pyerualjetwork 2.2.0__py3-none-any.whl → 2.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan_bi/plan_bi.py CHANGED
@@ -95,8 +95,6 @@ def fit(
95
95
 
96
96
  if Layer == 'fex':
97
97
  W[Lindex] = fex(neural_layer, W[Lindex], activation_potential, Piece[Windex], True, y)
98
- elif Layer == 'cat':
99
- W[Lindex] = cat(neural_layer, W[Lindex], True, y)
100
98
 
101
99
 
102
100
  for i, w in enumerate(W):
@@ -172,6 +170,8 @@ def weight_identification(
172
170
  for w in range(ws):
173
171
  W[w + 1] = np.ones((neurons[w + 1],neurons[w]))
174
172
  W[layer_count] = np.ones((class_count,neurons[layer_count - 1]))
173
+ W[len(W) - 1] = np.eye(class_count)
174
+
175
175
  return W
176
176
 
177
177
  def synaptic_pruning(
@@ -471,7 +471,7 @@ def evaluate(
471
471
  if layers[index] == 'fex':
472
472
  neural_layer = fex(neural_layer, W[index], activation_potential, None, False, None)
473
473
  if layers[index] == 'cat':
474
- neural_layer = cat(neural_layer, W[index], False, None)
474
+ neural_layer = np.dot(W[index], neural_layer)
475
475
 
476
476
  for i, w in enumerate(Wc):
477
477
  W[i] = np.copy(w)
@@ -594,7 +594,7 @@ def multiple_evaluate(
594
594
  if layers[index] == 'fex':
595
595
  neural_layer = fex(neural_layer, W[index], activation_potentials[m], None, False, None)
596
596
  if layers[index] == 'cat':
597
- neural_layer = cat(neural_layer, W[index], False, None)
597
+ neural_layer = np.dot(W[index], neural_layer)
598
598
 
599
599
  output_layer += neural_layer
600
600
 
@@ -914,7 +914,7 @@ def predict_model_ssd(Input, model_name, model_path):
914
914
  if layers[index] == 'fex':
915
915
  neural_layer = fex(neural_layer, W[index], activation_potential, None, False, None)
916
916
  if layers[index] == 'cat':
917
- neural_layer = cat(neural_layer, W[index], False, None)
917
+ neural_layer = np.dot(W[index], neural_layer)
918
918
  except:
919
919
  print(Fore.RED + "ERROR: The input was probably entered incorrectly. from: predict_model_ssd" + infopredict_model_ssd + Style.RESET_ALL)
920
920
  return 'e'
@@ -958,7 +958,7 @@ def predict_model_ram(Input, activation_potential, scaler, W):
958
958
  if layers[index] == 'fex':
959
959
  neural_layer = fex(neural_layer, W[index], activation_potential, None, False, None)
960
960
  if layers[index] == 'cat':
961
- neural_layer = cat(neural_layer, W[index], False, None)
961
+ neural_layer = np.dot(W[index], neural_layer)
962
962
 
963
963
  except:
964
964
  print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." + infopredict_model_ram + Style.RESET_ALL)
plan_di/plan_di.py CHANGED
@@ -58,6 +58,7 @@ def fit(
58
58
 
59
59
  W = weight_identification(
60
60
  len(layers) - 1, len(class_count), neurons, x_train_size)
61
+
61
62
  Divides, Piece = synaptic_dividing(len(class_count), W)
62
63
  trained_W = [1] * len(W)
63
64
  print(Fore.GREEN + "Train Started with 0 ERROR" + Style.RESET_ALL)
@@ -94,8 +95,6 @@ def fit(
94
95
  y = np.argmax(y_train[index])
95
96
  if Layer == 'fex':
96
97
  W[Lindex] = fex(neural_layer, W[Lindex], True, y)
97
- elif Layer == 'cat':
98
- W[Lindex] = cat(neural_layer, W[Lindex], True, y)
99
98
 
100
99
  for i, w in enumerate(W):
101
100
  trained_W[i] = trained_W[i] + w
@@ -165,6 +164,8 @@ def weight_identification(
165
164
  for w in range(ws):
166
165
  W[w + 1] = np.ones((neurons[w + 1], neurons[w]))
167
166
  W[layer_count] = np.ones((class_count, neurons[layer_count - 1]))
167
+ W[len(W) - 1] = np.eye(class_count)
168
+
168
169
  return W
169
170
 
170
171
 
@@ -302,37 +303,6 @@ def fex(
302
303
  return neural_layer
303
304
 
304
305
 
305
- def cat(
306
- Input, # list[num]: Input data.
307
- w, # list[num]: Weight matrix of the neural network.
308
- # (bool): Flag indicating if the function is called during training (True or False).
309
- is_training,
310
- Class
311
- ) -> tuple:
312
- """
313
- Applies categorization process to the input data using synaptic pruning if specified.
314
-
315
- Args:
316
- Input (list[num]): Input data.
317
- w (list[num]): Weight matrix of the neural network.
318
- is_training (bool): Flag indicating if the function is called during training (True or False).
319
- Class (int): if is during training then which class(label) ? is isnt then put None.
320
- Returns:
321
- tuple: A tuple containing the neural layer (vector) result and the possibly updated weight matrix.
322
- """
323
-
324
- if is_training == True:
325
-
326
- w[Class, Class] += 1
327
-
328
- return w
329
-
330
- else:
331
-
332
- neural_layer = np.dot(w, Input)
333
-
334
- return neural_layer
335
-
336
306
 
337
307
  def normalization(
338
308
  Input # num: Input data to be normalized.
@@ -449,7 +419,7 @@ def evaluate(
449
419
  if Layer == 'fex':
450
420
  neural_layer = fex(neural_layer, W[index], False, None)
451
421
  elif Layer == 'cat':
452
- neural_layer = cat(neural_layer, W[index], False, None)
422
+ neural_layer = np.dot(W[index], neural_layer)
453
423
 
454
424
  for i, w in enumerate(Wc):
455
425
  W[i] = np.copy(w)
@@ -571,7 +541,7 @@ def multiple_evaluate(
571
541
  if Layer == 'fex':
572
542
  neural_layer = fex(neural_layer, W[index], False, None)
573
543
  elif Layer == 'cat':
574
- neural_layer = cat(neural_layer, W[index], False, None)
544
+ neural_layer = np.dot(W[index], neural_layer)
575
545
 
576
546
  output_layer += neural_layer
577
547
 
@@ -887,7 +857,7 @@ def predict_model_ssd(Input, model_name, model_path):
887
857
  if Layer == 'fex':
888
858
  neural_layer = fex(neural_layer, W[index], False, None)
889
859
  elif Layer == 'cat':
890
- neural_layer = cat(neural_layer, W[index], False, None)
860
+ neural_layer = np.dot(W[index], neural_layer)
891
861
  except:
892
862
  print(Fore.RED + "ERROR: The input was probably entered incorrectly. from: predict_model_ssd" +
893
863
  infopredict_model_ssd + Style.RESET_ALL)
@@ -932,7 +902,7 @@ def predict_model_ram(Input, scaler, W):
932
902
  if Layer == 'fex':
933
903
  neural_layer = fex(neural_layer, W[index], False, None)
934
904
  elif Layer == 'cat':
935
- neural_layer = cat(neural_layer, W[index], False, None)
905
+ neural_layer = np.dot(W[index], neural_layer)
936
906
 
937
907
  except:
938
908
  print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." +
@@ -1458,4 +1428,4 @@ def get_preds():
1458
1428
 
1459
1429
  def get_acc():
1460
1430
 
1461
- return 2
1431
+ return 2
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 2.2.0
3
+ Version: 2.2.1
4
4
  Summary: 8 new functions: multiple_evaluate , encode_one_hot, split, metrics, decode_one_hot, roc_curve, confusion_matrix, plot_evaluate And Code improvements (Documentation in desc. Examples in GİTHUB: https://github.com/HCB06/PyerualJetwork)
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -0,0 +1,8 @@
1
+ plan_bi/__init__.py,sha256=82q8bWRYqzwMrFuViQzBg7P19i6EqdV7VYBVxuQ-LV0,517
2
+ plan_bi/plan_bi.py,sha256=fNJK07y9JDVLU0GORD_RHKBjTUnVzb5ciYcQFpyiSvc,50490
3
+ plan_di/__init__.py,sha256=Eut7tVtvQaczEejYyqfQ4eqF71j69josJcY91WN_dkk,508
4
+ plan_di/plan_di.py,sha256=gKY0yCzX1nNNwdRwGOfmaLcvuQwfg1VrWD5oieVXz08,46265
5
+ pyerualjetwork-2.2.1.dist-info/METADATA,sha256=0P5kjlorW8wIUW_p7b90xAvyFYM6cprTalkAHOZ3IMo,457
6
+ pyerualjetwork-2.2.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
+ pyerualjetwork-2.2.1.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
+ pyerualjetwork-2.2.1.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- plan_bi/__init__.py,sha256=82q8bWRYqzwMrFuViQzBg7P19i6EqdV7VYBVxuQ-LV0,517
2
- plan_bi/plan_bi.py,sha256=tlxrr8-HJ1XodT0v5I6jS6IkrZUQEMKKlMY1tRihy-E,50588
3
- plan_di/__init__.py,sha256=Eut7tVtvQaczEejYyqfQ4eqF71j69josJcY91WN_dkk,508
4
- plan_di/plan_di.py,sha256=UKSp5YaTdG8jKAGrkSmwJl3gA81aU4MSJ6WyQEZatXs,47338
5
- pyerualjetwork-2.2.0.dist-info/METADATA,sha256=iVpSNQ8pjr_EduOzO7xEEqc0WGJwtFCyrKIg4SvlW1U,457
6
- pyerualjetwork-2.2.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
- pyerualjetwork-2.2.0.dist-info/top_level.txt,sha256=aaXSOcnD62fbXG1x7tw4nV50Qxx9g9zDNLK7OD4BdPE,16
8
- pyerualjetwork-2.2.0.dist-info/RECORD,,