pyerualjetwork 2.3.0__py3-none-any.whl → 2.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan_bi/plan_bi.py +17 -12
- plan_di/plan_di.py +17 -12
- {pyerualjetwork-2.3.0.dist-info → pyerualjetwork-2.3.2.dist-info}/METADATA +1 -1
- pyerualjetwork-2.3.2.dist-info/RECORD +8 -0
- pyerualjetwork-2.3.0.dist-info/RECORD +0 -8
- {pyerualjetwork-2.3.0.dist-info → pyerualjetwork-2.3.2.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.3.0.dist-info → pyerualjetwork-2.3.2.dist-info}/top_level.txt +0 -0
plan_bi/plan_bi.py
CHANGED
@@ -941,24 +941,30 @@ def standard_scaler(x_train, x_test, scaler_params=None):
|
|
941
941
|
tuple
|
942
942
|
Standardized training and test datasets
|
943
943
|
"""
|
944
|
-
|
944
|
+
try:
|
945
945
|
|
946
|
-
if scaler_params == None:
|
946
|
+
if scaler_params == None and x_test != None:
|
947
|
+
|
947
948
|
mean = np.mean(x_train, axis=0)
|
948
949
|
std = np.std(x_train, axis=0)
|
949
|
-
scaler_params = [mean, std]
|
950
|
-
|
951
|
-
if x_test == None:
|
952
|
-
|
953
|
-
train_data_scaled = (x_train - mean) / std
|
954
|
-
return scaler_params, train_data_scaled
|
955
|
-
|
956
|
-
elif scaler_params == None:
|
957
950
|
train_data_scaled = (x_train - mean) / std
|
958
951
|
test_data_scaled = (x_test - mean) / std
|
952
|
+
|
953
|
+
scaler_params = [mean, std]
|
954
|
+
|
959
955
|
return scaler_params, train_data_scaled, test_data_scaled
|
956
|
+
|
957
|
+
if scaler_params == None and x_test == None:
|
958
|
+
|
959
|
+
mean = np.mean(x_train, axis=0)
|
960
|
+
std = np.std(x_train, axis=0)
|
961
|
+
train_data_scaled = (x_train - mean) / std
|
960
962
|
|
961
|
-
|
963
|
+
scaler_params = [mean, std]
|
964
|
+
|
965
|
+
return scaler_params, train_data_scaled
|
966
|
+
|
967
|
+
if scaler_params != None:
|
962
968
|
test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
|
963
969
|
return test_data_scaled
|
964
970
|
|
@@ -966,7 +972,6 @@ def standard_scaler(x_train, x_test, scaler_params=None):
|
|
966
972
|
print(
|
967
973
|
Fore.RED + "ERROR: x_train and x_test must be list[numpyarray] from standard_scaler" + info_standard_scaler)
|
968
974
|
|
969
|
-
|
970
975
|
def encode_one_hot(y_train, y_test):
|
971
976
|
info_one_hot_encode = """
|
972
977
|
Performs one-hot encoding on y_train and y_test data..
|
plan_di/plan_di.py
CHANGED
@@ -921,24 +921,30 @@ def standard_scaler(x_train, x_test, scaler_params=None):
|
|
921
921
|
tuple
|
922
922
|
Standardized training and test datasets
|
923
923
|
"""
|
924
|
-
|
924
|
+
try:
|
925
925
|
|
926
|
-
if scaler_params == None:
|
926
|
+
if scaler_params == None and x_test != None:
|
927
|
+
|
927
928
|
mean = np.mean(x_train, axis=0)
|
928
929
|
std = np.std(x_train, axis=0)
|
929
|
-
scaler_params = [mean, std]
|
930
|
-
|
931
|
-
if x_test == None:
|
932
|
-
|
933
|
-
train_data_scaled = (x_train - mean) / std
|
934
|
-
return scaler_params, train_data_scaled
|
935
|
-
|
936
|
-
elif scaler_params == None:
|
937
930
|
train_data_scaled = (x_train - mean) / std
|
938
931
|
test_data_scaled = (x_test - mean) / std
|
932
|
+
|
933
|
+
scaler_params = [mean, std]
|
934
|
+
|
939
935
|
return scaler_params, train_data_scaled, test_data_scaled
|
936
|
+
|
937
|
+
if scaler_params == None and x_test == None:
|
938
|
+
|
939
|
+
mean = np.mean(x_train, axis=0)
|
940
|
+
std = np.std(x_train, axis=0)
|
941
|
+
train_data_scaled = (x_train - mean) / std
|
940
942
|
|
941
|
-
|
943
|
+
scaler_params = [mean, std]
|
944
|
+
|
945
|
+
return scaler_params, train_data_scaled
|
946
|
+
|
947
|
+
if scaler_params != None:
|
942
948
|
test_data_scaled = (x_test - scaler_params[0]) / scaler_params[1]
|
943
949
|
return test_data_scaled
|
944
950
|
|
@@ -946,7 +952,6 @@ def standard_scaler(x_train, x_test, scaler_params=None):
|
|
946
952
|
print(
|
947
953
|
Fore.RED + "ERROR: x_train and x_test must be list[numpyarray] from standard_scaler" + info_standard_scaler)
|
948
954
|
|
949
|
-
|
950
955
|
def encode_one_hot(y_train, y_test):
|
951
956
|
info_one_hot_encode = """
|
952
957
|
Performs one-hot encoding on y_train and y_test data..
|
@@ -0,0 +1,8 @@
|
|
1
|
+
plan_bi/__init__.py,sha256=m84PX8yNU6pVlQNyWOqamkQdx_-_aPFsfvtwEnC8U_w,492
|
2
|
+
plan_bi/plan_bi.py,sha256=152pMea3oT9LxXPGDdw90fOnokjCdeefiAhtaR_NK-U,50303
|
3
|
+
plan_di/__init__.py,sha256=cp43HHfPlIYVGFULVoiEwjFE8paMHCAgYLSic355gqs,483
|
4
|
+
plan_di/plan_di.py,sha256=-qcREFFgA6ljmsvDVKGxkqZyaisZ3bpQwbAYimnjQzc,47697
|
5
|
+
pyerualjetwork-2.3.2.dist-info/METADATA,sha256=PN9wK2v5cBLbg2T04tARwyxM9SF9P1XpcUgiwmLFa2c,319
|
6
|
+
pyerualjetwork-2.3.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
+
pyerualjetwork-2.3.2.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
+
pyerualjetwork-2.3.2.dist-info/RECORD,,
|
@@ -1,8 +0,0 @@
|
|
1
|
-
plan_bi/__init__.py,sha256=m84PX8yNU6pVlQNyWOqamkQdx_-_aPFsfvtwEnC8U_w,492
|
2
|
-
plan_bi/plan_bi.py,sha256=UI9e8BYt8olgRK3nUcRQcGX4wXwqnO5p6gzbvj89JMA,50050
|
3
|
-
plan_di/__init__.py,sha256=cp43HHfPlIYVGFULVoiEwjFE8paMHCAgYLSic355gqs,483
|
4
|
-
plan_di/plan_di.py,sha256=XD96Z8ZNsi6jwUAEFPcXQbbzc3U6w1cR2K96g_TpBDc,47444
|
5
|
-
pyerualjetwork-2.3.0.dist-info/METADATA,sha256=L-XSQ9ceYiBtKgnsdi0MsDSRCPewDgRZ6ueRi703sTc,319
|
6
|
-
pyerualjetwork-2.3.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
-
pyerualjetwork-2.3.0.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
-
pyerualjetwork-2.3.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|