pyerualjetwork 2.2.2__py3-none-any.whl → 2.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan_di/__init__.py +1 -1
- plan_di/plan_di.py +14 -0
- pyerualjetwork-2.2.3.dist-info/METADATA +8 -0
- pyerualjetwork-2.2.3.dist-info/RECORD +8 -0
- pyerualjetwork-2.2.2.dist-info/METADATA +0 -8
- pyerualjetwork-2.2.2.dist-info/RECORD +0 -8
- {pyerualjetwork-2.2.2.dist-info → pyerualjetwork-2.2.3.dist-info}/WHEEL +0 -0
- {pyerualjetwork-2.2.2.dist-info → pyerualjetwork-2.2.3.dist-info}/top_level.txt +0 -0
plan_di/__init__.py
CHANGED
@@ -2,4 +2,4 @@
|
|
2
2
|
|
3
3
|
# Bu dosya, plan modülünün ana giriş noktasıdır.
|
4
4
|
|
5
|
-
from .plan_di import auto_balancer, normalization, Softmax, Sigmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex,
|
5
|
+
from .plan_di import auto_balancer, normalization, Softmax, Sigmoid, Relu, synaptic_pruning, synaptic_dividing, weight_identification, fex, fit, evaluate, save_model, load_model, predict_model_ssd, predict_model_ram, get_weights, get_df, get_preds, get_acc, synthetic_augmentation, standard_scaler, multiple_evaluate, encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate
|
plan_di/plan_di.py
CHANGED
@@ -59,6 +59,7 @@ def fit(
|
|
59
59
|
W = weight_identification(
|
60
60
|
len(layers) - 1, len(class_count), neurons, x_train_size)
|
61
61
|
|
62
|
+
#Divides, Piece = synaptic_dividing(len(class_count), W)
|
62
63
|
trained_W = [1] * len(W)
|
63
64
|
print(Fore.GREEN + "Train Started with 0 ERROR" + Style.RESET_ALL)
|
64
65
|
start_time = time.time()
|
@@ -71,7 +72,20 @@ def fit(
|
|
71
72
|
print(Fore.RED + "ERROR304: All input matrices or vectors in x_train list, must be same size. from: fit",
|
72
73
|
infoPLAN + Style.RESET_ALL)
|
73
74
|
return 'e'
|
75
|
+
"""
|
76
|
+
for Ulindex, Ul in enumerate(class_count):
|
77
|
+
|
78
|
+
if Ul == y_train[index]:
|
79
|
+
for Windex, w in enumerate(W):
|
80
|
+
for i, ul in enumerate(Ul):
|
81
|
+
if ul == 1.0:
|
82
|
+
k = i
|
74
83
|
|
84
|
+
cs = Divides[int(k)][Windex][0]
|
85
|
+
|
86
|
+
W[Windex] = synaptic_pruning(w, cs, 'row', int(
|
87
|
+
k), len(class_count), Piece[Windex], True)
|
88
|
+
"""
|
75
89
|
neural_layer = inp
|
76
90
|
|
77
91
|
for Lindex, Layer in enumerate(layers):
|
@@ -0,0 +1,8 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: pyerualjetwork
|
3
|
+
Version: 2.2.3
|
4
|
+
Summary: Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
|
5
|
+
Author: Hasan Can Beydili
|
6
|
+
Author-email: tchasancan@gmail.com
|
7
|
+
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
8
|
+
|
@@ -0,0 +1,8 @@
|
|
1
|
+
plan_bi/__init__.py,sha256=82q8bWRYqzwMrFuViQzBg7P19i6EqdV7VYBVxuQ-LV0,517
|
2
|
+
plan_bi/plan_bi.py,sha256=fNJK07y9JDVLU0GORD_RHKBjTUnVzb5ciYcQFpyiSvc,50490
|
3
|
+
plan_di/__init__.py,sha256=5BCC6Wut4J5lTadds5q3P10p01FKPD4pEeNwzkpL6qo,503
|
4
|
+
plan_di/plan_di.py,sha256=mzTfunaEqbgQtBOVtd9tCRXT5ujupHwhilwWuk6fVGg,46270
|
5
|
+
pyerualjetwork-2.2.3.dist-info/METADATA,sha256=iltDA-AwbGfBBSYtL3Tpxw8YMxUTHlzibrvPxZ0xPLA,325
|
6
|
+
pyerualjetwork-2.2.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
+
pyerualjetwork-2.2.3.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
+
pyerualjetwork-2.2.3.dist-info/RECORD,,
|
@@ -1,8 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: pyerualjetwork
|
3
|
-
Version: 2.2.2
|
4
|
-
Summary: 8 new functions: multiple_evaluate , encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate And Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
|
5
|
-
Author: Hasan Can Beydili
|
6
|
-
Author-email: tchasancan@gmail.com
|
7
|
-
Keywords: model evaluation,classifcation,pruning learning artficial neural networks
|
8
|
-
|
@@ -1,8 +0,0 @@
|
|
1
|
-
plan_bi/__init__.py,sha256=82q8bWRYqzwMrFuViQzBg7P19i6EqdV7VYBVxuQ-LV0,517
|
2
|
-
plan_bi/plan_bi.py,sha256=fNJK07y9JDVLU0GORD_RHKBjTUnVzb5ciYcQFpyiSvc,50490
|
3
|
-
plan_di/__init__.py,sha256=Eut7tVtvQaczEejYyqfQ4eqF71j69josJcY91WN_dkk,508
|
4
|
-
plan_di/plan_di.py,sha256=gPuOHLSetS7axNXrwM7J5p5E1bdmQNlmIY6NJFFfEuc,45743
|
5
|
-
pyerualjetwork-2.2.2.dist-info/METADATA,sha256=d7TAOPusH1DUCSZW6W2zgsfiwpWKoEER3M3YZU6H2k0,457
|
6
|
-
pyerualjetwork-2.2.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
-
pyerualjetwork-2.2.2.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
|
8
|
-
pyerualjetwork-2.2.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|