pyerualjetwork 3.3.2__py3-none-any.whl → 3.3.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan/plan.py +34 -31
- {pyerualjetwork-3.3.2.dist-info → pyerualjetwork-3.3.3.dist-info}/METADATA +1 -1
- pyerualjetwork-3.3.3.dist-info/RECORD +6 -0
- pyerualjetwork-3.3.2.dist-info/RECORD +0 -6
- {pyerualjetwork-3.3.2.dist-info → pyerualjetwork-3.3.3.dist-info}/WHEEL +0 -0
- {pyerualjetwork-3.3.2.dist-info → pyerualjetwork-3.3.3.dist-info}/top_level.txt +0 -0
plan/plan.py
CHANGED
@@ -42,7 +42,7 @@ def fit(
|
|
42
42
|
infoPLAN = """
|
43
43
|
Creates and configures a PLAN model.
|
44
44
|
|
45
|
-
Args:
|
45
|
+
fit Args:
|
46
46
|
x_train (list[num]): List or numarray of input data.
|
47
47
|
y_train (list[num]): List or numarray of target labels. (one hot encoded)
|
48
48
|
val (None or True): validation in training process ? None or True default: None (optional)
|
@@ -125,10 +125,12 @@ def fit(
|
|
125
125
|
else:
|
126
126
|
|
127
127
|
layers = ['fex'] * visible_layer
|
128
|
+
|
129
|
+
x_train_0 = np.array(x_train[0])
|
128
130
|
|
129
|
-
|
130
|
-
|
131
|
-
x_train_size = len(
|
131
|
+
x_train__0_vec = x_train_0.ravel()
|
132
|
+
|
133
|
+
x_train_size = len(x_train__0_vec)
|
132
134
|
|
133
135
|
if visible_layer == None:
|
134
136
|
|
@@ -167,7 +169,7 @@ def fit(
|
|
167
169
|
|
168
170
|
inp = np.array(inp)
|
169
171
|
inp = inp.ravel()
|
170
|
-
|
172
|
+
|
171
173
|
if x_train_size != len(inp):
|
172
174
|
print(Fore.RED + "ERROR304: All input matrices or vectors in x_train list, must be same size. from: fit",
|
173
175
|
infoPLAN + Style.RESET_ALL)
|
@@ -585,7 +587,7 @@ def activations_list():
|
|
585
587
|
spiral,
|
586
588
|
sigmoid,
|
587
589
|
relu,
|
588
|
-
tanh
|
590
|
+
tanh,: good for general datasets
|
589
591
|
swish,
|
590
592
|
circular,
|
591
593
|
mod_circular,
|
@@ -607,7 +609,7 @@ def activations_list():
|
|
607
609
|
isra,
|
608
610
|
waveakt,
|
609
611
|
arctan,
|
610
|
-
bent_identity
|
612
|
+
bent_identity,: good for image datasets
|
611
613
|
sech,
|
612
614
|
softsign,
|
613
615
|
pwl,
|
@@ -851,13 +853,8 @@ def normalization(
|
|
851
853
|
(num) Scaled input data after normalization.
|
852
854
|
"""
|
853
855
|
|
854
|
-
|
855
|
-
|
856
|
-
MaxAbs = np.max(AbsVector)
|
857
|
-
|
858
|
-
ScaledInput = Input / MaxAbs
|
859
|
-
|
860
|
-
return ScaledInput
|
856
|
+
MaxAbs = np.max(np.abs(Input)) # Direkt maksimumu hesapla
|
857
|
+
return Input / MaxAbs # Normalizasyonu geri döndür
|
861
858
|
|
862
859
|
|
863
860
|
def evaluate(
|
@@ -958,7 +955,7 @@ def evaluate(
|
|
958
955
|
|
959
956
|
for i, w in enumerate(Wc):
|
960
957
|
W[i] = np.copy(w)
|
961
|
-
|
958
|
+
|
962
959
|
except:
|
963
960
|
|
964
961
|
print(Fore.RED + 'ERROR:' + infoTestModel + Style.RESET_ALL)
|
@@ -1942,26 +1939,32 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
1942
1939
|
np.arange(y_min, y_max, h))
|
1943
1940
|
|
1944
1941
|
grid = np.c_[xx.ravel(), yy.ravel()]
|
1945
|
-
grid_full = np.zeros((grid.shape[0], x_test.shape[1]))
|
1946
|
-
grid_full[:, feature_indices] = grid
|
1947
|
-
|
1948
|
-
Z = [None] * len(grid_full)
|
1949
1942
|
|
1950
|
-
|
1943
|
+
try:
|
1951
1944
|
|
1952
|
-
|
1945
|
+
grid_full = np.zeros((grid.shape[0], x_test.shape[1]))
|
1946
|
+
grid_full[:, feature_indices] = grid
|
1947
|
+
|
1948
|
+
Z = [None] * len(grid_full)
|
1953
1949
|
|
1954
|
-
|
1955
|
-
predict_progress.update(1)
|
1950
|
+
predict_progress = tqdm(total=len(grid_full),leave=False, desc="Predicts For Decision Boundary",ncols= 120)
|
1956
1951
|
|
1957
|
-
|
1958
|
-
|
1952
|
+
for i in range(len(grid_full)):
|
1953
|
+
|
1954
|
+
Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
|
1955
|
+
predict_progress.update(1)
|
1959
1956
|
|
1960
|
-
|
1961
|
-
|
1962
|
-
|
1963
|
-
|
1964
|
-
|
1957
|
+
Z = np.array(Z)
|
1958
|
+
Z = Z.reshape(xx.shape)
|
1959
|
+
|
1960
|
+
axs[1,1].contourf(xx, yy, Z, alpha=0.8)
|
1961
|
+
axs[1,1].scatter(x_test[:, feature_indices[0]], x_test[:, feature_indices[1]], c=decode_one_hot(y_test), edgecolors='k', marker='o', s=20, alpha=0.9)
|
1962
|
+
axs[1,1].set_xlabel(f'Feature {0 + 1}')
|
1963
|
+
axs[1,1].set_ylabel(f'Feature {1 + 1}')
|
1964
|
+
axs[1,1].set_title('Decision Boundary')
|
1965
|
+
|
1966
|
+
except:
|
1967
|
+
pass
|
1965
1968
|
|
1966
1969
|
plt.show()
|
1967
1970
|
|
@@ -2101,7 +2104,7 @@ def manuel_balancer(x_train, y_train, target_samples_per_class):
|
|
2101
2104
|
y_train = np.array(y_train)
|
2102
2105
|
except:
|
2103
2106
|
pass
|
2104
|
-
|
2107
|
+
|
2105
2108
|
classes = np.arange(y_train.shape[1])
|
2106
2109
|
class_count = len(classes)
|
2107
2110
|
|
@@ -0,0 +1,6 @@
|
|
1
|
+
plan/__init__.py,sha256=LuFcY0nqAzpjTDWAZn7L7-wipwMpnREqVghPiva0Xjg,548
|
2
|
+
plan/plan.py,sha256=Wf9sM9N_ibeaoiFKQGs940ysmQcb7ORLryw5I0oqT7Y,68803
|
3
|
+
pyerualjetwork-3.3.3.dist-info/METADATA,sha256=PkJreUZLFg-dTz4-kxLeFLl-XH6wclatKeejotkjQws,244
|
4
|
+
pyerualjetwork-3.3.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
5
|
+
pyerualjetwork-3.3.3.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
|
6
|
+
pyerualjetwork-3.3.3.dist-info/RECORD,,
|
@@ -1,6 +0,0 @@
|
|
1
|
-
plan/__init__.py,sha256=LuFcY0nqAzpjTDWAZn7L7-wipwMpnREqVghPiva0Xjg,548
|
2
|
-
plan/plan.py,sha256=ZNyDnEO12v9AGYxJe691kT9NICb-NmC5AfGqnZStzRQ,68651
|
3
|
-
pyerualjetwork-3.3.2.dist-info/METADATA,sha256=GrHAKJ14Qf8vKcDtPoJL3lvD0q_c-kVFUdpt9gxakGQ,244
|
4
|
-
pyerualjetwork-3.3.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
5
|
-
pyerualjetwork-3.3.2.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
|
6
|
-
pyerualjetwork-3.3.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|