pyerualjetwork 2.4.4__py3-none-any.whl → 2.4.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan_bi/plan_bi.py +6 -6
- plan_di/plan_di.py +7 -6
- {pyerualjetwork-2.4.4.dist-info → pyerualjetwork-2.4.5.dist-info}/METADATA +1 -1
- pyerualjetwork-2.4.5.dist-info/RECORD +8 -0
- pyerualjetwork-2.4.4.dist-info/RECORD +0 -8
- {pyerualjetwork-2.4.4.dist-info → pyerualjetwork-2.4.5.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.4.4.dist-info → pyerualjetwork-2.4.5.dist-info}/top_level.txt +0 -0
plan_bi/plan_bi.py
CHANGED
@@ -90,7 +90,7 @@ def fit(
|
|
90
90
|
|
91
91
|
if show_training == True:
|
92
92
|
|
93
|
-
fig, ax = plt.subplots(1,
|
93
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
94
94
|
|
95
95
|
try:
|
96
96
|
row = x_train[1].shape[0]
|
@@ -103,7 +103,7 @@ def fit(
|
|
103
103
|
row, col = find_numbers(len(x_train[0]))
|
104
104
|
|
105
105
|
except:
|
106
|
-
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL
|
106
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
107
107
|
return 'e'
|
108
108
|
|
109
109
|
for j in range(len(class_count)):
|
@@ -118,7 +118,7 @@ def fit(
|
|
118
118
|
ax[j].set_title(f'{j+1}. Neuron')
|
119
119
|
|
120
120
|
|
121
|
-
|
121
|
+
plt.show()
|
122
122
|
|
123
123
|
|
124
124
|
W = weight_identification(len(layers) - 1, len(class_count), neurons, x_train_size)
|
@@ -142,7 +142,7 @@ def fit(
|
|
142
142
|
|
143
143
|
if show_training == 'final':
|
144
144
|
|
145
|
-
fig, ax = plt.subplots(1,
|
145
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
146
146
|
|
147
147
|
try:
|
148
148
|
row = x_train[1].shape[0]
|
@@ -156,7 +156,7 @@ def fit(
|
|
156
156
|
|
157
157
|
except:
|
158
158
|
|
159
|
-
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL
|
159
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
160
160
|
return 'e'
|
161
161
|
|
162
162
|
for j in range(len(class_count)):
|
@@ -171,7 +171,7 @@ def fit(
|
|
171
171
|
ax[j].set_title(f'{j+1}. Neuron')
|
172
172
|
|
173
173
|
|
174
|
-
|
174
|
+
plt.show()
|
175
175
|
|
176
176
|
EndTime = time.time()
|
177
177
|
|
plan_di/plan_di.py
CHANGED
@@ -90,7 +90,7 @@ def fit(
|
|
90
90
|
|
91
91
|
if show_training == True:
|
92
92
|
|
93
|
-
fig, ax = plt.subplots(1,
|
93
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
94
94
|
|
95
95
|
try:
|
96
96
|
row = x_train[1].shape[0]
|
@@ -104,7 +104,8 @@ def fit(
|
|
104
104
|
row, col = find_numbers(len(x_train[0]))
|
105
105
|
|
106
106
|
except:
|
107
|
-
|
107
|
+
|
108
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
108
109
|
return 'e'
|
109
110
|
|
110
111
|
|
@@ -120,7 +121,7 @@ def fit(
|
|
120
121
|
ax[j].set_title(f'{j+1}. Neuron')
|
121
122
|
|
122
123
|
|
123
|
-
|
124
|
+
plt.show()
|
124
125
|
|
125
126
|
W = weight_identification(
|
126
127
|
len(layers) - 1, len(class_count), neurons, x_train_size)
|
@@ -143,7 +144,7 @@ def fit(
|
|
143
144
|
|
144
145
|
if show_training == 'final':
|
145
146
|
|
146
|
-
fig, ax = plt.subplots(1,
|
147
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
147
148
|
|
148
149
|
try:
|
149
150
|
|
@@ -158,7 +159,7 @@ def fit(
|
|
158
159
|
row, col = find_numbers(len(x_train[0]))
|
159
160
|
|
160
161
|
except:
|
161
|
-
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL
|
162
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
162
163
|
return 'e'
|
163
164
|
|
164
165
|
for j in range(len(class_count)):
|
@@ -173,7 +174,7 @@ def fit(
|
|
173
174
|
ax[j].set_title(f'{j+1}. Neuron')
|
174
175
|
|
175
176
|
|
176
|
-
|
177
|
+
plt.show()
|
177
178
|
|
178
179
|
EndTime = time.time()
|
179
180
|
|
@@ -0,0 +1,8 @@
|
|
1
|
+
plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
|
2
|
+
plan_bi/plan_bi.py,sha256=OyoD1JmD68Ad-t4VMHjAtiCqMrgiIg9vHpk49yyuG0w,53624
|
3
|
+
plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
|
4
|
+
plan_di/plan_di.py,sha256=MGEDr4fVeGKyzcpricjXY_OYRiJ8duKEYlFKSwUS77I,51166
|
5
|
+
pyerualjetwork-2.4.5.dist-info/METADATA,sha256=2ADPscK7U5r4xlhJW3GTNJkecbE1kh2imZdDivVlD0s,309
|
6
|
+
pyerualjetwork-2.4.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
+
pyerualjetwork-2.4.5.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
+
pyerualjetwork-2.4.5.dist-info/RECORD,,
|
@@ -1,8 +0,0 @@
|
|
1
|
-
plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
|
2
|
-
plan_bi/plan_bi.py,sha256=Xn-Tpxse6llDRsilb-k9JAElvRUDvdtQ3B4fnW4s5EA,53602
|
3
|
-
plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
|
4
|
-
plan_di/plan_di.py,sha256=6Jml4SeYbM7mNCNY-gJiamsqsy7HNZsDjOBYpzCHhuo,51118
|
5
|
-
pyerualjetwork-2.4.4.dist-info/METADATA,sha256=BxWIsiPEgRTrFXXVyQ_wGkTYURkAL5Q6X2YpSPKFBrI,309
|
6
|
-
pyerualjetwork-2.4.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
-
pyerualjetwork-2.4.4.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
-
pyerualjetwork-2.4.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|