pyerualjetwork 2.3.1__py3-none-any.whl → 2.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan_bi/plan_bi.py CHANGED
@@ -754,7 +754,7 @@ def predict_model_ssd(Input, model_name, model_path):
754
754
 
755
755
  if scaler_params != None:
756
756
 
757
- Input = standard_scaler(Input, None, scaler_params)
757
+ Input = standard_scaler(None, Input, scaler_params)
758
758
 
759
759
  layers = ['fex','cat']
760
760
 
@@ -798,7 +798,7 @@ def predict_model_ram(Input, activation_potential, scaler_params, W):
798
798
  """
799
799
  if scaler_params != None:
800
800
 
801
- Input = standard_scaler(Input, None, scaler_params)
801
+ Input = standard_scaler(None, Input, scaler_params)
802
802
 
803
803
  layers = ['fex','cat']
804
804
 
@@ -943,22 +943,28 @@ def standard_scaler(x_train, x_test, scaler_params=None):
943
943
  """
944
944
  try:
945
945
 
946
- if scaler_params == None:
946
+ if scaler_params == None and x_test != None:
947
+
947
948
  mean = np.mean(x_train, axis=0)
948
949
  std = np.std(x_train, axis=0)
949
- scaler_params = [mean, std]
950
-
951
- if x_test == None:
952
-
953
- train_data_scaled = (x_train - mean) / std
954
- return scaler_params, train_data_scaled
955
-
956
- elif scaler_params == None:
957
950
  train_data_scaled = (x_train - mean) / std
958
951
  test_data_scaled = (x_test - mean) / std
952
+
953
+ scaler_params = [mean, std]
954
+
959
955
  return scaler_params, train_data_scaled, test_data_scaled
956
+
957
+ if scaler_params == None and x_test == None:
958
+
959
+ mean = np.mean(x_train, axis=0)
960
+ std = np.std(x_train, axis=0)
961
+ train_data_scaled = (x_train - mean) / std
960
962
 
961
- elif scaler_params != None:
963
+ scaler_params = [mean, std]
964
+
965
+ return scaler_params, train_data_scaled
966
+
967
+ if scaler_params != None:
962
968
  test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
963
969
  return test_data_scaled
964
970
 
@@ -966,7 +972,6 @@ def standard_scaler(x_train, x_test, scaler_params=None):
966
972
  print(
967
973
  Fore.RED + "ERROR: x_train and x_test must be list[numpyarray] from standard_scaler" + info_standard_scaler)
968
974
 
969
-
970
975
  def encode_one_hot(y_train, y_test):
971
976
  info_one_hot_encode = """
972
977
  Performs one-hot encoding on y_train and y_test data..
plan_di/plan_di.py CHANGED
@@ -733,7 +733,7 @@ def predict_model_ssd(Input, model_name, model_path):
733
733
 
734
734
  if scaler_params != None:
735
735
 
736
- Input = standard_scaler(Input, None, scaler_params)
736
+ Input = standard_scaler(None, Input, scaler_params)
737
737
 
738
738
  layers = ['fex', 'cat']
739
739
 
@@ -778,7 +778,7 @@ def predict_model_ram(Input, scaler_params, W):
778
778
 
779
779
  if scaler_params != None:
780
780
 
781
- Input = standard_scaler(Input, None, scaler_params)
781
+ Input = standard_scaler(None, Input, scaler_params)
782
782
 
783
783
  layers = ['fex', 'cat']
784
784
 
@@ -923,22 +923,28 @@ def standard_scaler(x_train, x_test, scaler_params=None):
923
923
  """
924
924
  try:
925
925
 
926
- if scaler_params == None:
926
+ if scaler_params == None and x_test != None:
927
+
927
928
  mean = np.mean(x_train, axis=0)
928
929
  std = np.std(x_train, axis=0)
929
- scaler_params = [mean, std]
930
-
931
- if x_test == None:
932
-
933
- train_data_scaled = (x_train - mean) / std
934
- return scaler_params, train_data_scaled
935
-
936
- elif scaler_params == None:
937
930
  train_data_scaled = (x_train - mean) / std
938
931
  test_data_scaled = (x_test - mean) / std
932
+
933
+ scaler_params = [mean, std]
934
+
939
935
  return scaler_params, train_data_scaled, test_data_scaled
936
+
937
+ if scaler_params == None and x_test == None:
938
+
939
+ mean = np.mean(x_train, axis=0)
940
+ std = np.std(x_train, axis=0)
941
+ train_data_scaled = (x_train - mean) / std
940
942
 
941
- elif scaler_params != None:
943
+ scaler_params = [mean, std]
944
+
945
+ return scaler_params, train_data_scaled
946
+
947
+ if scaler_params != None:
942
948
  test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
943
949
  return test_data_scaled
944
950
 
@@ -946,7 +952,6 @@ def standard_scaler(x_train, x_test, scaler_params=None):
946
952
  print(
947
953
  Fore.RED + "ERROR: x_train and x_test must be list[numpyarray] from standard_scaler" + info_standard_scaler)
948
954
 
949
-
950
955
  def encode_one_hot(y_train, y_test):
951
956
  info_one_hot_encode = """
952
957
  Performs one-hot encoding on y_train and y_test data..
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.3.1
3
+ Version: 2.3.3
4
4
  Summary: Weights now noramlized, new function: manuel_balancer. And scaler_params added for scaled models.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -0,0 +1,8 @@
1
+ plan_bi/__init__.py,sha256=m84PX8yNU6pVlQNyWOqamkQdx_-_aPFsfvtwEnC8U_w,492
2
+ plan_bi/plan_bi.py,sha256=LRzft24OU7UIqtOKnuMnJkVxzFxZPEupec7I5zgGLGc,50303
3
+ plan_di/__init__.py,sha256=cp43HHfPlIYVGFULVoiEwjFE8paMHCAgYLSic355gqs,483
4
+ plan_di/plan_di.py,sha256=p_MTjHmyht1hc_9EfUx64bpuurYR706vfP_K1wRoRdA,47697
5
+ pyerualjetwork-2.3.3.dist-info/METADATA,sha256=R9aTGNyJ4Nd8RIoIgKx78jy9XbxFkn1lZLa6EABmLug,319
6
+ pyerualjetwork-2.3.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
+ pyerualjetwork-2.3.3.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
+ pyerualjetwork-2.3.3.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- plan_bi/__init__.py,sha256=m84PX8yNU6pVlQNyWOqamkQdx_-_aPFsfvtwEnC8U_w,492
2
- plan_bi/plan_bi.py,sha256=eoEsptGRV8pqgZSCQy-GBfq3l5pFll11_DVGYfFq2Z0,50046
3
- plan_di/__init__.py,sha256=cp43HHfPlIYVGFULVoiEwjFE8paMHCAgYLSic355gqs,483
4
- plan_di/plan_di.py,sha256=bYwyDuFVXzhhHS-o7Rq7qkMlV5fV3I-eC1cTtN71cMA,47440
5
- pyerualjetwork-2.3.1.dist-info/METADATA,sha256=Q1YP0vc2ZnIgySOdMQYTvmL_a-4Lwr0sZhPBd4OUzFU,319
6
- pyerualjetwork-2.3.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
- pyerualjetwork-2.3.1.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
- pyerualjetwork-2.3.1.dist-info/RECORD,,