pyerualjetwork 2.4.3__py3-none-any.whl → 2.4.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan_bi/plan_bi.py +31 -31
- plan_di/plan_di.py +34 -30
- {pyerualjetwork-2.4.3.dist-info → pyerualjetwork-2.4.5.dist-info}/METADATA +1 -1
- pyerualjetwork-2.4.5.dist-info/RECORD +8 -0
- pyerualjetwork-2.4.3.dist-info/RECORD +0 -8
- {pyerualjetwork-2.4.3.dist-info → pyerualjetwork-2.4.5.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.4.3.dist-info → pyerualjetwork-2.4.5.dist-info}/top_level.txt +0 -0
plan_bi/plan_bi.py
CHANGED
@@ -90,16 +90,22 @@ def fit(
|
|
90
90
|
|
91
91
|
if show_training == True:
|
92
92
|
|
93
|
-
fig, ax = plt.subplots(1,
|
93
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
94
94
|
|
95
95
|
try:
|
96
96
|
row = x_train[1].shape[0]
|
97
97
|
col = x_train[1].shape[1]
|
98
98
|
except:
|
99
|
+
|
99
100
|
print(Fore.MAGENTA + 'WARNING: You try train showing but inputs is raveled. x_train inputs to should be reshape for training_show.', infoPLAN + Style.RESET_ALL)
|
100
101
|
|
101
|
-
|
102
|
-
|
102
|
+
try:
|
103
|
+
row, col = find_numbers(len(x_train[0]))
|
104
|
+
|
105
|
+
except:
|
106
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
107
|
+
return 'e'
|
108
|
+
|
103
109
|
for j in range(len(class_count)):
|
104
110
|
|
105
111
|
mat = trained_W[0][j,:].reshape(row, col)
|
@@ -112,7 +118,7 @@ def fit(
|
|
112
118
|
ax[j].set_title(f'{j+1}. Neuron')
|
113
119
|
|
114
120
|
|
115
|
-
|
121
|
+
plt.show()
|
116
122
|
|
117
123
|
|
118
124
|
W = weight_identification(len(layers) - 1, len(class_count), neurons, x_train_size)
|
@@ -136,15 +142,22 @@ def fit(
|
|
136
142
|
|
137
143
|
if show_training == 'final':
|
138
144
|
|
139
|
-
fig, ax = plt.subplots(1,
|
145
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
140
146
|
|
141
147
|
try:
|
142
148
|
row = x_train[1].shape[0]
|
143
149
|
col = x_train[1].shape[1]
|
144
150
|
except:
|
151
|
+
|
145
152
|
print(Fore.MAGENTA + 'WARNING: You try train showing but inputs is raveled. x_train inputs to should be reshape for training_show.', infoPLAN + Style.RESET_ALL)
|
146
153
|
|
147
|
-
|
154
|
+
try:
|
155
|
+
row, col = find_numbers(len(x_train[0]))
|
156
|
+
|
157
|
+
except:
|
158
|
+
|
159
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
160
|
+
return 'e'
|
148
161
|
|
149
162
|
for j in range(len(class_count)):
|
150
163
|
|
@@ -158,7 +171,7 @@ def fit(
|
|
158
171
|
ax[j].set_title(f'{j+1}. Neuron')
|
159
172
|
|
160
173
|
|
161
|
-
|
174
|
+
plt.show()
|
162
175
|
|
163
176
|
EndTime = time.time()
|
164
177
|
|
@@ -204,31 +217,18 @@ def weight_normalization(
|
|
204
217
|
|
205
218
|
# FUNCTIONS -----
|
206
219
|
|
207
|
-
def
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
while divisor <= n:
|
212
|
-
if n % divisor == 0:
|
213
|
-
factors.append(divisor)
|
214
|
-
n //= divisor
|
215
|
-
else:
|
216
|
-
divisor += 1
|
217
|
-
|
218
|
-
return factors
|
220
|
+
def find_numbers(n):
|
221
|
+
if n <= 1:
|
222
|
+
raise ValueError("Parameter 'n' must be greater than 1.")
|
219
223
|
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
for factor in factors[1:]:
|
229
|
-
b *= factor
|
230
|
-
|
231
|
-
return a, b
|
224
|
+
for i in range(2, int(n**0.5) + 1):
|
225
|
+
if n % i == 0:
|
226
|
+
factor1 = i
|
227
|
+
factor2 = n // i
|
228
|
+
if factor1 == factor2:
|
229
|
+
return factor1, factor2
|
230
|
+
|
231
|
+
return None
|
232
232
|
|
233
233
|
def weight_identification(
|
234
234
|
layer_count, # int: Number of layers in the neural network.
|
plan_di/plan_di.py
CHANGED
@@ -90,15 +90,24 @@ def fit(
|
|
90
90
|
|
91
91
|
if show_training == True:
|
92
92
|
|
93
|
-
fig, ax = plt.subplots(1,
|
93
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
94
94
|
|
95
95
|
try:
|
96
96
|
row = x_train[1].shape[0]
|
97
97
|
col = x_train[1].shape[1]
|
98
|
+
|
98
99
|
except:
|
100
|
+
|
99
101
|
print(Fore.MAGENTA + 'WARNING: You try train showing but inputs is raveled. x_train inputs to should be reshape for training_show.', infoPLAN + Style.RESET_ALL)
|
100
102
|
|
101
|
-
|
103
|
+
try:
|
104
|
+
row, col = find_numbers(len(x_train[0]))
|
105
|
+
|
106
|
+
except:
|
107
|
+
|
108
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
109
|
+
return 'e'
|
110
|
+
|
102
111
|
|
103
112
|
for j in range(len(class_count)):
|
104
113
|
|
@@ -112,7 +121,7 @@ def fit(
|
|
112
121
|
ax[j].set_title(f'{j+1}. Neuron')
|
113
122
|
|
114
123
|
|
115
|
-
|
124
|
+
plt.show()
|
116
125
|
|
117
126
|
W = weight_identification(
|
118
127
|
len(layers) - 1, len(class_count), neurons, x_train_size)
|
@@ -135,15 +144,23 @@ def fit(
|
|
135
144
|
|
136
145
|
if show_training == 'final':
|
137
146
|
|
138
|
-
fig, ax = plt.subplots(1,
|
147
|
+
fig, ax = plt.subplots(1, len(class_count), figsize=(18, 14))
|
139
148
|
|
140
149
|
try:
|
150
|
+
|
141
151
|
row = x_train[1].shape[0]
|
142
152
|
col = x_train[1].shape[1]
|
153
|
+
|
143
154
|
except:
|
155
|
+
|
144
156
|
print(Fore.MAGENTA + 'WARNING: You try train showing but inputs is raveled. x_train inputs to should be reshape for training_show.', infoPLAN + Style.RESET_ALL)
|
145
157
|
|
146
|
-
|
158
|
+
try:
|
159
|
+
row, col = find_numbers(len(x_train[0]))
|
160
|
+
|
161
|
+
except:
|
162
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show. Input length cannot be reshaped', infoPLAN + Style.RESET_ALL)
|
163
|
+
return 'e'
|
147
164
|
|
148
165
|
for j in range(len(class_count)):
|
149
166
|
|
@@ -157,7 +174,7 @@ def fit(
|
|
157
174
|
ax[j].set_title(f'{j+1}. Neuron')
|
158
175
|
|
159
176
|
|
160
|
-
|
177
|
+
plt.show()
|
161
178
|
|
162
179
|
EndTime = time.time()
|
163
180
|
|
@@ -182,31 +199,18 @@ def fit(
|
|
182
199
|
|
183
200
|
# FUNCTIONS -----
|
184
201
|
|
185
|
-
def
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
while divisor <= n:
|
190
|
-
if n % divisor == 0:
|
191
|
-
factors.append(divisor)
|
192
|
-
n //= divisor
|
193
|
-
else:
|
194
|
-
divisor += 1
|
195
|
-
|
196
|
-
return factors
|
202
|
+
def find_numbers(n):
|
203
|
+
if n <= 1:
|
204
|
+
raise ValueError("Parameter 'n' must be greater than 1.")
|
197
205
|
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
for factor in factors[1:]:
|
207
|
-
b *= factor
|
208
|
-
|
209
|
-
return a, b
|
206
|
+
for i in range(2, int(n**0.5) + 1):
|
207
|
+
if n % i == 0:
|
208
|
+
factor1 = i
|
209
|
+
factor2 = n // i
|
210
|
+
if factor1 == factor2:
|
211
|
+
return factor1, factor2
|
212
|
+
|
213
|
+
return None
|
210
214
|
|
211
215
|
def weight_normalization(
|
212
216
|
W,
|
@@ -0,0 +1,8 @@
|
|
1
|
+
plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
|
2
|
+
plan_bi/plan_bi.py,sha256=OyoD1JmD68Ad-t4VMHjAtiCqMrgiIg9vHpk49yyuG0w,53624
|
3
|
+
plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
|
4
|
+
plan_di/plan_di.py,sha256=MGEDr4fVeGKyzcpricjXY_OYRiJ8duKEYlFKSwUS77I,51166
|
5
|
+
pyerualjetwork-2.4.5.dist-info/METADATA,sha256=2ADPscK7U5r4xlhJW3GTNJkecbE1kh2imZdDivVlD0s,309
|
6
|
+
pyerualjetwork-2.4.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
+
pyerualjetwork-2.4.5.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
+
pyerualjetwork-2.4.5.dist-info/RECORD,,
|
@@ -1,8 +0,0 @@
|
|
1
|
-
plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
|
2
|
-
plan_bi/plan_bi.py,sha256=GJilBGENKFA1S_3QBAoFS5IaDu1UHGgiC1VPJmY4wGc,53069
|
3
|
-
plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
|
4
|
-
plan_di/plan_di.py,sha256=izbP2BuixM2bUumACPXYE66Wj6LnVbuiH3NXLMrN2EY,50514
|
5
|
-
pyerualjetwork-2.4.3.dist-info/METADATA,sha256=ZoBtjCTB1E_6NRXZXY4d8u5VZve_jmyrtzHiirG8J1w,309
|
6
|
-
pyerualjetwork-2.4.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
-
pyerualjetwork-2.4.3.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
-
pyerualjetwork-2.4.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|