pyerualjetwork 2.5.8__py3-none-any.whl → 2.6.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -6,25 +6,6 @@ Created on Tue Jun 18 23:32:16 2024
6
6
  @author: hasan
7
7
  """
8
8
 
9
- # optic
10
-
11
- # -*- coding: utf-8 -*-
12
- """
13
- Created on Fri Jun 21 05:21:35 2024
14
-
15
- @author: hasan
16
- """
17
-
18
- # -*- coding: utf-8 -*-
19
-
20
-
21
-
22
- """
23
- Created on Thu Jun 12 00:00:00 2024
24
-
25
- @author: hasan can beydili
26
- """
27
-
28
9
  import pandas as pd
29
10
  import numpy as np
30
11
  import time
@@ -34,6 +15,7 @@ import math
34
15
  from scipy.special import expit, softmax
35
16
  import matplotlib.pyplot as plt
36
17
  import seaborn as sns
18
+ from tqdm import tqdm
37
19
 
38
20
  # BUILD -----
39
21
 
@@ -43,11 +25,10 @@ def fit(
43
25
  y_train: List[Union[int, float]], # At least two.. and one hot encoded
44
26
  show_training,
45
27
  show_count= None,
46
- val_count= None,
47
28
  val= None,
48
29
  x_val= None,
49
30
  y_val= None,
50
- activation_potential=None # (float): Input activation potential (optional)
31
+ activation_potentiation=None # (float): Input activation_potentiation (optional)
51
32
  ) -> str:
52
33
 
53
34
  infoPLAN = """
@@ -58,10 +39,11 @@ def fit(
58
39
  y_train (list[num]): List of target labels. (one hot encoded)
59
40
  show_training (bool, str): True, None or'final'
60
41
  show_count (None, int): How many learning steps in total will be displayed in a single figure? (Adjust according to your hardware) Default: 10 (optional)
42
+ val (None, True or 'final'): validation in training process ? None, True or 'final' Default: None
61
43
  val_count (None, int): After how many examples learned will an accuracy test be performed? Default: 0.1 (%10) (optional)
62
44
  x_val (list[num]): List of validation data. (optional) Default: x_train
63
45
  y_val (list[num]): (list[num]): List of target labels. (one hot encoded) (optional) Default: y_train
64
- activation_potential (float): Input activation potential (for binary injection) (optional) in range: -1, 1
46
+ activation_potentiation (float): Input activation potentiation (for binary injection) (optional) in range: -1, 1
65
47
  Returns:
66
48
  list([num]): (Weight matrices list, train_predictions list, Train_acc).
67
49
  error handled ?: Process status ('e')
@@ -78,18 +60,12 @@ def fit(
78
60
  x_val = x_train
79
61
  y_val = y_train
80
62
 
81
- if val == True and val_count == None:
82
-
83
- val_count = 0.1
84
- val_count_copy = val_count
85
-
86
- if val == True:
63
+ if val == True or val == 'final':
64
+
65
+ val_bar = tqdm(total=1, desc="Training / Validating Accuracy", ncols=120)
87
66
 
88
- val_count = int(len(x_train) * val_count)
89
-
90
- val_count_copy = val_count
91
67
 
92
- if show_training == True or show_training == 'final' and show_count == None:
68
+ if show_count == None:
93
69
 
94
70
  show_count = 10
95
71
 
@@ -109,25 +85,23 @@ def fit(
109
85
 
110
86
  neurons = [len(class_count), len(class_count)]
111
87
  layers = ['fex']
112
- val_list = [None]
88
+ val_list = []
113
89
 
114
90
  x_train[0] = np.array(x_train[0])
115
91
  x_train[0] = x_train[0].ravel()
116
92
  x_train_size = len(x_train[0])
117
93
 
118
- W = weight_identification(
119
- len(layers) - 1, len(class_count), neurons, x_train_size)
94
+ STPW = weight_identification(
95
+ len(layers) - 1, len(class_count), neurons, x_train_size) # STPW = SHORT TIME POTENTIATION WEIGHT
96
+
97
+ LTPW = [1] * len(STPW) # LTPW = LONG TIME POTENTIATION WEIGHT
120
98
 
121
- trained_W = [1] * len(W)
122
- print(Fore.GREEN + "Train Started with 0 ERROR" + Style.RESET_ALL)
123
- start_time = time.time()
124
99
  y = decode_one_hot(y_train)
125
100
 
126
101
  for index, inp in enumerate(x_train):
127
-
102
+
128
103
  progress = index / len(x_train) * 100
129
104
 
130
- uni_start_time = time.time()
131
105
  inp = np.array(inp)
132
106
  inp = inp.ravel()
133
107
 
@@ -143,41 +117,37 @@ def fit(
143
117
  neural_layer = normalization(neural_layer)
144
118
 
145
119
  if Layer == 'fex':
146
- W[Lindex] = fex(neural_layer, W[Lindex], True, y[index], activation_potential)
120
+ STPW[Lindex] = fex(neural_layer, STPW[Lindex], True, y[index], activation_potentiation)
147
121
 
148
- for i, w in enumerate(W):
149
- trained_W[i] = trained_W[i] + w
122
+ for i, w in enumerate(STPW):
123
+ LTPW[i] = LTPW[i] + w
150
124
 
151
125
 
152
126
  if val == True:
127
+
128
+ if show_training == True:
129
+ try:
130
+ plt.close(fig)
153
131
 
154
- if index == val_count:
155
-
156
- val_count += val_count_copy
157
-
158
- layers.append('cat')
159
- trained_W.append(np.eye(len(class_count)))
160
-
161
- validation_model = evaluate(x_val, y_val, None, trained_W)
162
-
163
- layers.pop()
164
- trained_W.pop()
165
-
166
- val_acc = validation_model[get_acc()]
132
+ except:
133
+ pass
167
134
 
168
- val_list.append(val_acc)
135
+ validation_model = evaluate(x_val, y_val, None, LTPW, activation_potentiation, None)
136
+
137
+ val_acc = validation_model[get_acc()]
169
138
 
139
+ val_list.append(val_acc)
140
+
141
+ if index == 0:
170
142
 
171
- plt.plot(val_list, linestyle='-',
172
- color='r')
143
+ val_bar.update(val_acc)
144
+
145
+ if index != 0:
146
+
147
+ val_acc = val_acc - val_list[index - 1]
173
148
 
174
- progress_status = f"{progress:.1f}"
175
- plt.title('Validation accuracy graph. Amount of data learned by the model: % ' + progress_status)
176
- plt.xlabel('Learning Progress')
177
- plt.ylabel('Accuracy')
178
- plt.ylim(0, 1)
179
- plt.draw()
180
- plt.pause(0.1)
149
+ val_bar.update(val_acc)
150
+
181
151
 
182
152
  if show_training == True:
183
153
 
@@ -200,11 +170,11 @@ def fit(
200
170
 
201
171
  if row != 0:
202
172
 
203
- mat = trained_W[0][j,:].reshape(row, col)
173
+ mat = LTPW[0][j,:].reshape(row, col)
204
174
  suptitle_info = 'Neurons Learning Progress: % '
205
175
  title_info = f'{j+1}. Neuron'
206
176
 
207
- mat = trained_W[0][j,:].reshape(row, col)
177
+ mat = LTPW[0][j,:].reshape(row, col)
208
178
 
209
179
  ax[j].imshow(mat, interpolation='sinc', cmap='viridis')
210
180
 
@@ -216,38 +186,23 @@ def fit(
216
186
 
217
187
  else:
218
188
 
219
- mat = trained_W[0]
189
+ mat = LTPW[0]
220
190
  ax.imshow(mat, interpolation='sinc', cmap='viridis')
221
191
  suptitle_info = 'Weight Learning Progress: % '
222
192
  title_info = 'Weight Matrix Of Fex Layer'
223
193
 
224
-
225
-
194
+
195
+
226
196
 
227
- progress_status = f"{progress:.1f}"
228
- fig.suptitle(suptitle_info + progress_status)
229
- plt.draw()
230
- plt.pause(0.1)
231
-
197
+ progress_status = f"{progress:.1f}"
198
+ fig.suptitle(suptitle_info + progress_status)
199
+ plt.draw()
200
+ plt.pause(0.1)
201
+
232
202
 
233
203
  W = weight_identification(
234
204
  len(layers) - 1, len(class_count), neurons, x_train_size)
235
205
 
236
- uni_end_time = time.time()
237
-
238
- calculating_est = round(
239
- (uni_end_time - uni_start_time) * (len(x_train) - index), 3)
240
-
241
- if calculating_est < 60:
242
- print('\rest......(sec):', calculating_est, '\n', end="")
243
-
244
- elif calculating_est > 60 and calculating_est < 3600:
245
- print('\rest......(min):', calculating_est/60, '\n', end="")
246
-
247
- elif calculating_est > 3600:
248
- print('\rest......(h):', calculating_est/3600, '\n', end="")
249
-
250
- print('\rTraining: ', index, "/", len(x_train), "\n", end="")
251
206
 
252
207
  if show_training == 'final':
253
208
 
@@ -255,7 +210,7 @@ def fit(
255
210
 
256
211
  for j in range(len(class_count)):
257
212
 
258
- mat = trained_W[0][j,:].reshape(row, col)
213
+ mat = LTPW[0][j,:].reshape(row, col)
259
214
 
260
215
  ax[j].imshow(mat, interpolation='sinc', cmap='viridis')
261
216
  ax[j].set_aspect('equal')
@@ -270,26 +225,18 @@ def fit(
270
225
  plt.pause(0.1)
271
226
 
272
227
 
273
- EndTime = time.time()
274
-
275
- calculating_est = round(EndTime - start_time, 2)
276
-
277
- print(Fore.GREEN + " \nTrain Finished with 0 ERROR\n" + Style.RESET_ALL)
278
-
279
- if calculating_est < 60:
280
- print('Total training time(sec): ', calculating_est)
281
-
282
- elif calculating_est > 60 and calculating_est < 3600:
283
- print('Total training time(min): ', calculating_est/60)
284
-
285
- elif calculating_est > 3600:
286
- print('Total training time(h): ', calculating_est/3600)
228
+ if val == 'final':
229
+
230
+ validation_model = evaluate(x_val, y_val, None, LTPW, activation_potentiation, None)
231
+
232
+ val_acc = validation_model[get_acc()]
287
233
 
288
- layers.append('cat')
289
- trained_W.append(np.eye(len(class_count)))
234
+ val_list.append(val_acc)
235
+
236
+ val_bar.update(val_acc)
290
237
 
291
238
 
292
- return trained_W
239
+ return LTPW
293
240
 
294
241
  # FUNCTIONS -----
295
242
 
@@ -381,48 +328,48 @@ def fex(
381
328
  w, # num: Weight matrix of the neural network.
382
329
  is_training, # bool: Flag indicating if the function is called during training (True or False).
383
330
  Class, # int: Which class is, if training.
384
- activation_potential # float or None: Input activation potential (optional)
331
+ activation_potentiation # float or None: Input activation potentiation (optional)
385
332
  ) -> tuple:
386
333
  """
387
- Applies feature extraction process to the input data using synaptic pruning.
334
+ Applies feature extraction process to the input data using synaptic potentiation.
388
335
 
389
336
  Args:
390
337
  Input (num): Input data.
391
338
  w (num): Weight matrix of the neural network.
392
339
  is_training (bool): Flag indicating if the function is called during training (True or False).
393
340
  Class (int): if is during training then which class(label) ? is isnt then put None.
394
- activation_potential (float or None): Threshold value for comparison. (optional)
341
+ activation_potentiation (float or None): Threshold value for comparison. (optional)
395
342
 
396
343
  Returns:
397
344
  tuple: A tuple (vector) containing the neural layer result and the updated weight matrix.
398
345
  """
399
346
 
400
- if is_training == True and activation_potential == None:
347
+ if is_training == True and activation_potentiation == None:
401
348
 
402
349
  w[Class, :] = Input
403
350
 
404
351
  return w
405
352
 
406
- elif is_training == True and activation_potential != None:
353
+ elif is_training == True and activation_potentiation != None:
407
354
 
408
355
 
409
- Input[Input < activation_potential] = 0
410
- Input[Input > activation_potential] = 1
356
+ Input[Input < activation_potentiation] = 0
357
+ Input[Input > activation_potentiation] = 1
411
358
 
412
359
  w[Class,:] = Input
413
360
 
414
361
  return w
415
362
 
416
- elif is_training == False and activation_potential == None:
363
+ elif is_training == False and activation_potentiation == None:
417
364
 
418
365
  neural_layer = np.dot(w, Input)
419
366
 
420
367
  return neural_layer
421
368
 
422
- elif is_training == False and activation_potential != None:
369
+ elif is_training == False and activation_potentiation != None:
423
370
 
424
- Input[Input < activation_potential] = 0
425
- Input[Input > activation_potential] = 1
371
+ Input[Input < activation_potentiation] = 0
372
+ Input[Input > activation_potentiation] = 1
426
373
 
427
374
  neural_layer = np.dot(w, Input)
428
375
 
@@ -504,7 +451,8 @@ def evaluate(
504
451
  y_test, # list[num]: Test labels.
505
452
  show_metrices, # show_metrices (bool): (True or False)
506
453
  W, # list[num]: Weight matrix list of the neural network.
507
- activation_potential=None # activation_potential (float or None): Threshold value for comparison. (optional)
454
+ activation_potentiation=None, # activation_potentiation (float or None): Threshold value for comparison. (optional)
455
+ acc_bar_status = True
508
456
  ) -> tuple:
509
457
  infoTestModel = """
510
458
  Tests the neural network model with the given test data.
@@ -514,13 +462,14 @@ def evaluate(
514
462
  y_test (list[num]): Test labels.
515
463
  show_metrices (bool): (True or False)
516
464
  W (list[num]): Weight matrix list of the neural network.
517
- activation_potential (float or None): Threshold value for comparison. (optional)
465
+ activation_potentiation (float or None): Threshold value for comparison. (optional)
466
+ acc_bar_status (bool): Loading bar for accuracy (True or None)
518
467
 
519
468
  Returns:
520
469
  tuple: A tuple containing the predicted labels and the accuracy of the model.
521
470
  """
522
471
 
523
- layers = ['fex', 'cat']
472
+ layers = ['fex']
524
473
 
525
474
  try:
526
475
  Wc = [0] * len(W) # Wc = Weight copy
@@ -531,9 +480,10 @@ def evaluate(
531
480
  for i, w in enumerate(W):
532
481
  Wc[i] = np.copy(w)
533
482
  print('\rCopying weights.....', i+1, '/', len(W), end="")
534
-
535
- print(Fore.GREEN + "\n\nTest Started with 0 ERROR\n" + Style.RESET_ALL)
536
- start_time = time.time()
483
+
484
+ # print(Fore.GREEN + "\n\nTest Started with 0 ERROR\n" + Style.RESET_ALL)
485
+ if acc_bar_status == True:
486
+ acc_bar = tqdm(total=1, desc="Test Accuracy", ncols=75)
537
487
  for inpIndex, Input in enumerate(x_test):
538
488
  Input = np.array(Input)
539
489
  Input = Input.ravel()
@@ -545,9 +495,8 @@ def evaluate(
545
495
  neural_layer = normalization(neural_layer)
546
496
 
547
497
  if Layer == 'fex':
548
- neural_layer = fex(neural_layer, W[index], False, None, activation_potential)
549
- elif Layer == 'cat':
550
- neural_layer = np.dot(W[index], neural_layer)
498
+ neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
499
+
551
500
 
552
501
  for i, w in enumerate(Wc):
553
502
  W[i] = np.copy(w)
@@ -556,56 +505,25 @@ def evaluate(
556
505
  if RealOutput == PredictedOutput:
557
506
  true += 1
558
507
  acc = true / len(y_test)
559
- if show_metrices == True:
560
- acc_list.append(acc)
561
- y_preds[inpIndex] = PredictedOutput
562
-
563
- uni_end_time = time.time()
564
-
565
- calculating_est = round(
566
- (uni_end_time - uni_start_time) * (len(x_test) - inpIndex), 3)
567
508
 
568
- if calculating_est < 60:
569
- print('\rest......(sec):', calculating_est, '\n', end="")
570
- print('\rTest accuracy: ', acc, "\n", end="")
571
-
572
- elif calculating_est > 60 and calculating_est < 3600:
573
- print('\rest......(min):', calculating_est/60, '\n', end="")
574
- print('\rTest accuracy: ', acc, "\n", end="")
575
509
 
576
- elif calculating_est > 3600:
577
- print('\rest......(h):', calculating_est/3600, '\n', end="")
578
- print('\rTest accuracy: ', acc, "\n", end="")
510
+ acc_list.append(acc)
511
+ y_preds[inpIndex] = PredictedOutput
512
+
513
+ if acc_bar_status == True:
514
+ if inpIndex == 0:
515
+ acc_bar.update(acc)
516
+
517
+ else:
518
+ acc = acc - acc_list[inpIndex - 1]
519
+ acc_bar.update(acc)
520
+
579
521
  if show_metrices == True:
580
522
  plot_evaluate(y_test, y_preds, acc_list)
581
523
 
582
- EndTime = time.time()
524
+
583
525
  for i, w in enumerate(Wc):
584
526
  W[i] = np.copy(w)
585
-
586
- calculating_est = round(EndTime - start_time, 2)
587
-
588
- print(Fore.GREEN + "\nTest Finished with 0 ERROR\n")
589
-
590
- if calculating_est < 60:
591
- print('Total testing time(sec): ', calculating_est)
592
-
593
- elif calculating_est > 60 and calculating_est < 3600:
594
- print('Total testing time(min): ', calculating_est/60)
595
-
596
- elif calculating_est > 3600:
597
- print('Total testing time(h): ', calculating_est/3600)
598
-
599
- if acc >= 0.8:
600
- print(Fore.GREEN + '\nTotal Test accuracy: ',
601
- acc, '\n' + Style.RESET_ALL)
602
-
603
- elif acc < 0.8 and acc > 0.6:
604
- print(Fore.MAGENTA + '\nTotal Test accuracy: ',
605
- acc, '\n' + Style.RESET_ALL)
606
-
607
- elif acc <= 0.6:
608
- print(Fore.RED + '\nTotal Test accuracy: ', acc, '\n' + Style.RESET_ALL)
609
527
 
610
528
  except:
611
529
 
@@ -621,7 +539,7 @@ def multiple_evaluate(
621
539
  y_test, # list[num]: Test labels.
622
540
  show_metrices, # show_metrices (bool): Visualize test progress ? (True or False)
623
541
  MW, # list[list[num]]: Weight matrix of the neural network.
624
- activation_potential=None # (float or None): Threshold value for comparison. (optional)
542
+ activation_potentiation=None # (float or None): Threshold value for comparison. (optional)
625
543
  ) -> tuple:
626
544
  infoTestModel = """
627
545
  Tests the neural network model with the given test data.
@@ -668,9 +586,7 @@ def multiple_evaluate(
668
586
  neural_layer = normalization(neural_layer)
669
587
 
670
588
  if Layer == 'fex':
671
- neural_layer = fex(neural_layer, W[index], False, None, activation_potential)
672
- elif Layer == 'cat':
673
- neural_layer = np.dot(W[index], neural_layer)
589
+ neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
674
590
 
675
591
  output_layer += neural_layer
676
592
 
@@ -738,7 +654,7 @@ def multiple_evaluate(
738
654
 
739
655
  except:
740
656
 
741
- print(Fore.RED + "ERROR: Testing model parameters like 'activation_potential' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: evaluate" + infoTestModel + Style.RESET_ALL)
657
+ print(Fore.RED + "ERROR: Testing model parameters like 'activation_potentiation' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: evaluate" + infoTestModel + Style.RESET_ALL)
742
658
  return 'e'
743
659
 
744
660
  return W, y_preds, acc
@@ -753,11 +669,11 @@ def save_model(model_name,
753
669
  model_path,
754
670
  scaler_params,
755
671
  W,
756
- activation_potential=None
672
+ activation_potentiation=None
757
673
  ):
758
674
 
759
675
  infosave_model = """
760
- Function to save a pruning learning model.
676
+ Function to save a potentiation learning model.
761
677
 
762
678
  Arguments:
763
679
  model_name (str): Name of the model.
@@ -769,7 +685,7 @@ def save_model(model_name,
769
685
  model_path (str): Path where the model will be saved. For example: C:/Users/beydili/Desktop/denemePLAN/
770
686
  scaler_params (int, float): standard scaler params list: mean,std. If not used standard scaler then be: None.
771
687
  W: Weights of the model.
772
- activation_potential (float or None): Threshold value for comparison. (optional)
688
+ activation_potentiation (float or None): Threshold value for comparison. (optional)
773
689
 
774
690
  Returns:
775
691
  str: Message indicating if the model was saved successfully or encountered an error.
@@ -778,7 +694,7 @@ def save_model(model_name,
778
694
  # Operations to be performed by the function will be written here
779
695
  pass
780
696
 
781
- layers = ['fex', 'cat']
697
+ layers = ['fex']
782
698
 
783
699
  if weights_type != 'txt' and weights_type != 'npy' and weights_type != 'mat':
784
700
  print(Fore.RED + "ERROR110: Save Weight type (File Extension) Type must be 'txt' or 'npy' or 'mat' from: save_model" +
@@ -819,7 +735,7 @@ def save_model(model_name,
819
735
  'WEIGHTS FORMAT': weights_format,
820
736
  'MODEL PATH': model_path,
821
737
  'STANDARD SCALER': scaler_params,
822
- 'ACTIVATION POTENTIAL': activation_potential
738
+ 'ACTIVATION POTENTIATION': activation_potentiation
823
739
  }
824
740
  try:
825
741
 
@@ -908,14 +824,14 @@ def load_model(model_name,
908
824
  model_path,
909
825
  ):
910
826
  infoload_model = """
911
- Function to load a pruning learning model.
827
+ Function to load a potentiation learning model.
912
828
 
913
829
  Arguments:
914
830
  model_name (str): Name of the model.
915
831
  model_path (str): Path where the model is saved.
916
832
 
917
833
  Returns:
918
- lists: W(list[num]), activation_potential, DataFrame of the model
834
+ lists: W(list[num]), activation_potentiation, DataFrame of the model
919
835
  """
920
836
  pass
921
837
 
@@ -955,7 +871,7 @@ def load_model(model_name,
955
871
  def predict_model_ssd(Input, model_name, model_path):
956
872
 
957
873
  infopredict_model_ssd = """
958
- Function to make a prediction using a divided pruning learning artificial neural network (PLAN).
874
+ Function to make a prediction using a divided potentiation learning artificial neural network (PLAN).
959
875
 
960
876
  Arguments:
961
877
  Input (list or ndarray): Input data for the model (single vector or single matrix).
@@ -965,15 +881,15 @@ def predict_model_ssd(Input, model_name, model_path):
965
881
  """
966
882
  W, df = load_model(model_name, model_path)
967
883
 
968
- activation_potential = str(df['ACTIVATION POTENTIAL'].iloc[0])
884
+ activation_potentiation = str(df['ACTIVATION POTENTIATION'].iloc[0])
969
885
 
970
- if activation_potential != 'nan':
886
+ if activation_potentiation != 'nan':
971
887
 
972
- activation_potential = float(activation_potential)
888
+ activation_potentiation = float(activation_potentiation)
973
889
 
974
890
  else:
975
891
 
976
- activation_potential = None
892
+ activation_potentiation = None
977
893
 
978
894
  try:
979
895
 
@@ -989,7 +905,7 @@ def predict_model_ssd(Input, model_name, model_path):
989
905
  non_scaled = True
990
906
 
991
907
 
992
- layers = ['fex', 'cat']
908
+ layers = ['fex']
993
909
 
994
910
  Wc = [0] * len(W)
995
911
  for i, w in enumerate(W):
@@ -1003,7 +919,7 @@ def predict_model_ssd(Input, model_name, model_path):
1003
919
  neural_layer = normalization(neural_layer)
1004
920
 
1005
921
  if Layer == 'fex':
1006
- neural_layer = fex(neural_layer, W[index], False, None, activation_potential)
922
+ neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
1007
923
  elif Layer == 'cat':
1008
924
  neural_layer = np.dot(W[index], neural_layer)
1009
925
  except:
@@ -1015,17 +931,17 @@ def predict_model_ssd(Input, model_name, model_path):
1015
931
  return neural_layer
1016
932
 
1017
933
 
1018
- def predict_model_ram(Input, scaler_params, W, activation_potential=None):
934
+ def predict_model_ram(Input, scaler_params, W, activation_potentiation=None):
1019
935
 
1020
936
  infopredict_model_ram = """
1021
- Function to make a prediction using a divided pruning learning artificial neural network (PLAN).
937
+ Function to make a prediction using a divided potentiation learning artificial neural network (PLAN).
1022
938
  from weights and parameters stored in memory.
1023
939
 
1024
940
  Arguments:
1025
941
  Input (list or ndarray): Input data for the model (single vector or single matrix).
1026
942
  scaler_params (int, float): standard scaler params list: mean,std. If not used standard scaler then be: None.
1027
943
  W (list of ndarrays): Weights of the model.
1028
- activation_potential (float or None): Threshold value for comparison. (optional)
944
+ activation_potentiation (float or None): Threshold value for comparison. (optional)
1029
945
 
1030
946
  Returns:
1031
947
  ndarray: Output from the model.
@@ -1035,7 +951,7 @@ def predict_model_ram(Input, scaler_params, W, activation_potential=None):
1035
951
 
1036
952
  Input = standard_scaler(None, Input, scaler_params)
1037
953
 
1038
- layers = ['fex', 'cat']
954
+ layers = ['fex']
1039
955
 
1040
956
  Wc = [0] * len(W)
1041
957
  for i, w in enumerate(W):
@@ -1049,7 +965,7 @@ def predict_model_ram(Input, scaler_params, W, activation_potential=None):
1049
965
  neural_layer = normalization(neural_layer)
1050
966
 
1051
967
  if Layer == 'fex':
1052
- neural_layer = fex(neural_layer, W[index], False, None, activation_potential)
968
+ neural_layer = fex(neural_layer, W[index], False, None, activation_potentiation)
1053
969
  elif Layer == 'cat':
1054
970
  neural_layer = np.dot(W[index], neural_layer)
1055
971
 
@@ -1695,4 +1611,4 @@ def get_preds():
1695
1611
 
1696
1612
  def get_acc():
1697
1613
 
1698
- return 2
1614
+ return 2
@@ -0,0 +1,8 @@
1
+ Metadata-Version: 2.1
2
+ Name: pyerualjetwork
3
+ Version: 2.6.6
4
+ Summary: Visual improvements, new option added for val paramater in fit function: 'final'. Removed: val_count parameter.
5
+ Author: Hasan Can Beydili
6
+ Author-email: tchasancan@gmail.com
7
+ Keywords: model evaluation,classifcation,potentiation learning artficial neural networks
8
+
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
+ plan/plan.py,sha256=iICeYTx7-I4HRFqUFOsfuG1Nlp1vcYIWRiw3D960gGI,53301
3
+ pyerualjetwork-2.6.6.dist-info/METADATA,sha256=cfxWuZznzuP91MhQ3Vrro8INQF7l0LW_5YaSAw0GyEM,338
4
+ pyerualjetwork-2.6.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.6.6.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.6.6.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: pyerualjetwork
3
- Version: 2.5.8
4
- Summary: New optional parameters added for fit function, x_val, y_val show_count, val_count, val. For more information please read user document
5
- Author: Hasan Can Beydili
6
- Author-email: tchasancan@gmail.com
7
- Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
-
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
- plan/plan.py,sha256=3jSj2QXjLhinm_5BH0-pVhHP6mHyrXzLKm4m5GaV6Yw,56167
3
- pyerualjetwork-2.5.8.dist-info/METADATA,sha256=ILdOu0T__HUunUBsrZcnxEjeyAzP_jl122hO-OVPR38,357
4
- pyerualjetwork-2.5.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.5.8.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.5.8.dist-info/RECORD,,