pyerualjetwork 2.2.6__py3-none-any.whl → 2.2.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan_bi/plan_bi.py +4 -6
- plan_di/plan_di.py +8 -12
- {pyerualjetwork-2.2.6.dist-info → pyerualjetwork-2.2.8.dist-info}/METADATA +1 -1
- pyerualjetwork-2.2.8.dist-info/RECORD +8 -0
- pyerualjetwork-2.2.6.dist-info/RECORD +0 -8
- {pyerualjetwork-2.2.6.dist-info → pyerualjetwork-2.2.8.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.2.6.dist-info → pyerualjetwork-2.2.8.dist-info}/top_level.txt +0 -0
plan_bi/plan_bi.py
CHANGED
@@ -52,7 +52,7 @@ def fit(
|
|
52
52
|
y_train = [tuple(sublist) for sublist in y_train]
|
53
53
|
|
54
54
|
neurons = [len(class_count),len(class_count)]
|
55
|
-
layers = ['fex'
|
55
|
+
layers = ['fex']
|
56
56
|
|
57
57
|
x_train[0] = np.array(x_train[0])
|
58
58
|
x_train[0] = x_train[0].ravel()
|
@@ -84,8 +84,7 @@ def fit(
|
|
84
84
|
|
85
85
|
|
86
86
|
for i, w in enumerate(W):
|
87
|
-
|
88
|
-
trained_W[i] = trained_W[i] + w
|
87
|
+
trained_W[i] = trained_W[i] + w
|
89
88
|
|
90
89
|
|
91
90
|
W = weight_identification(len(layers) - 1, len(class_count), neurons, x_train_size)
|
@@ -124,8 +123,9 @@ def fit(
|
|
124
123
|
print('Total training time(h): ',calculating_est/3600)
|
125
124
|
|
126
125
|
|
126
|
+
layers.append('cat')
|
127
|
+
trained_W.append(np.eye(len(class_count)))
|
127
128
|
|
128
|
-
|
129
129
|
return trained_W
|
130
130
|
|
131
131
|
# FUNCTIONS -----
|
@@ -156,8 +156,6 @@ def weight_identification(
|
|
156
156
|
ws = layer_count - 1
|
157
157
|
for w in range(ws):
|
158
158
|
W[w + 1] = np.ones((neurons[w + 1],neurons[w]))
|
159
|
-
W[layer_count] = np.ones((class_count,neurons[layer_count - 1]))
|
160
|
-
W[len(W) - 1] = np.eye(class_count)
|
161
159
|
|
162
160
|
return W
|
163
161
|
|
plan_di/plan_di.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1
1
|
|
2
|
-
import time
|
3
|
-
from colorama import Fore
|
4
2
|
"""
|
5
3
|
Created on Thu Jun 12 00:00:00 2024
|
6
4
|
|
@@ -53,7 +51,7 @@ def fit(
|
|
53
51
|
y_train = [tuple(sublist) for sublist in y_train]
|
54
52
|
|
55
53
|
neurons = [len(class_count), len(class_count)]
|
56
|
-
layers = ['fex'
|
54
|
+
layers = ['fex']
|
57
55
|
|
58
56
|
x_train[0] = np.array(x_train[0])
|
59
57
|
x_train[0] = x_train[0].ravel()
|
@@ -64,13 +62,13 @@ def fit(
|
|
64
62
|
|
65
63
|
trained_W = [1] * len(W)
|
66
64
|
print(Fore.GREEN + "Train Started with 0 ERROR" + Style.RESET_ALL)
|
67
|
-
y = decode_one_hot(y_train)
|
68
65
|
start_time = time.time()
|
66
|
+
y = decode_one_hot(y_train)
|
69
67
|
for index, inp in enumerate(x_train):
|
70
68
|
uni_start_time = time.time()
|
71
69
|
inp = np.array(inp)
|
72
70
|
inp = inp.ravel()
|
73
|
-
|
71
|
+
|
74
72
|
if x_train_size != len(inp):
|
75
73
|
print(Fore.RED + "ERROR304: All input matrices or vectors in x_train list, must be same size. from: fit",
|
76
74
|
infoPLAN + Style.RESET_ALL)
|
@@ -86,7 +84,6 @@ def fit(
|
|
86
84
|
W[Lindex] = fex(neural_layer, W[Lindex], True, y[index])
|
87
85
|
|
88
86
|
for i, w in enumerate(W):
|
89
|
-
if i!= len(W) - 1:
|
90
87
|
trained_W[i] = trained_W[i] + w
|
91
88
|
|
92
89
|
W = weight_identification(
|
@@ -122,6 +119,9 @@ def fit(
|
|
122
119
|
|
123
120
|
elif calculating_est > 3600:
|
124
121
|
print('Total training time(h): ', calculating_est/3600)
|
122
|
+
|
123
|
+
layers.append('cat')
|
124
|
+
trained_W.append(np.eye(len(class_count)))
|
125
125
|
|
126
126
|
return trained_W
|
127
127
|
|
@@ -153,9 +153,7 @@ def weight_identification(
|
|
153
153
|
ws = layer_count - 1
|
154
154
|
for w in range(ws):
|
155
155
|
W[w + 1] = np.ones((neurons[w + 1], neurons[w]))
|
156
|
-
|
157
|
-
W[len(W) - 1] = np.eye(class_count)
|
158
|
-
|
156
|
+
|
159
157
|
return W
|
160
158
|
|
161
159
|
|
@@ -521,7 +519,6 @@ def save_model(model_name,
|
|
521
519
|
model_name (str): Name of the model.
|
522
520
|
model_type (str): Type of the model.(options: PLAN)
|
523
521
|
class_count (int): Number of classes.
|
524
|
-
activation_potential (float): Activation potential.
|
525
522
|
test_acc (float): Test accuracy of the model.
|
526
523
|
weights_type (str): Type of weights to save (options: 'txt', 'npy', 'mat').
|
527
524
|
WeightFormat (str): Format of the weights (options: 'd', 'f', 'raw').
|
@@ -1316,5 +1313,4 @@ def get_preds():
|
|
1316
1313
|
|
1317
1314
|
def get_acc():
|
1318
1315
|
|
1319
|
-
return 2
|
1320
|
-
|
1316
|
+
return 2
|
@@ -0,0 +1,8 @@
|
|
1
|
+
plan_bi/__init__.py,sha256=rzDe7yWvNlwDVE6xSw8Qk51itcxT6EDBj7iiOeycxMw,475
|
2
|
+
plan_bi/plan_bi.py,sha256=n0OdGsUsbmUlP8RUw4HBpfFe8ONQo3o3qQulHyg2Lr0,45371
|
3
|
+
plan_di/__init__.py,sha256=Omxc07PXPQZOrXBD3PJQT6sPdni6NMykyiQgKVL_IZ0,466
|
4
|
+
plan_di/plan_di.py,sha256=EkEdGsC-QW2JFqIx9C59XbFzWnc9zCL5DB3eGa9208k,42742
|
5
|
+
pyerualjetwork-2.2.8.dist-info/METADATA,sha256=YlFE--h2sLunB0pGGCvUqmlPtnYdb9mVYU_GsW7N6JY,325
|
6
|
+
pyerualjetwork-2.2.8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
+
pyerualjetwork-2.2.8.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
+
pyerualjetwork-2.2.8.dist-info/RECORD,,
|
@@ -1,8 +0,0 @@
|
|
1
|
-
plan_bi/__init__.py,sha256=rzDe7yWvNlwDVE6xSw8Qk51itcxT6EDBj7iiOeycxMw,475
|
2
|
-
plan_bi/plan_bi.py,sha256=hQtCv3lh9a415CXtX1qL4aa_75noFPNoeOGnCeKMzUY,45452
|
3
|
-
plan_di/__init__.py,sha256=Omxc07PXPQZOrXBD3PJQT6sPdni6NMykyiQgKVL_IZ0,466
|
4
|
-
plan_di/plan_di.py,sha256=NGYH6EYfUL-f0QEWzA9LNJ-DdoM1fBeT9PaEJYyon4c,42907
|
5
|
-
pyerualjetwork-2.2.6.dist-info/METADATA,sha256=8p9SuPZRni3zTkdrWsdMpnwov8pFvkP7e_x-hfLUiNE,325
|
6
|
-
pyerualjetwork-2.2.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
-
pyerualjetwork-2.2.6.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
-
pyerualjetwork-2.2.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|