pyerualjetwork 2.5.6__py3-none-any.whl → 2.5.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -1,3 +1,10 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Tue Jun 18 23:32:16 2024
4
+
5
+ @author: hasan
6
+ """
7
+
1
8
  # optic
2
9
 
3
10
  # -*- coding: utf-8 -*-
@@ -50,7 +57,7 @@ def fit(
50
57
  y_train (list[num]): List of target labels. (one hot encoded)
51
58
  show_training (bool, str): True, None or'final'
52
59
  show_count (None, int): How many learning steps in total will be displayed in a single figure? (Adjust according to your hardware) Default: 10 (optional)
53
- val_count (None, int): After how many examples learned will an accuracy test be performed? Default: 100 (optional)
60
+ val_count (None, int): After how many examples learned will an accuracy test be performed? Default: 0.1 (%10) (optional)
54
61
  x_val (list[num]): List of validation data. (optional) Default: x_train
55
62
  y_val (list[num]): (list[num]): List of target labels. (one hot encoded) (optional) Default: y_train
56
63
  activation_potential (float): Input activation potential (for binary injection) (optional) in range: -1, 1
@@ -72,8 +79,14 @@ def fit(
72
79
 
73
80
  if val == True and val_count == None:
74
81
 
75
- val_count = 100
76
-
82
+ val_count = 0.1
83
+ val_count_copy = val_count
84
+
85
+ if val == True:
86
+
87
+ val_count = int(len(x_train) * val_count)
88
+
89
+ val_count_copy = val_count
77
90
 
78
91
  if show_training == True or show_training == 'final' and show_count == None:
79
92
 
@@ -82,10 +95,6 @@ def fit(
82
95
  if show_training == True or show_training == 'final':
83
96
 
84
97
  row, col = shape_control(x_train)
85
-
86
- if row == 0:
87
-
88
- return 'e'
89
98
 
90
99
  class_count = set()
91
100
 
@@ -141,7 +150,9 @@ def fit(
141
150
 
142
151
  if val == True:
143
152
 
144
- if index %val_count == 0:
153
+ if index == val_count:
154
+
155
+ val_count += val_count_copy
145
156
 
146
157
  layers.append('cat')
147
158
  trained_W.append(np.eye(len(class_count)))
@@ -170,32 +181,44 @@ def fit(
170
181
  if show_training == True:
171
182
 
172
183
  if index %show_count == 0:
173
-
174
- if index != 0:
184
+
185
+
186
+ if index != 0:
175
187
  plt.close(fig)
176
188
 
177
- fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
189
+ fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
178
190
 
191
+
179
192
 
180
193
  for j in range(len(class_count)):
181
-
182
- mat = trained_W[0][j,:].reshape(row, col)
183
194
 
195
+
196
+ if row != 0:
197
+
198
+ mat = trained_W[0][j,:].reshape(row, col)
199
+ suptitle_info = 'Neurons Learning Progress: % '
200
+ title_info = f'{j+1}. Neuron'
201
+
202
+ else:
203
+
204
+ mat = trained_W[0]
205
+ suptitle_info = 'Weight Learning Progress: % '
206
+ j = 0
207
+ title_info = 'Weight Matrix Of Fex Layer'
208
+
184
209
  ax[j].imshow(mat, interpolation='sinc', cmap='viridis')
185
210
  ax[j].set_aspect('equal')
186
211
 
187
212
  ax[j].set_xticks([])
188
213
  ax[j].set_yticks([])
189
- ax[j].set_title(f'{j+1}. Neuron')
214
+ ax[j].set_title(title_info)
190
215
 
191
216
  progress_status = f"{progress:.1f}"
192
- fig.suptitle('Neurons Learning Progress: % ' + progress_status)
217
+ fig.suptitle(suptitle_info + progress_status)
193
218
  plt.draw()
194
219
  plt.pause(0.1)
195
220
 
196
221
 
197
-
198
-
199
222
  W = weight_identification(
200
223
  len(layers) - 1, len(class_count), neurons, x_train_size)
201
224
 
@@ -274,7 +297,7 @@ def shape_control(x_train):
274
297
 
275
298
  except:
276
299
 
277
- print(Fore.RED + 'ERROR: Change show_training to None. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
300
+ print(Fore.RED + 'ERROR: Change show_training to None. Input length cannot be reshaped' + Style.RESET_ALL)
278
301
  return [0, 0]
279
302
 
280
303
  return row, col
@@ -1661,4 +1684,5 @@ def get_preds():
1661
1684
 
1662
1685
  def get_acc():
1663
1686
 
1664
- return 2
1687
+ return 2
1688
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.5.6
3
+ Version: 2.5.7
4
4
  Summary: New optional parameters added for fit function, x_val, y_val show_count, val_count, val. For more information please read user document
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
+ plan/plan.py,sha256=PEmoyvZidNWiNQTanaTbFBP9dlrAD0ZqU6-83wJXPV0,55726
3
+ pyerualjetwork-2.5.7.dist-info/METADATA,sha256=BjDzrhxLKzSODDlgEr8IFeRoypwj8tmBaN3GyNot3Ww,357
4
+ pyerualjetwork-2.5.7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
+ pyerualjetwork-2.5.7.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-2.5.7.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=gmaz8lnQfl18MbOQwabBUPmShajK5S99jfyY-hQe8tc,502
2
- plan/plan.py,sha256=-D6-2c5OtH5DMRJX8P5NISo_DbOvpaf2rHYvFfgDI80,55021
3
- pyerualjetwork-2.5.6.dist-info/METADATA,sha256=NyHNKEa9B2FAUGaHeM41O7aiObTgLVIb3wvc8JxcTrw,357
4
- pyerualjetwork-2.5.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
5
- pyerualjetwork-2.5.6.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-2.5.6.dist-info/RECORD,,