pyerualjetwork 2.3.8__py3-none-any.whl → 2.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan_di/plan_di.py CHANGED
@@ -58,7 +58,7 @@ def fit(
58
58
  x_train[0] = x_train[0].ravel()
59
59
  x_train_size = len(x_train[0])
60
60
 
61
- W = pdi.weight_identification(
61
+ W = weight_identification(
62
62
  len(layers) - 1, len(class_count), neurons, x_train_size)
63
63
 
64
64
  trained_W = [1] * len(W)
@@ -80,10 +80,10 @@ def fit(
80
80
 
81
81
  for Lindex, Layer in enumerate(layers):
82
82
 
83
- neural_layer = pdi.normalization(neural_layer)
83
+ neural_layer = normalization(neural_layer)
84
84
 
85
85
  if Layer == 'fex':
86
- W[Lindex] = pdi.fex(neural_layer, W[Lindex], True, y[index])
86
+ W[Lindex] = fex(neural_layer, W[Lindex], True, y[index])
87
87
 
88
88
  for i, w in enumerate(W):
89
89
  trained_W[i] = trained_W[i] + w
@@ -113,7 +113,7 @@ def fit(
113
113
 
114
114
  plt.show()
115
115
 
116
- W = pdi.weight_identification(
116
+ W = weight_identification(
117
117
  len(layers) - 1, len(class_count), neurons, x_train_size)
118
118
 
119
119
  uni_end_time = time.time()
@@ -0,0 +1,8 @@
1
+ Metadata-Version: 2.1
2
+ Name: pyerualjetwork
3
+ Version: 2.4.0
4
+ Summary: show_training parameter added for fit function[True, 'final' or any]. Code improvements
5
+ Author: Hasan Can Beydili
6
+ Author-email: tchasancan@gmail.com
7
+ Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
+
@@ -0,0 +1,8 @@
1
+ plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
2
+ plan_bi/plan_bi.py,sha256=qGk5ukjsDeefW4oEDK4QfJ46rIkLzJitxQ8PhPGBPIA,51828
3
+ plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
4
+ plan_di/plan_di.py,sha256=nPEGeNce2UW89HJqsCvvhrKfy9d6MlEG6wpFmaxw6_M,49952
5
+ pyerualjetwork-2.4.0.dist-info/METADATA,sha256=SRy0uGHL-qbnm28e1-tm33cqI2WMxacbqHHGeCwJ-Io,309
6
+ pyerualjetwork-2.4.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
+ pyerualjetwork-2.4.0.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
+ pyerualjetwork-2.4.0.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: pyerualjetwork
3
- Version: 2.3.8
4
- Summary: Weights post process function added: [weight_post_process](optional after training before testing.), new function: manuel_balancer. And scaler_params added for scaled models.
5
- Author: Hasan Can Beydili
6
- Author-email: tchasancan@gmail.com
7
- Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
-
@@ -1,8 +0,0 @@
1
- plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
2
- plan_bi/plan_bi.py,sha256=qGk5ukjsDeefW4oEDK4QfJ46rIkLzJitxQ8PhPGBPIA,51828
3
- plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
4
- plan_di/plan_di.py,sha256=LAAemI6Pjxrx_SV3zdeMfgaPMBLSW5iUjHm9vCqTw6I,49968
5
- pyerualjetwork-2.3.8.dist-info/METADATA,sha256=sD9h2i02EhHPszGAxajxjuU6PY1alSH9YVmZC9jxm8w,396
6
- pyerualjetwork-2.3.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
- pyerualjetwork-2.3.8.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
- pyerualjetwork-2.3.8.dist-info/RECORD,,