pyerualjetwork 2.3.3__py3-none-any.whl → 2.3.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan_bi/__init__.py CHANGED
@@ -2,4 +2,4 @@
2
2
 
3
3
  # Bu dosya, plan modülünün ana giriş noktasıdır.
4
4
 
5
- from .plan_bi import auto_balancer, normalization, Softmax, Sigmoid, Relu, weight_identification, fex, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, get_pot, synthetic_augmentation, standard_scaler, multiple_evaluate, encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate, manuel_balancer
5
+ from .plan_bi import auto_balancer, normalization, Softmax, Sigmoid, Relu, weight_identification, fex, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, get_pot, synthetic_augmentation, standard_scaler, multiple_evaluate, encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate, manuel_balancer, weight_post_process
plan_bi/plan_bi.py CHANGED
@@ -126,15 +126,28 @@ def fit(
126
126
  layers.append('cat')
127
127
  trained_W.append(np.eye(len(class_count)))
128
128
 
129
- for i in range(len(class_count)):
130
-
131
- for j in range(len(layers)):
129
+ return trained_W
132
130
 
133
- if layers[j] == 'fex':
131
+ def weight_post_process(
132
+ W,
133
+ class_count
134
+ ) -> str:
135
+ """
136
+ Identifies the weights for a neural network model.
137
+
138
+ Args:
139
+ W (list(num)): Trained weight matrix list.
140
+ class_count (int): Class count of model.
141
+
142
+ Returns:
143
+ list([numpy_arrays],[...]): posttrained weight matices of the model. .
144
+ """
145
+
146
+ for i in range(len(class_count)):
134
147
 
135
- trained_W[j][i,:] = normalization(trained_W[j][i,:])
148
+ W[0][i,:] = normalization(W[0][i,:])
136
149
 
137
- return trained_W
150
+ return W
138
151
 
139
152
  # FUNCTIONS -----
140
153
 
plan_di/__init__.py CHANGED
@@ -2,4 +2,4 @@
2
2
 
3
3
  # Bu dosya, plan modülünün ana giriş noktasıdır.
4
4
 
5
- from .plan_di import auto_balancer, normalization, Softmax, Sigmoid, Relu, weight_identification, fex, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation, standard_scaler, multiple_evaluate, encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate, manuel_balancer
5
+ from .plan_di import auto_balancer, normalization, Softmax, Sigmoid, Relu, weight_identification, fex, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation, standard_scaler, multiple_evaluate, encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate, manuel_balancer, weight_post_process
plan_di/plan_di.py CHANGED
@@ -122,7 +122,7 @@ def fit(
122
122
 
123
123
  layers.append('cat')
124
124
  trained_W.append(np.eye(len(class_count)))
125
-
125
+
126
126
  for i in range(len(class_count)):
127
127
 
128
128
  for j in range(len(layers)):
@@ -131,11 +131,30 @@ def fit(
131
131
 
132
132
  trained_W[j][i,:] = normalization(trained_W[j][i,:])
133
133
 
134
-
135
134
  return trained_W
136
135
 
137
136
  # FUNCTIONS -----
138
137
 
138
+ def weight_post_process(
139
+ W,
140
+ class_count
141
+ ) -> str:
142
+ """
143
+ Identifies the weights for a neural network model.
144
+
145
+ Args:
146
+ W (list(num)): Trained weight matrix list.
147
+ class_count (int): Class count of model.
148
+
149
+ Returns:
150
+ list([numpy_arrays],[...]): posttrained weight matices of the model. .
151
+ """
152
+
153
+ for i in range(len(class_count)):
154
+
155
+ W[0][i,:] = normalization(W[0][i,:])
156
+
157
+ return W
139
158
 
140
159
  def weight_identification(
141
160
  layer_count, # int: Number of layers in the neural network.
@@ -0,0 +1,8 @@
1
+ Metadata-Version: 2.1
2
+ Name: pyerualjetwork
3
+ Version: 2.3.4
4
+ Summary: Weights post process function added: [weight_post_process](optional after training before testing.), new function: manuel_balancer. And scaler_params added for scaled models.
5
+ Author: Hasan Can Beydili
6
+ Author-email: tchasancan@gmail.com
7
+ Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
+
@@ -0,0 +1,8 @@
1
+ plan_bi/__init__.py,sha256=qY5Yz9iTpCDCzDANQEGCwvGXZkhdd6ang_2flxhkfvo,513
2
+ plan_bi/plan_bi.py,sha256=THIWLSa3mYN0U5sbFnUZL6e7ui21irPDYAwxMfRm-Lk,50578
3
+ plan_di/__init__.py,sha256=1vlfNLGMYLk2TZEXX8tXZFAAq6Tuj7AtA-dm9qJL5og,504
4
+ plan_di/plan_di.py,sha256=aroAMxYc-gt9g2V1S-2mkomNtmM84Nwa0TjUTDwWJ24,48183
5
+ pyerualjetwork-2.3.4.dist-info/METADATA,sha256=n6FWEgXUUt4LAx5-j3WoFfNA8zlJWHPsmAQ0BVqJb2E,396
6
+ pyerualjetwork-2.3.4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
+ pyerualjetwork-2.3.4.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
+ pyerualjetwork-2.3.4.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: pyerualjetwork
3
- Version: 2.3.3
4
- Summary: Weights now noramlized, new function: manuel_balancer. And scaler_params added for scaled models.
5
- Author: Hasan Can Beydili
6
- Author-email: tchasancan@gmail.com
7
- Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
-
@@ -1,8 +0,0 @@
1
- plan_bi/__init__.py,sha256=m84PX8yNU6pVlQNyWOqamkQdx_-_aPFsfvtwEnC8U_w,492
2
- plan_bi/plan_bi.py,sha256=LRzft24OU7UIqtOKnuMnJkVxzFxZPEupec7I5zgGLGc,50303
3
- plan_di/__init__.py,sha256=cp43HHfPlIYVGFULVoiEwjFE8paMHCAgYLSic355gqs,483
4
- plan_di/plan_di.py,sha256=p_MTjHmyht1hc_9EfUx64bpuurYR706vfP_K1wRoRdA,47697
5
- pyerualjetwork-2.3.3.dist-info/METADATA,sha256=R9aTGNyJ4Nd8RIoIgKx78jy9XbxFkn1lZLa6EABmLug,319
6
- pyerualjetwork-2.3.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
- pyerualjetwork-2.3.3.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
- pyerualjetwork-2.3.3.dist-info/RECORD,,