1125
- class_count = W[0].shape[0]
1126
-
1127
- layers = ['fex']
1128
-
1129
- if weights_type != 'txt' and weights_type != 'npy' and weights_type != 'mat':
1130
- print(Fore.RED + "ERROR110: Save Weight type (File Extension) Type must be 'txt' or 'npy' or 'mat' from: save_model" +
1131
- infosave_model + Style.RESET_ALL)
1132
- sys.exit()
1133
-
1134
- if weights_format != 'd' and weights_format != 'f' and weights_format != 'raw':
1135
- print(Fore.RED + "ERROR111: Weight Format Type must be 'd' or 'f' or 'raw' from: save_model" +
1136
- infosave_model + Style.RESET_ALL)
1137
- sys.exit()
1138
-
1139
- NeuronCount = 0
1140
- SynapseCount = 0
1141
-
1142
-
1143
- try:
1144
- for w in W:
1145
- NeuronCount += np.shape(w)[0] + np.shape(w)[1]
1146
- SynapseCount += np.shape(w)[0] * np.shape(w)[1]
1147
- except:
1148
-
1149
- print(Fore.RED + "ERROR: Weight matrices has a problem from: save_model" +
1150
- infosave_model + Style.RESET_ALL)
1151
- sys.exit()
1152
-
1153
- if scaler_params != None:
1154
-
1155
- if len(scaler_params) > len(activation_potentiation):
1156
-
1157
- activation_potentiation += ['']
1158
-
1159
- elif len(activation_potentiation) > len(scaler_params):
1160
-
1161
- for i in range(len(activation_potentiation) - len(scaler_params)):
1162
-
1163
- scaler_params.append(' ')
1164
-
1165
- data = {'MODEL NAME': model_name,
1166
- 'MODEL TYPE': model_type,
1167
- 'LAYER COUNT': len(layers),
1168
- 'CLASS COUNT': class_count,
1169
- 'NEURON COUNT': NeuronCount,
1170
- 'SYNAPSE COUNT': SynapseCount,
1171
- 'TEST ACCURACY': float(test_acc),
1172
- 'SAVE DATE': datetime.now(),
1173
- 'WEIGHTS TYPE': weights_type,
1174
- 'WEIGHTS FORMAT': weights_format,
1175
- 'MODEL PATH': model_path,
1176
- 'STANDARD SCALER': scaler_params,
1177
- 'ACTIVATION POTENTIATION': activation_potentiation
1178
- }
1179
- try:
1180
-
1181
- df = pd.DataFrame(data)
1182
-
1183
- df.to_csv(model_path + model_name + '.txt', sep='\t', index=False)
1184
-
1185
- except:
1186
-
1187
- print(Fore.RED + "ERROR: Model log not saved probably model_path incorrect. Check the log parameters from: save_model" +
1188
- infosave_model + Style.RESET_ALL)
1189
- sys.exit()
1190
-
1191
- try:
1192
-
1193
- if weights_type == 'txt' and weights_format == 'd':
1194
-
1195
- for i, w in enumerate(W):
1196
- np.savetxt(model_path + model_name + '_weights.txt', w, fmt='%d')
1197
-
1198
- if weights_type == 'txt' and weights_format == 'f':
1199
-
1200
- for i, w in enumerate(W):
1201
- np.savetxt(model_path + model_name + '_weights.txt', w, fmt='%f')
1202
-
1203
- if weights_type == 'txt' and weights_format == 'raw':
1204
-
1205
- for i, w in enumerate(W):
1206
- np.savetxt(model_path + model_name + '_weights.txt', w)
1207
-
1208
- ###
1209
-
1210
- if weights_type == 'npy' and weights_format == 'd':
1211
-
1212
- for i, w in enumerate(W):
1213
- np.save(model_path + model_name + '_weights.npy', w.astype(int))
1214
-
1215
- if weights_type == 'npy' and weights_format == 'f':
1216
-
1217
- for i, w in enumerate(W):
1218
- np.save(model_path + model_name + '_weights.npy', w, w.astype(float))
1219
-
1220
- if weights_type == 'npy' and weights_format == 'raw':
1221
-
1222
- for i, w in enumerate(W):
1223
- np.save(model_path + model_name + '_weights.npy', w)
1224
-
1225
- ###
1226
-
1227
- if weights_type == 'mat' and weights_format == 'd':
1228
-
1229
- for i, w in enumerate(W):
1230
- w = {'w': w.astype(int)}
1231
- io.savemat(model_path + model_name + '_weights.mat', w)
1232
-
1233
- if weights_type == 'mat' and weights_format == 'f':
1234
-
1235
- for i, w in enumerate(W):
1236
- w = {'w': w.astype(float)}
1237
- io.savemat(model_path + model_name + '_weights.mat', w)
1238
-
1239
- if weights_type == 'mat' and weights_format == 'raw':
1240
-
1241
- for i, w in enumerate(W):
1242
- w = {'w': w}
1243
- io.savemat(model_path + model_name + '_weights.mat', w)
1244
-
1245
- except:
1246
-
1247
- print(Fore.RED + "ERROR: Model Weights not saved. Check the Weight parameters. SaveFilePath expl: 'C:/Users/hasancanbeydili/Desktop/denemePLAN/' from: save_model" + infosave_model + Style.RESET_ALL)
1248
- sys.exit()
1249
- print(df)
1250
- message = (
1251
- Fore.GREEN + "Model Saved Successfully\n" +
1252
- Fore.MAGENTA + "Don't forget, if you want to load model: model log file and weight files must be in the same directory." +
1253
- Style.RESET_ALL
1254
- )
1255
-
1256
- return print(message)
1257
-
1258
-
1259
- def load_model(model_name,
1260
- model_path,
1261
- ):
1262
- infoload_model = """
1263
- Function to load a potentiation learning model.
1264
-
1265
- Arguments:
1266
- model_name (str): Name of the model.
1267
- model_path (str): Path where the model is saved.
1268
-
1269
- Returns:
1270
- lists: W(list[num]), activation_potentiation, DataFrame of the model
1271
- """
1272
-
1273
- load_model.__doc__ = infoload_model
1274
-
1275
- try:
1276
-
1277
- df = pd.read_csv(model_path + model_name + '.' + 'txt', delimiter='\t')
1278
-
1279
- except:
1280
-
1281
- print(Fore.RED + "ERROR: Model Path error. accaptable form: 'C:/Users/hasancanbeydili/Desktop/denemePLAN/' from: load_model" +
1282
- infoload_model + Style.RESET_ALL)
1283
-
1284
- model_name = str(df['MODEL NAME'].iloc[0])
1285
- layer_count = int(df['LAYER COUNT'].iloc[0])
1286
- WeightType = str(df['WEIGHTS TYPE'].iloc[0])
1287
-
1288
- W = [0] * layer_count
1289
-
1290
- if WeightType == 'txt':
1291
- for i in range(layer_count):
1292
- W[i] = np.loadtxt(model_path + model_name + '_weights.txt')
1293
- elif WeightType == 'npy':
1294
- for i in range(layer_count):
1295
- W[i] = np.load(model_path + model_name + '_weights.npy')
1296
- elif WeightType == 'mat':
1297
- for i in range(layer_count):
1298
- W[i] = sio.loadmat(model_path + model_name + '_weights.mat')
1299
- else:
1300
- raise ValueError(
1301
- Fore.RED + "Incorrect weight type value. Value must be 'txt', 'npy' or 'mat' from: load_model." + infoload_model + Style.RESET_ALL)
1302
- print(Fore.GREEN + "Model loaded succesfully" + Style.RESET_ALL)
1303
- return W, df
1304
-
1305
-
1306
- def predict_model_ssd(Input, model_name, model_path):
1307
-
1308
- infopredict_model_ssd = """
1309
- Function to make a prediction using a divided potentiation learning artificial neural network (PLAN).
1310
-
1311
- Arguments:
1312
- Input (list or ndarray): Input data for the model (single vector or single matrix).
1313
- model_name (str): Name of the model.
1314
- Returns:
1315
- ndarray: Output from the model.
1316
- """
1317
-
1318
- predict_model_ram.__doc__ = infopredict_model_ssd
1319
-
1320
- W, df = load_model(model_name, model_path)
1321
-
1322
- activation_potentiation = list(df['ACTIVATION POTENTIATION'])
1323
-
1324
- scaler_params = df['STANDARD SCALER'].tolist()
1325
-
1326
- scaler_params = [item for item in scaler_params if item != ' ']
1327
-
1328
- try:
1329
-
1330
- scaler_params = [np.fromstring(arr.strip('[]'), sep=' ') for arr in scaler_params]
1331
-
1332
- Input = standard_scaler(None, Input, scaler_params)
1333
-
1334
- except:
1335
-
1336
- pass
1337
-
1338
- layers = ['fex']
1339
-
1340
- Wc = [0] * len(W)
1341
- for i, w in enumerate(W):
1342
- Wc[i] = np.copy(w)
1343
- try:
1344
- neural_layer = Input
1345
- neural_layer = np.array(neural_layer)
1346
- neural_layer = neural_layer.ravel()
1347
- max_w = len(W) - 1
1348
- for index, Layer in enumerate(W):
1349
-
1350
- neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation, index=index, max_w=max_w)
1351
-
1352
- except:
1353
- print(Fore.RED + "ERROR: The input was probably entered incorrectly. from: predict_model_ssd" +
1354
- infopredict_model_ssd + Style.RESET_ALL)
1355
- sys.exit()
1356
- for i, w in enumerate(Wc):
1357
- W[i] = np.copy(w)
1358
- return neural_layer
1359
-
1360
-
1361
- def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=[None]):
1362
-
1363
- infopredict_model_ram = """
1364
- Function to make a prediction using a divided potentiation learning artificial neural network (PLAN).
1365
- from weights and parameters stored in memory.
1366
-
1367
- Arguments:
1368
- Input (list or ndarray): Input data for the model (single vector or single matrix).
1369
- W (list of ndarrays): Weights of the model.
1370
- scaler_params (list): standard scaler params list: mean,std. (optional) Default: None.
1371
- activation_potentiation (list): ac list for deep PLAN. default: [None] ('linear') (optional)
1372
-
1373
- Returns:
1374
- ndarray: Output from the model.
1375
- """
1376
-
1377
- predict_model_ram.__doc__ = infopredict_model_ram
1378
-
1379
- try:
1380
- if scaler_params != None:
1381
-
1382
- Input = standard_scaler(None, Input, scaler_params)
1383
- except:
1384
- Input = standard_scaler(None, Input, scaler_params)
1385
-
1386
- layers = ['fex']
1387
-
1388
- Wc = [0] * len(W)
1389
- for i, w in enumerate(W):
1390
- Wc[i] = np.copy(w)
1391
- try:
1392
- neural_layer = Input
1393
- neural_layer = np.array(neural_layer)
1394
- neural_layer = neural_layer.ravel()
1395
-
1396
- max_w = len(W) - 1
1397
-
1398
- for index, Layer in enumerate(W):
1399
-
1400
-
1401
- neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation, index=index, max_w=max_w)
1402
-
1403
- for i, w in enumerate(Wc):
1404
- W[i] = np.copy(w)
1405
- return neural_layer
1406
-
1407
- except:
1408
- print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." +
1409
- infopredict_model_ram + Style.RESET_ALL)
1410
- sys.exit()
1411
-
1412
- def auto_balancer(x_train, y_train):
1413
-
1414
- infoauto_balancer = """
1415
- Function to balance the training data across different classes.
1416
-
1417
- Arguments:
1418
- x_train (list): Input data for training.
1419
- y_train (list): Labels corresponding to the input data.
1420
-
1421
- Returns:
1422
- tuple: A tuple containing balanced input data and labels.
1423
- """
1424
-
1425
- auto_balancer.__doc__ = infoauto_balancer
1426
-
1427
- classes = np.arange(y_train.shape[1])
1428
- class_count = len(classes)
1429
-
1430
- try:
1431
- ClassIndices = {i: np.where(np.array(y_train)[:, i] == 1)[
1432
- 0] for i in range(class_count)}
1433
- classes = [len(ClassIndices[i]) for i in range(class_count)]
1434
-
1435
- if len(set(classes)) == 1:
1436
- print(Fore.WHITE + "INFO: Data have already balanced. from: auto_balancer" + Style.RESET_ALL)
1437
- return x_train, y_train
1438
-
1439
- MinCount = min(classes)
1440
-
1441
- BalancedIndices = []
1442
- for i in tqdm(range(class_count),leave=False,desc='Balancing Data',ncols=120):
1443
- if len(ClassIndices[i]) > MinCount:
1444
- SelectedIndices = np.random.choice(
1445
- ClassIndices[i], MinCount, replace=False)
1446
- else:
1447
- SelectedIndices = ClassIndices[i]
1448
- BalancedIndices.extend(SelectedIndices)
1449
-
1450
- BalancedInputs = [x_train[idx] for idx in BalancedIndices]
1451
- BalancedLabels = [y_train[idx] for idx in BalancedIndices]
1452
-
1453
- print(Fore.GREEN + "Data Succesfully Balanced from: " + str(len(x_train)
1454
- ) + " to: " + str(len(BalancedInputs)) + ". from: auto_balancer " + Style.RESET_ALL)
1455
- except:
1456
- print(Fore.RED + "ERROR: Inputs and labels must be same length check parameters" + infoauto_balancer)
1457
- sys.exit()
1458
-
1459
- return np.array(BalancedInputs), np.array(BalancedLabels)
1460
-
1461
-
1462
- def synthetic_augmentation(x_train, y_train):
1463
- """
1464
- Generates synthetic examples to balance classes with fewer examples.
1465
-
1466
- Arguments:
1467
- x -- Input dataset (examples) - list format
1468
- y -- Class labels (one-hot encoded) - list format
1469
-
1470
- Returns:
1471
- x_balanced -- Balanced input dataset (list format)
1472
- y_balanced -- Balanced class labels (one-hot encoded, list format)
1473
- """
1474
- x = x_train
1475
- y = y_train
1476
- classes = np.arange(y_train.shape[1])
1477
- class_count = len(classes)
1478
-
1479
- class_distribution = {i: 0 for i in range(class_count)}
1480
- for label in y:
1481
- class_distribution[np.argmax(label)] += 1
1482
-
1483
- max_class_count = max(class_distribution.values())
1484
-
1485
- x_balanced = list(x)
1486
- y_balanced = list(y)
1487
-
1488
- for class_label in tqdm(range(class_count), leave=False, desc='Augmenting Data',ncols= 120):
1489
- class_indices = [i for i, label in enumerate(
1490
- y) if np.argmax(label) == class_label]
1491
- num_samples = len(class_indices)
1492
-
1493
- if num_samples < max_class_count:
1494
- while num_samples < max_class_count:
1495
-
1496
- random_indices = np.random.choice(
1497
- class_indices, 2, replace=False)
1498
- sample1 = x[random_indices[0]]
1499
- sample2 = x[random_indices[1]]
1500
-
1501
- synthetic_sample = sample1 + \
1502
- (np.array(sample2) - np.array(sample1)) * np.random.rand()
1503
-
1504
- x_balanced.append(synthetic_sample.tolist())
1505
- y_balanced.append(y[class_indices[0]])
1506
-
1507
- num_samples += 1
1508
-
1509
- return np.array(x_balanced), np.array(y_balanced)
1510
-
1511
-
1512
- def standard_scaler(x_train=None, x_test=None, scaler_params=None):
1513
- info_standard_scaler = """
1514
- Standardizes training and test datasets. x_test may be None.
1515
-
1516
- Args:
1517
- train_data: numpy.ndarray
1518
- Training data
1519
- test_data: numpy.ndarray
1520
- Test data (optional)
1521
-
1522
- Returns:
1523
- list:
1524
- Scaler parameters: mean and std
1525
- tuple
1526
- Standardized training and test datasets
1527
- """
1528
-
1529
- standard_scaler.__doc__ = info_standard_scaler
1530
-
1531
- try:
1532
-
1533
- x_train = x_train.tolist()
1534
- x_test = x_test.tolist()
1535
-
1536
- except:
1537
-
1538
- pass
1539
-
1540
- try:
1541
-
1542
- if scaler_params == None and x_test != None:
1543
-
1544
- mean = np.mean(x_train, axis=0)
1545
- std = np.std(x_train, axis=0)
1546
-
1547
- train_data_scaled = (x_train - mean) / std
1548
- test_data_scaled = (x_test - mean) / std
1549
-
1550
- train_data_scaled = np.nan_to_num(train_data_scaled, nan=0)
1551
- test_data_scaled = np.nan_to_num(test_data_scaled, nan=0)
1552
-
1553
- scaler_params = [mean, std]
1554
-
1555
- return scaler_params, train_data_scaled, test_data_scaled
1556
-
1557
- if scaler_params == None and x_test == None:
1558
-
1559
- mean = np.mean(x_train, axis=0)
1560
- std = np.std(x_train, axis=0)
1561
- train_data_scaled = (x_train - mean) / std
1562
-
1563
- train_data_scaled = np.nan_to_num(train_data_scaled, nan=0)
1564
-
1565
- scaler_params = [mean, std]
1566
-
1567
- return scaler_params, train_data_scaled
1568
-
1569
- if scaler_params != None:
1570
-
1571
- try:
1572
-
1573
- test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
1574
- test_data_scaled = np.nan_to_num(test_data_scaled, nan=0)
1575
-
1576
- except:
1577
-
1578
- test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
1579
- test_data_scaled = np.nan_to_num(test_data_scaled, nan=0)
1580
-
1581
- return test_data_scaled
1582
-
1583
- except:
1584
-
1585
- print(
1586
- Fore.RED + "ERROR: x_train and x_test must be list[numpyarray] from standard_scaler" + info_standard_scaler + Style.RESET_ALL)
1587
-
1588
- sys.exit()
1589
-
1590
- def encode_one_hot(y_train, y_test):
1591
- """
1592
- Performs one-hot encoding on y_train and y_test data..
1593
-
1594
- Args:
1595
- y_train (numpy.ndarray): Eğitim etiketi verisi.
1596
- y_test (numpy.ndarray): Test etiketi verisi.
1597
-
1598
- Returns:
1599
- tuple: One-hot encoded y_train ve y_test verileri.
1600
- """
1601
- classes = np.unique(y_train)
1602
- class_count = len(classes)
1603
-
1604
- class_to_index = {cls: idx for idx, cls in enumerate(classes)}
1605
-
1606
- y_train_encoded = np.zeros((y_train.shape[0], class_count))
1607
- for i, label in enumerate(y_train):
1608
- y_train_encoded[i, class_to_index[label]] = 1
1609
-
1610
- y_test_encoded = np.zeros((y_test.shape[0], class_count))
1611
- for i, label in enumerate(y_test):
1612
- y_test_encoded[i, class_to_index[label]] = 1
1613
-
1614
- return y_train_encoded, y_test_encoded
1615
-
1616
-
1617
- def split(X, y, test_size, random_state):
1618
- """
1619
- Splits the given X (features) and y (labels) data into training and testing subsets.
1620
-
1621
- Args:
1622
- X (numpy.ndarray): Features data.
1623
- y (numpy.ndarray): Labels data.
1624
- test_size (float or int): Proportion or number of samples for the test subset.
1625
- random_state (int or None): Seed for random state.
1626
-
1627
- Returns:
1628
- tuple: x_train, x_test, y_train, y_test as ordered training and testing data subsets.
1629
- """
1630
- num_samples = X.shape[0]
1631
-
1632
- if isinstance(test_size, float):
1633
- test_size = int(test_size * num_samples)
1634
- elif isinstance(test_size, int):
1635
- if test_size > num_samples:
1636
- raise ValueError(
1637
- "test_size cannot be larger than the number of samples.")
1638
- else:
1639
- raise ValueError("test_size should be float or int.")
1640
-
1641
- if random_state is not None:
1642
- np.random.seed(random_state)
1643
-
1644
- indices = np.arange(num_samples)
1645
- np.random.shuffle(indices)
1646
-
1647
- test_indices = indices[:test_size]
1648
- train_indices = indices[test_size:]
1649
-
1650
- x_train, x_test = X[train_indices], X[test_indices]
1651
- y_train, y_test = y[train_indices], y[test_indices]
1652
-
1653
- return x_train, x_test, y_train, y_test
1654
-
1655
-
1656
- def metrics(y_ts, test_preds, average='weighted'):
1657
- """
1658
- Calculates precision, recall and F1 score for a classification task.
1659
-
1660
- Args:
1661
- y_ts (list or numpy.ndarray): True labels.
1662
- test_preds (list or numpy.ndarray): Predicted labels.
1663
- average (str): Type of averaging ('micro', 'macro', 'weighted').
1664
-
1665
- Returns:
1666
- tuple: Precision, recall, F1 score.
1667
- """
1668
- y_test_d = decode_one_hot(y_ts)
1669
- y_test_d = np.array(y_test_d)
1670
- y_pred = np.array(test_preds)
1671
-
1672
- if y_test_d.ndim > 1:
1673
- y_test_d = y_test_d.reshape(-1)
1674
- if y_pred.ndim > 1:
1675
- y_pred = y_pred.reshape(-1)
1676
-
1677
- tp = {}
1678
- fp = {}
1679
- fn = {}
1680
-
1681
- classes = np.unique(np.concatenate((y_test_d, y_pred)))
1682
-
1683
- for c in classes:
1684
- tp[c] = 0
1685
- fp[c] = 0
1686
- fn[c] = 0
1687
-
1688
- for c in classes:
1689
- for true, pred in zip(y_test_d, y_pred):
1690
- if true == c and pred == c:
1691
- tp[c] += 1
1692
- elif true != c and pred == c:
1693
- fp[c] += 1
1694
- elif true == c and pred != c:
1695
- fn[c] += 1
1696
-
1697
- precision = {}
1698
- recall = {}
1699
- f1 = {}
1700
-
1701
- for c in classes:
1702
- precision[c] = tp[c] / (tp[c] + fp[c]) if (tp[c] + fp[c]) > 0 else 0
1703
- recall[c] = tp[c] / (tp[c] + fn[c]) if (tp[c] + fn[c]) > 0 else 0
1704
- f1[c] = 2 * (precision[c] * recall[c]) / (precision[c] + recall[c]) if (precision[c] + recall[c]) > 0 else 0
1705
-
1706
- if average == 'micro':
1707
- precision_val = np.sum(list(tp.values())) / (np.sum(list(tp.values())) + np.sum(list(fp.values()))) if (np.sum(list(tp.values())) + np.sum(list(fp.values()))) > 0 else 0
1708
- recall_val = np.sum(list(tp.values())) / (np.sum(list(tp.values())) + np.sum(list(fn.values()))) if (np.sum(list(tp.values())) + np.sum(list(fn.values()))) > 0 else 0
1709
- f1_val = 2 * (precision_val * recall_val) / (precision_val + recall_val) if (precision_val + recall_val) > 0 else 0
1710
-
1711
- elif average == 'macro':
1712
- precision_val = np.mean(list(precision.values()))
1713
- recall_val = np.mean(list(recall.values()))
1714
- f1_val = np.mean(list(f1.values()))
1715
-
1716
- elif average == 'weighted':
1717
- weights = np.array([np.sum(y_test_d == c) for c in classes])
1718
- weights = weights / np.sum(weights)
1719
- precision_val = np.sum([weights[i] * precision[classes[i]] for i in range(len(classes))])
1720
- recall_val = np.sum([weights[i] * recall[classes[i]] for i in range(len(classes))])
1721
- f1_val = np.sum([weights[i] * f1[classes[i]] for i in range(len(classes))])
1722
-
1723
- else:
1724
- raise ValueError("Invalid value for 'average'. Choose from 'micro', 'macro', 'weighted'.")
1725
-
1726
- return precision_val, recall_val, f1_val
1727
-
1728
-
1729
- def decode_one_hot(encoded_data):
1730
- """
1731
- Decodes one-hot encoded data to original categorical labels.
1732
-
1733
- Args:
1734
- encoded_data (numpy.ndarray): One-hot encoded data with shape (n_samples, n_classes).
1735
-
1736
- Returns:
1737
- numpy.ndarray: Decoded categorical labels with shape (n_samples,).
1738
- """
1739
-
1740
- decoded_labels = np.argmax(encoded_data, axis=1)
1741
-
1742
- return decoded_labels
1743
-
1744
-
1745
- def roc_curve(y_true, y_score):
1746
- """
1747
- Compute Receiver Operating Characteristic (ROC) curve.
1748
-
1749
- Parameters:
1750
- y_true : array, shape = [n_samples]
1751
- True binary labels in range {0, 1} or {-1, 1}.
1752
- y_score : array, shape = [n_samples]
1753
- Target scores, can either be probability estimates of the positive class,
1754
- confidence values, or non-thresholded measure of decisions (as returned
1755
- by decision_function on some classifiers).
1756
-
1757
- Returns:
1758
- fpr : array, shape = [n]
1759
- Increasing false positive rates such that element i is the false positive rate
1760
- of predictions with score >= thresholds[i].
1761
- tpr : array, shape = [n]
1762
- Increasing true positive rates such that element i is the true positive rate
1763
- of predictions with score >= thresholds[i].
1764
- thresholds : array, shape = [n]
1765
- Decreasing thresholds on the decision function used to compute fpr and tpr.
1766
- """
1767
-
1768
- y_true = np.asarray(y_true)
1769
- y_score = np.asarray(y_score)
1770
-
1771
- if len(np.unique(y_true)) != 2:
1772
- raise ValueError("Only binary classification is supported.")
1773
-
1774
-
1775
- desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
1776
- y_score = y_score[desc_score_indices]
1777
- y_true = y_true[desc_score_indices]
1778
-
1779
-
1780
- fpr = []
1781
- tpr = []
1782
- thresholds = []
1783
- n_pos = np.sum(y_true)
1784
- n_neg = len(y_true) - n_pos
1785
-
1786
- tp = 0
1787
- fp = 0
1788
- prev_score = None
1789
-
1790
-
1791
- for i, score in enumerate(y_score):
1792
- if score != prev_score:
1793
- fpr.append(fp / n_neg)
1794
- tpr.append(tp / n_pos)
1795
- thresholds.append(score)
1796
- prev_score = score
1797
-
1798
- if y_true[i] == 1:
1799
- tp += 1
1800
- else:
1801
- fp += 1
1802
-
1803
- fpr.append(fp / n_neg)
1804
- tpr.append(tp / n_pos)
1805
- thresholds.append(score)
1806
-
1807
- return np.array(fpr), np.array(tpr), np.array(thresholds)
1808
-
1809
-
1810
- def confusion_matrix(y_true, y_pred, class_count):
1811
- """
1812
- Computes confusion matrix.
1813
-
1814
- Args:
1815
- y_true (numpy.ndarray): True class labels (1D array).
1816
- y_pred (numpy.ndarray): Predicted class labels (1D array).
1817
- num_classes (int): Number of classes.
1818
-
1819
- Returns:
1820
- numpy.ndarray: Confusion matrix of shape (num_classes, num_classes).
1821
- """
1822
- confusion = np.zeros((class_count, class_count), dtype=int)
1823
-
1824
- for i in range(len(y_true)):
1825
- true_label = y_true[i]
1826
- pred_label = y_pred[i]
1827
- confusion[true_label, pred_label] += 1
1828
-
1829
- return confusion
1830
-
1831
-
1832
- def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
1833
-
1834
-
1835
- acc = acc_list[len(acc_list) - 1]
1836
- y_true = decode_one_hot(y_test)
1837
-
1838
- y_true = np.array(y_true)
1839
- y_preds = np.array(y_preds)
1840
- Class = np.unique(decode_one_hot(y_test))
1841
-
1842
- precision, recall, f1 = metrics(y_test, y_preds)
1843
-
1844
-
1845
- cm = confusion_matrix(y_true, y_preds, len(Class))
1846
- fig, axs = plt.subplots(2, 2, figsize=(16, 12))
1847
-
1848
- sns.heatmap(cm, annot=True, fmt='d', ax=axs[0, 0])
1849
- axs[0, 0].set_title("Confusion Matrix")
1850
- axs[0, 0].set_xlabel("Predicted Class")
1851
- axs[0, 0].set_ylabel("Actual Class")
1852
-
1853
- if len(Class) == 2:
1854
- fpr, tpr, thresholds = roc_curve(y_true, y_preds)
1855
-
1856
- roc_auc = np.trapz(tpr, fpr)
1857
- axs[1, 0].plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
1858
- axs[1, 0].plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
1859
- axs[1, 0].set_xlim([0.0, 1.0])
1860
- axs[1, 0].set_ylim([0.0, 1.05])
1861
- axs[1, 0].set_xlabel('False Positive Rate')
1862
- axs[1, 0].set_ylabel('True Positive Rate')
1863
- axs[1, 0].set_title('Receiver Operating Characteristic (ROC) Curve')
1864
- axs[1, 0].legend(loc="lower right")
1865
- axs[1, 0].legend(loc="lower right")
1866
- else:
1867
-
1868
- for i in range(len(Class)):
1869
-
1870
- y_true_copy = np.copy(y_true)
1871
- y_preds_copy = np.copy(y_preds)
1872
-
1873
- y_true_copy[y_true_copy == i] = 0
1874
- y_true_copy[y_true_copy != 0] = 1
1875
-
1876
- y_preds_copy[y_preds_copy == i] = 0
1877
- y_preds_copy[y_preds_copy != 0] = 1
1878
-
1879
-
1880
- fpr, tpr, thresholds = roc_curve(y_true_copy, y_preds_copy)
1881
-
1882
- roc_auc = np.trapz(tpr, fpr)
1883
- axs[1, 0].plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
1884
- axs[1, 0].plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
1885
- axs[1, 0].set_xlim([0.0, 1.0])
1886
- axs[1, 0].set_ylim([0.0, 1.05])
1887
- axs[1, 0].set_xlabel('False Positive Rate')
1888
- axs[1, 0].set_ylabel('True Positive Rate')
1889
- axs[1, 0].set_title('Receiver Operating Characteristic (ROC) Curve')
1890
- axs[1, 0].legend(loc="lower right")
1891
- axs[1, 0].legend(loc="lower right")
1892
-
1893
-
1894
- """
1895
- accuracy_per_class = []
1896
-
1897
- for cls in Class:
1898
- correct = np.sum((y_true == cls) & (y_preds == cls))
1899
- total = np.sum(y_true == cls)
1900
- accuracy_cls = correct / total if total > 0 else 0.0
1901
- accuracy_per_class.append(accuracy_cls)
1902
-
1903
- axs[2, 0].bar(Class, accuracy_per_class, color='b', alpha=0.7)
1904
- axs[2, 0].set_xlabel('Class')
1905
- axs[2, 0].set_ylabel('Accuracy')
1906
- axs[2, 0].set_title('Class-wise Accuracy')
1907
- axs[2, 0].set_xticks(Class)
1908
- axs[2, 0].grid(True)
1909
- """
1910
-
1911
-
1912
-
1913
-
1914
-
1915
- metric = ['Precision', 'Recall', 'F1 Score', 'Accuracy']
1916
- values = [precision, recall, f1, acc]
1917
- colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
1918
-
1919
-
1920
- bars = axs[0, 1].bar(metric, values, color=colors)
1921
-
1922
-
1923
- for bar, value in zip(bars, values):
1924
- axs[0, 1].text(bar.get_x() + bar.get_width() / 2, bar.get_height() - 0.05, f'{value:.2f}',
1925
- ha='center', va='bottom', fontsize=12, color='white', weight='bold')
1926
-
1927
- axs[0, 1].set_ylim(0, 1)
1928
- axs[0, 1].set_xlabel('Metrics')
1929
- axs[0, 1].set_ylabel('Score')
1930
- axs[0, 1].set_title('Precision, Recall, F1 Score, and Accuracy (Weighted)')
1931
- axs[0, 1].grid(True, axis='y', linestyle='--', alpha=0.7)
1932
-
1933
- feature_indices=[0, 1]
1934
-
1935
- h = .02
1936
- x_min, x_max = x_test[:, feature_indices[0]].min() - 1, x_test[:, feature_indices[0]].max() + 1
1937
- y_min, y_max = x_test[:, feature_indices[1]].min() - 1, x_test[:, feature_indices[1]].max() + 1
1938
- xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
1939
- np.arange(y_min, y_max, h))
1940
-
1941
- grid = np.c_[xx.ravel(), yy.ravel()]
1942
-
1943
- try:
1944
-
1945
- grid_full = np.zeros((grid.shape[0], x_test.shape[1]))
1946
- grid_full[:, feature_indices] = grid
1947
-
1948
- Z = [None] * len(grid_full)
1949
-
1950
- predict_progress = tqdm(total=len(grid_full),leave=False, desc="Predicts For Decision Boundary",ncols= 120)
1951
-
1952
- for i in range(len(grid_full)):
1953
-
1954
- Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
1955
- predict_progress.update(1)
1956
-
1957
- Z = np.array(Z)
1958
- Z = Z.reshape(xx.shape)
1959
-
1960
- axs[1,1].contourf(xx, yy, Z, alpha=0.8)
1961
- axs[1,1].scatter(x_test[:, feature_indices[0]], x_test[:, feature_indices[1]], c=decode_one_hot(y_test), edgecolors='k', marker='o', s=20, alpha=0.9)
1962
- axs[1,1].set_xlabel(f'Feature {0 + 1}')
1963
- axs[1,1].set_ylabel(f'Feature {1 + 1}')
1964
- axs[1,1].set_title('Decision Boundary')
1965
-
1966
- except:
1967
- pass
1968
-
1969
- plt.show()
1970
-
1971
-
1972
- def plot_decision_boundary(ax, x, y, activation_potentiation, W, artist, draw_is_finished=False):
1973
- feature_indices = [0, 1]
1974
-
1975
- h = .02
1976
- x_min, x_max = x[:, feature_indices[0]].min() - 1, x[:, feature_indices[0]].max() + 1
1977
- y_min, y_max = x[:, feature_indices[1]].min() - 1, x[:, feature_indices[1]].max() + 1
1978
- xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
1979
- np.arange(y_min, y_max, h))
1980
-
1981
- grid = np.c_[xx.ravel(), yy.ravel()]
1982
- grid_full = np.zeros((grid.shape[0], x.shape[1]))
1983
- grid_full[:, feature_indices] = grid
1984
-
1985
- Z = [None] * len(grid_full)
1986
-
1987
- for i in range(len(grid_full)):
1988
- Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
1989
-
1990
- Z = np.array(Z)
1991
- Z = Z.reshape(xx.shape)
1992
-
1993
- if draw_is_finished == False:
1994
-
1995
- art1_1 = ax[1, 0].contourf(xx, yy, Z, alpha=0.8)
1996
- art1_2 = ax[1, 0].scatter(x[:, feature_indices[0]], x[:, feature_indices[1]], c=decode_one_hot(y), edgecolors='k', marker='o', s=20, alpha=0.9)
1997
- ax[1, 0].set_xlabel(f'Feature {0 + 1}')
1998
- ax[1, 0].set_ylabel(f'Feature {1 + 1}')
1999
- ax[1, 0].set_title('Decision Boundary')
2000
- artist.append([*art1_1.collections, art1_2])
2001
-
2002
- else:
2003
-
2004
- for i in range(30):
2005
-
2006
- art1_1 = ax[1, 0].contourf(xx, yy, Z, alpha=0.8)
2007
- art1_2 = ax[1, 0].scatter(x[:, feature_indices[0]], x[:, feature_indices[1]], c=decode_one_hot(y), edgecolors='k', marker='o', s=20, alpha=0.9)
2008
- ax[1, 0].set_xlabel(f'Feature {0 + 1}')
2009
- ax[1, 0].set_ylabel(f'Feature {1 + 1}')
2010
- ax[1, 0].set_title('Decision Boundary')
2011
- artist.append([*art1_1.collections, art1_2])
2012
-
2013
- return artist
2014
-
2015
- def pca(X, n_components):
2016
- """
2017
-
2018
- Parameters:
2019
- X (numpy array): (n_samples, n_features)
2020
- n_components (int):
2021
-
2022
- Returns:
2023
- X_reduced (numpy array): (n_samples, n_components)
2024
- """
2025
-
2026
- X_meaned = X - np.mean(X, axis=0)
2027
-
2028
- covariance_matrix = np.cov(X_meaned, rowvar=False)
2029
-
2030
- eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
2031
-
2032
- sorted_index = np.argsort(eigenvalues)[::-1]
2033
- sorted_eigenvectors = eigenvectors[:, sorted_index]
2034
-
2035
- eigenvectors_subset = sorted_eigenvectors[:, :n_components]
2036
-
2037
- X_reduced = np.dot(X_meaned, eigenvectors_subset)
2038
-
2039
- return X_reduced
2040
-
2041
- def plot_decision_space(x, y, y_preds=None, s=100, color='tab20'):
2042
-
2043
- if x.shape[1] > 2:
2044
-
2045
- X_pca = pca(x, n_components=2)
2046
- else:
2047
- X_pca = x
2048
-
2049
- if y_preds == None:
2050
- y_preds = decode_one_hot(y)
2051
-
2052
- y = decode_one_hot(y)
2053
- num_classes = len(np.unique(y))
2054
-
2055
- cmap = plt.get_cmap(color)
2056
-
2057
-
2058
- norm = plt.Normalize(vmin=0, vmax=num_classes - 1)
2059
-
2060
-
2061
- plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, edgecolor='k', s=50, cmap=cmap, norm=norm)
2062
-
2063
-
2064
- for cls in range(num_classes):
2065
-
2066
- class_points = []
2067
-
2068
-
2069
- for i in range(len(y)):
2070
- if y_preds[i] == cls:
2071
- class_points.append(X_pca[i])
2072
-
2073
- class_points = np.array(class_points)
2074
-
2075
-
2076
- if len(class_points) > 2:
2077
- hull = ConvexHull(class_points)
2078
- hull_points = class_points[hull.vertices]
2079
-
2080
- hull_points = np.vstack([hull_points, hull_points[0]])
2081
-
2082
- plt.fill(hull_points[:, 0], hull_points[:, 1], color=cmap(norm(cls)), alpha=0.3, edgecolor='k', label=f'Class {cls} Hull')
2083
-
2084
- plt.title("Decision Space (Data Distribution)")
2085
-
2086
- plt.draw()
2087
-
2088
-
2089
- def manuel_balancer(x_train, y_train, target_samples_per_class):
2090
- """
2091
- Generates synthetic examples to balance classes to the specified number of examples per class.
2092
-
2093
- Arguments:
2094
- x_train -- Input dataset (examples) - NumPy array format
2095
- y_train -- Class labels (one-hot encoded) - NumPy array format
2096
- target_samples_per_class -- Desired number of samples per class
2097
-
2098
- Returns:
2099
- x_balanced -- Balanced input dataset (NumPy array format)
2100
- y_balanced -- Balanced class labels (one-hot encoded, NumPy array format)
2101
- """
2102
- try:
2103
- x_train = np.array(x_train)
2104
- y_train = np.array(y_train)
2105
- except:
2106
- pass
2107
-
2108
- classes = np.arange(y_train.shape[1])
2109
- class_count = len(classes)
2110
-
2111
- x_balanced = []
2112
- y_balanced = []
2113
-
2114
- for class_label in tqdm(range(class_count),leave=False, desc='Augmenting Data',ncols= 120):
2115
- class_indices = np.where(np.argmax(y_train, axis=1) == class_label)[0]
2116
- num_samples = len(class_indices)
2117
-
2118
- if num_samples > target_samples_per_class:
2119
-
2120
- selected_indices = np.random.choice(class_indices, target_samples_per_class, replace=False)
2121
- x_balanced.append(x_train[selected_indices])
2122
- y_balanced.append(y_train[selected_indices])
2123
-
2124
- else:
2125
-
2126
- x_balanced.append(x_train[class_indices])
2127
- y_balanced.append(y_train[class_indices])
2128
-
2129
- if num_samples < target_samples_per_class:
2130
-
2131
- samples_to_add = target_samples_per_class - num_samples
2132
- additional_samples = np.zeros((samples_to_add, x_train.shape[1]))
2133
- additional_labels = np.zeros((samples_to_add, y_train.shape[1]))
2134
-
2135
- for i in range(samples_to_add):
2136
-
2137
- random_indices = np.random.choice(class_indices, 2, replace=False)
2138
- sample1 = x_train[random_indices[0]]
2139
- sample2 = x_train[random_indices[1]]
2140
-
2141
-
2142
- synthetic_sample = sample1 + (sample2 - sample1) * np.random.rand()
2143
-
2144
- additional_samples[i] = synthetic_sample
2145
- additional_labels[i] = y_train[class_indices[0]]
2146
-
2147
-
2148
- x_balanced.append(additional_samples)
2149
- y_balanced.append(additional_labels)
2150
-
2151
- x_balanced = np.vstack(x_balanced)
2152
- y_balanced = np.vstack(y_balanced)
2153
-
2154
- return x_balanced, y_balanced
2155
-
2156
- def get_weights():
2157
-
2158
- return 0
2159
-
2160
-
2161
- def get_df():
2162
-
2163
- return 2
2164
-
2165
-
2166
- def get_preds():
2167
-
2168
- return 1
2169
-
2170
-
2171
- def get_acc():
2172
-
2173
- return 2