pyerualjetwork 2.7.3__py3-none-any.whl → 2.7.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -142,8 +142,6 @@ def fit(
142
142
 
143
143
  for Lindex, Layer in enumerate(layers):
144
144
 
145
- neural_layer = normalization(neural_layer)
146
-
147
145
  if Layer == 'fex':
148
146
  STPW[Lindex] = fex(neural_layer, STPW[Lindex], True, y[index], activation_potentiation)
149
147
 
@@ -493,10 +491,9 @@ def evaluate(
493
491
  Returns:
494
492
  tuple: A tuple containing the predicted labels and the accuracy of the model.
495
493
  """
496
-
497
- layers = ['fex']
498
-
499
494
  try:
495
+ layers = ['fex']
496
+
500
497
  Wc = [0] * len(W) # Wc = Weight copy
501
498
  true = 0
502
499
  y_preds = [-1] * len(y_test)
@@ -519,8 +516,6 @@ def evaluate(
519
516
 
520
517
  for index, Layer in enumerate(layers):
521
518
 
522
- neural_layer = normalization(neural_layer)
523
-
524
519
  if Layer == 'fex':
525
520
  neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
526
521
 
@@ -552,13 +547,11 @@ def evaluate(
552
547
 
553
548
  for i, w in enumerate(Wc):
554
549
  W[i] = np.copy(w)
555
-
550
+
556
551
  except:
557
-
558
- print(Fore.RED + "ERROR: Are you sure weights are loaded ? from: evaluate" +
559
- infoTestModel + Style.RESET_ALL)
560
- return 'e'
561
552
 
553
+ print(Fore.RED + 'ERROR:' + infoTestModel + Style.RESET_ALL)
554
+
562
555
  return W, y_preds, acc
563
556
 
564
557
 
@@ -943,9 +936,7 @@ def predict_model_ssd(Input, model_name, model_path):
943
936
  neural_layer = np.array(neural_layer)
944
937
  neural_layer = neural_layer.ravel()
945
938
  for index, Layer in enumerate(layers):
946
-
947
- neural_layer = normalization(neural_layer)
948
-
939
+
949
940
  if Layer == 'fex':
950
941
  neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
951
942
  elif Layer == 'cat':
@@ -992,8 +983,6 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=None
992
983
  neural_layer = neural_layer.ravel()
993
984
  for index, Layer in enumerate(layers):
994
985
 
995
- neural_layer = normalization(neural_layer)
996
-
997
986
  if Layer == 'fex':
998
987
  neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
999
988
  elif Layer == 'cat':
@@ -1168,7 +1157,7 @@ def standard_scaler(x_train, x_test, scaler_params=None):
1168
1157
 
1169
1158
  except:
1170
1159
  print(
1171
- Fore.RED + "ERROR: x_train and x_test must be list[numpyarray] from standard_scaler" + info_standard_scaler)
1160
+ Fore.RED + "ERROR: x_train and x_test must be list[numpyarray] from standard_scaler" + info_standard_scaler + Style.RESET_ALL)
1172
1161
 
1173
1162
 
1174
1163
  def encode_one_hot(y_train, y_test):
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.7.3
4
- Summary: Optimized for Vs Code
3
+ Version: 2.7.5
4
+ Summary: Input normalization removed
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classifcation,potentiation learning artficial neural networks
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
+ plan/plan.py,sha256=pQa7rMW25hnqvxxyvGeLuGNgMThAV3CJjJGNOEducts,52853
3
+ pyerualjetwork-2.7.5.dist-info/METADATA,sha256=kMRs1b07S3jrVD6nJ4O86fnQDonmVNBv0AeU2_MPaE8,254
4
+ pyerualjetwork-2.7.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.7.5.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.7.5.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
- plan/plan.py,sha256=hSAViAL5L1VddbK8k00DyNuhtkPcQDa0xntyAb86Ub0,53141
3
- pyerualjetwork-2.7.3.dist-info/METADATA,sha256=iAntLwxlS8RDFSn8fvuuVgeEf--nPbQ8W9_OkNwfdGw,248
4
- pyerualjetwork-2.7.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.7.3.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.7.3.dist-info/RECORD,,