pyerualjetwork 2.3.7__py3-none-any.whl → 2.3.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan_bi/plan_bi.py +31 -1
- plan_di/plan_di.py +60 -8
- pyerualjetwork-2.3.9.dist-info/METADATA +8 -0
- pyerualjetwork-2.3.9.dist-info/RECORD +8 -0
- pyerualjetwork-2.3.7.dist-info/METADATA +0 -8
- pyerualjetwork-2.3.7.dist-info/RECORD +0 -8
- {pyerualjetwork-2.3.7.dist-info → pyerualjetwork-2.3.9.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.3.7.dist-info → pyerualjetwork-2.3.9.dist-info}/top_level.txt +0 -0
plan_bi/plan_bi.py
CHANGED
@@ -17,6 +17,7 @@ def fit(
|
|
17
17
|
x_train: List[Union[int, float]],
|
18
18
|
y_train: List[Union[int, float, str]], # At least two.. and one hot encoded
|
19
19
|
activation_potential: Union[float],
|
20
|
+
show_training
|
20
21
|
) -> str:
|
21
22
|
|
22
23
|
infoPLAN = """
|
@@ -26,6 +27,7 @@ def fit(
|
|
26
27
|
x_train (list[num]): List of input data.
|
27
28
|
y_train (list[num]): List of y_train. (one hot encoded)
|
28
29
|
activation_potential (float): Input activation potential
|
30
|
+
show_training (bool, str): True, None or 'final'
|
29
31
|
|
30
32
|
Returns:
|
31
33
|
list([num]): (Weight matrices list, train_predictions list, Train_acc).
|
@@ -85,6 +87,34 @@ def fit(
|
|
85
87
|
|
86
88
|
for i, w in enumerate(W):
|
87
89
|
trained_W[i] = trained_W[i] + w
|
90
|
+
|
91
|
+
if show_training == True:
|
92
|
+
|
93
|
+
fig, ax = plt.subplots(1, 10, figsize=(18, 14))
|
94
|
+
|
95
|
+
try:
|
96
|
+
row = x_train[1].shape[0]
|
97
|
+
col = x_train[1].shape[1]
|
98
|
+
except:
|
99
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show.', infoPLAN + Style.RESET_ALL)
|
100
|
+
return 'e'
|
101
|
+
|
102
|
+
for j in range(10):
|
103
|
+
|
104
|
+
|
105
|
+
mat = trained_W[0][j,:].reshape(row, col)
|
106
|
+
|
107
|
+
|
108
|
+
|
109
|
+
ax[j].imshow(mat, interpolation='sinc', cmap='viridis')
|
110
|
+
ax[j].set_aspect('equal')
|
111
|
+
|
112
|
+
ax[j].set_xticks([])
|
113
|
+
ax[j].set_yticks([])
|
114
|
+
ax[j].set_title(f'{j+1}. Neuron')
|
115
|
+
|
116
|
+
|
117
|
+
plt.show()
|
88
118
|
|
89
119
|
|
90
120
|
W = weight_identification(len(layers) - 1, len(class_count), neurons, x_train_size)
|
@@ -1338,7 +1368,7 @@ def plot_evaluate(y_test, y_preds, acc_list):
|
|
1338
1368
|
axs[0, 1].set_ylim(0, 1) # Y eksenini 0 ile 1 arasında sınırla
|
1339
1369
|
axs[0, 1].set_xlabel('Metrics')
|
1340
1370
|
axs[0, 1].set_ylabel('Score')
|
1341
|
-
axs[0, 1].set_title('Precision, Recall, F1 Score, and Accuracy (
|
1371
|
+
axs[0, 1].set_title('Precision, Recall, F1 Score, and Accuracy (Weighted)')
|
1342
1372
|
axs[0, 1].grid(True, axis='y', linestyle='--', alpha=0.7)
|
1343
1373
|
|
1344
1374
|
# Accuracy
|
plan_di/plan_di.py
CHANGED
@@ -21,7 +21,8 @@ import seaborn as sns
|
|
21
21
|
def fit(
|
22
22
|
x_train: List[Union[int, float]],
|
23
23
|
# At least two.. and one hot encoded
|
24
|
-
y_train: List[Union[int, float, str]],
|
24
|
+
y_train: List[Union[int, float, str]], # At least two.. and one hot encoded
|
25
|
+
show_training
|
25
26
|
) -> str:
|
26
27
|
|
27
28
|
infoPLAN = """
|
@@ -30,7 +31,7 @@ def fit(
|
|
30
31
|
Args:
|
31
32
|
x_train (list[num]): List of input data.
|
32
33
|
y_train (list[num]): List of y_train. (one hot encoded)
|
33
|
-
|
34
|
+
show_training (bool, str): True, None or 'final'
|
34
35
|
|
35
36
|
Returns:
|
36
37
|
list([num]): (Weight matrices list, train_predictions list, Train_acc).
|
@@ -57,13 +58,14 @@ def fit(
|
|
57
58
|
x_train[0] = x_train[0].ravel()
|
58
59
|
x_train_size = len(x_train[0])
|
59
60
|
|
60
|
-
W = weight_identification(
|
61
|
+
W = pdi.weight_identification(
|
61
62
|
len(layers) - 1, len(class_count), neurons, x_train_size)
|
62
63
|
|
63
64
|
trained_W = [1] * len(W)
|
64
65
|
print(Fore.GREEN + "Train Started with 0 ERROR" + Style.RESET_ALL)
|
65
66
|
start_time = time.time()
|
66
|
-
y = decode_one_hot(y_train)
|
67
|
+
y = pdi.decode_one_hot(y_train)
|
68
|
+
|
67
69
|
for index, inp in enumerate(x_train):
|
68
70
|
uni_start_time = time.time()
|
69
71
|
inp = np.array(inp)
|
@@ -78,15 +80,40 @@ def fit(
|
|
78
80
|
|
79
81
|
for Lindex, Layer in enumerate(layers):
|
80
82
|
|
81
|
-
neural_layer = normalization(neural_layer)
|
83
|
+
neural_layer = pdi.normalization(neural_layer)
|
82
84
|
|
83
85
|
if Layer == 'fex':
|
84
|
-
W[Lindex] = fex(neural_layer, W[Lindex], True, y[index])
|
86
|
+
W[Lindex] = pdi.fex(neural_layer, W[Lindex], True, y[index])
|
85
87
|
|
86
88
|
for i, w in enumerate(W):
|
87
89
|
trained_W[i] = trained_W[i] + w
|
88
90
|
|
89
|
-
|
91
|
+
if show_training == True:
|
92
|
+
|
93
|
+
fig, ax = plt.subplots(1, 10, figsize=(18, 14))
|
94
|
+
|
95
|
+
try:
|
96
|
+
row = x_train[1].shape[0]
|
97
|
+
col = x_train[1].shape[1]
|
98
|
+
except:
|
99
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show.', infoPLAN + Style.RESET_ALL)
|
100
|
+
return 'e'
|
101
|
+
|
102
|
+
for j in range(10):
|
103
|
+
|
104
|
+
mat = trained_W[0][j,:].reshape(row, col)
|
105
|
+
|
106
|
+
ax[j].imshow(mat, interpolation='sinc', cmap='viridis')
|
107
|
+
ax[j].set_aspect('equal')
|
108
|
+
|
109
|
+
ax[j].set_xticks([])
|
110
|
+
ax[j].set_yticks([])
|
111
|
+
ax[j].set_title(f'{j+1}. Neuron')
|
112
|
+
|
113
|
+
|
114
|
+
plt.show()
|
115
|
+
|
116
|
+
W = pdi.weight_identification(
|
90
117
|
len(layers) - 1, len(class_count), neurons, x_train_size)
|
91
118
|
|
92
119
|
uni_end_time = time.time()
|
@@ -105,6 +132,31 @@ def fit(
|
|
105
132
|
|
106
133
|
print('\rTraining: ', index, "/", len(x_train), "\n", end="")
|
107
134
|
|
135
|
+
if show_training == 'final':
|
136
|
+
|
137
|
+
fig, ax = plt.subplots(1, 10, figsize=(18, 14))
|
138
|
+
|
139
|
+
try:
|
140
|
+
row = x_train[1].shape[0]
|
141
|
+
col = x_train[1].shape[1]
|
142
|
+
except:
|
143
|
+
print(Fore.RED + 'ERROR: You try train showing but inputs is raveled. x_train inputs to must be reshape for training_show.', infoPLAN + Style.RESET_ALL)
|
144
|
+
return 'e'
|
145
|
+
|
146
|
+
for j in range(10):
|
147
|
+
|
148
|
+
mat = trained_W[0][j,:].reshape(row, col)
|
149
|
+
|
150
|
+
ax[j].imshow(mat, interpolation='sinc', cmap='viridis')
|
151
|
+
ax[j].set_aspect('equal')
|
152
|
+
|
153
|
+
ax[j].set_xticks([])
|
154
|
+
ax[j].set_yticks([])
|
155
|
+
ax[j].set_title(f'{j+1}. Neuron')
|
156
|
+
|
157
|
+
|
158
|
+
plt.show()
|
159
|
+
|
108
160
|
EndTime = time.time()
|
109
161
|
|
110
162
|
calculating_est = round(EndTime - start_time, 2)
|
@@ -1310,7 +1362,7 @@ def plot_evaluate(y_test, y_preds, acc_list):
|
|
1310
1362
|
axs[0, 1].set_ylim(0, 1) # Y eksenini 0 ile 1 arasında sınırla
|
1311
1363
|
axs[0, 1].set_xlabel('Metrics')
|
1312
1364
|
axs[0, 1].set_ylabel('Score')
|
1313
|
-
axs[0, 1].set_title('Precision, Recall, F1 Score, and Accuracy (
|
1365
|
+
axs[0, 1].set_title('Precision, Recall, F1 Score, and Accuracy (Weighted)')
|
1314
1366
|
axs[0, 1].grid(True, axis='y', linestyle='--', alpha=0.7)
|
1315
1367
|
|
1316
1368
|
# Accuracy
|
@@ -0,0 +1,8 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: pyerualjetwork
|
3
|
+
Version: 2.3.9
|
4
|
+
Summary: show_training parameter added for fit function[True, 'final' or any]. Code improvements
|
5
|
+
Author: Hasan Can Beydili
|
6
|
+
Author-email: tchasancan@gmail.com
|
7
|
+
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
8
|
+
|
@@ -0,0 +1,8 @@
|
|
1
|
+
plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
|
2
|
+
plan_bi/plan_bi.py,sha256=qGk5ukjsDeefW4oEDK4QfJ46rIkLzJitxQ8PhPGBPIA,51828
|
3
|
+
plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
|
4
|
+
plan_di/plan_di.py,sha256=LAAemI6Pjxrx_SV3zdeMfgaPMBLSW5iUjHm9vCqTw6I,49968
|
5
|
+
pyerualjetwork-2.3.9.dist-info/METADATA,sha256=z65Y8v0c26bKCxqe9mQkBjGDKCs4oP1lbcyiUxbuE_4,309
|
6
|
+
pyerualjetwork-2.3.9.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
+
pyerualjetwork-2.3.9.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
+
pyerualjetwork-2.3.9.dist-info/RECORD,,
|
@@ -1,8 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: pyerualjetwork
|
3
|
-
Version: 2.3.7
|
4
|
-
Summary: Weights post process function added: [weight_post_process](optional after training before testing.), new function: manuel_balancer. And scaler_params added for scaled models.
|
5
|
-
Author: Hasan Can Beydili
|
6
|
-
Author-email: tchasancan@gmail.com
|
7
|
-
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
8
|
-
|
@@ -1,8 +0,0 @@
|
|
1
|
-
plan_bi/__init__.py,sha256=kHnuGDOKyMHQqeX49ToUUsdZckh9RPuyADhYw0SrmIo,514
|
2
|
-
plan_bi/plan_bi.py,sha256=ah3ezPLFeeXTSPnejzIxB_nmfTYNY7-80ECKQGVjudE,50579
|
3
|
-
plan_di/__init__.py,sha256=DJzUsYj-tgbeewoGz-K9nfGsKqrRFUxIr_z-NgqySBk,505
|
4
|
-
plan_di/plan_di.py,sha256=L7yqB7xDPxARzM-W05qVZKbrmzPcE8cRV8xlEfFV3i4,47971
|
5
|
-
pyerualjetwork-2.3.7.dist-info/METADATA,sha256=pfb39dXHH3Zj0q6DAN2g2WyX3LV3SljVGl24sHp9ejs,396
|
6
|
-
pyerualjetwork-2.3.7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
-
pyerualjetwork-2.3.7.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
-
pyerualjetwork-2.3.7.dist-info/RECORD,,
|
File without changes
|
File without changes
|