pyerualjetwork 1.1.8__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
plan/plan.py CHANGED
@@ -31,7 +31,7 @@ def TrainPLAN(
31
31
  Activations (list[str]): List of activation functions.
32
32
 
33
33
  Returns:
34
- list([num]): (Weight matrices list, TrainPredictions list.).
34
+ list([num]): (Weight matrices list, TrainPredictions list, TrainAcc).
35
35
  error handled ?: Process status ('e')
36
36
  """
37
37
 
@@ -245,7 +245,7 @@ def TrainPLAN(
245
245
 
246
246
 
247
247
 
248
- return TrainedWs,TrainPredictions
248
+ return TrainedWs,TrainPredictions,Acc
249
249
 
250
250
  # FUNCTIONS -----
251
251
 
@@ -557,7 +557,7 @@ def TestPLAN(
557
557
  ThresholdSigns, # list[str]: List of threshold signs for each layer.
558
558
  ThresholdValues, # list[num]: List of threshold values for each layer.
559
559
  Normalizations, # str: Whether normalization will be performed ("y" or "n").
560
- Activation, # str: Activation function list for the neural network.
560
+ Activations, # str: Activation function list for the neural network.
561
561
  W # list[list[num]]: Weight matrix of the neural network.
562
562
  ) -> tuple:
563
563
  infoTestModel = """
@@ -597,11 +597,11 @@ def TestPLAN(
597
597
  for index, Layer in enumerate(Layers):
598
598
  if Normalizations[index] == 'y':
599
599
  NeuralLayer = Normalization(NeuralLayer)
600
- if Activation[index] == 'relu':
600
+ if Activations[index] == 'relu':
601
601
  NeuralLayer = Relu(NeuralLayer)
602
- elif Activation[index] == 'sigmoid':
602
+ elif Activations[index] == 'sigmoid':
603
603
  NeuralLayer = Sigmoid(NeuralLayer)
604
- elif Activation[index] == 'softmax':
604
+ elif Activations[index] == 'softmax':
605
605
  NeuralLayer = Softmax(NeuralLayer)
606
606
 
607
607
  if Layers[index] == 'fex':
@@ -676,7 +676,7 @@ def SavePLAN(ModelName,
676
676
  TestAcc,
677
677
  LogType,
678
678
  WeightsType,
679
- WeightFormat,
679
+ WeightsFormat,
680
680
  SavePath,
681
681
  W
682
682
  ):
@@ -715,7 +715,7 @@ def SavePLAN(ModelName,
715
715
  print(Fore.RED + "ERROR110: Save Weight type (File Extension) Type must be 'txt' or 'npy' or 'mat' from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
716
716
  return 'e'
717
717
 
718
- if WeightFormat != 'd' and WeightFormat != 'f' and WeightFormat != 'raw':
718
+ if WeightsFormat != 'd' and WeightsFormat != 'f' and WeightsFormat != 'raw':
719
719
  print(Fore.RED + "ERROR111: Weight Format Type must be 'd' or 'f' or 'raw' from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
720
720
  return 'e'
721
721
 
@@ -747,7 +747,7 @@ def SavePLAN(ModelName,
747
747
  'TEST ACCURACY': TestAcc,
748
748
  'SAVE DATE': datetime.now(),
749
749
  'WEIGHTS TYPE': WeightsType,
750
- 'WEIGHTS FORMAT': WeightFormat,
750
+ 'WEIGHTS FORMAT': WeightsFormat,
751
751
  'SAVE PATH': SavePath
752
752
  }
753
753
  try:
@@ -772,17 +772,17 @@ def SavePLAN(ModelName,
772
772
  return 'e'
773
773
  try:
774
774
 
775
- if WeightsType == 'txt' and WeightFormat == 'd':
775
+ if WeightsType == 'txt' and WeightsFormat == 'd':
776
776
 
777
777
  for i, w in enumerate(W):
778
778
  np.savetxt(SavePath + ModelName + str(i+1) + 'w.txt' , w, fmt='%d')
779
779
 
780
- if WeightsType == 'txt' and WeightFormat == 'f':
780
+ if WeightsType == 'txt' and WeightsFormat == 'f':
781
781
 
782
782
  for i, w in enumerate(W):
783
783
  np.savetxt(SavePath + ModelName + str(i+1) + 'w.txt' , w, fmt='%f')
784
784
 
785
- if WeightsType == 'txt' and WeightFormat == 'raw':
785
+ if WeightsType == 'txt' and WeightsFormat == 'raw':
786
786
 
787
787
  for i, w in enumerate(W):
788
788
  np.savetxt(SavePath + ModelName + str(i+1) + 'w.txt' , w)
@@ -791,17 +791,17 @@ def SavePLAN(ModelName,
791
791
  ###
792
792
 
793
793
 
794
- if WeightsType == 'npy' and WeightFormat == 'd':
794
+ if WeightsType == 'npy' and WeightsFormat == 'd':
795
795
 
796
796
  for i, w in enumerate(W):
797
797
  np.save(SavePath + ModelName + str(i+1) + 'w.npy', w.astype(int))
798
798
 
799
- if WeightsType == 'npy' and WeightFormat == 'f':
799
+ if WeightsType == 'npy' and WeightsFormat == 'f':
800
800
 
801
801
  for i, w in enumerate(W):
802
802
  np.save(SavePath + ModelName + str(i+1) + 'w.npy' , w, w.astype(float))
803
803
 
804
- if WeightsType == 'npy' and WeightFormat == 'raw':
804
+ if WeightsType == 'npy' and WeightsFormat == 'raw':
805
805
 
806
806
  for i, w in enumerate(W):
807
807
  np.save(SavePath + ModelName + str(i+1) + 'w.npy' , w)
@@ -810,19 +810,19 @@ def SavePLAN(ModelName,
810
810
  ###
811
811
 
812
812
 
813
- if WeightsType == 'mat' and WeightFormat == 'd':
813
+ if WeightsType == 'mat' and WeightsFormat == 'd':
814
814
 
815
815
  for i, w in enumerate(W):
816
816
  w = {'w': w.astype(int)}
817
817
  io.savemat(SavePath + ModelName + str(i+1) + 'w.mat', w)
818
818
 
819
- if WeightsType == 'mat' and WeightFormat == 'f':
819
+ if WeightsType == 'mat' and WeightsFormat == 'f':
820
820
 
821
821
  for i, w in enumerate(W):
822
822
  w = {'w': w.astype(float)}
823
823
  io.savemat(SavePath + ModelName + str(i+1) + 'w.mat', w)
824
824
 
825
- if WeightsType == 'mat' and WeightFormat == 'raw':
825
+ if WeightsType == 'mat' and WeightsFormat == 'raw':
826
826
 
827
827
  for i, w in enumerate(W):
828
828
  w = {'w': w}
@@ -908,7 +908,7 @@ def LoadPLAN(ModelName,
908
908
  else:
909
909
  raise ValueError(Fore.RED + "Incorrect weight type value. Value must be 'txt', 'npy' or 'mat' from: LoadPLAN." + infoLoadPLAN + Style.RESET_ALL)
910
910
  print(Fore.GREEN + "Model loaded succesfully" + Style.RESET_ALL)
911
- return W,Layers,ThresholdSigns,ThresholdValues,Normalization,Activations,df
911
+ return W,Layers,ThresholdSigns,ThresholdValues,Normalizations,Activations,df
912
912
 
913
913
  def PredictFromDiscPLAN(Input,ModelName,ModelPath,LogType):
914
914
  infoPredictFromDİscPLAN = """
@@ -1028,7 +1028,6 @@ def AutoBalancer(TrainInputs, TrainLabels, ClassCount):
1028
1028
 
1029
1029
  if len(set(ClassCounts)) == 1:
1030
1030
  print(Fore.WHITE + "INFO: All training data have already balanced. from: AutoBalancer" + Style.RESET_ALL)
1031
- time.sleep(1.5)
1032
1031
  return TrainInputs, TrainLabels
1033
1032
 
1034
1033
  MinCount = min(ClassCounts)
@@ -1045,7 +1044,6 @@ def AutoBalancer(TrainInputs, TrainLabels, ClassCount):
1045
1044
  BalancedLabels = [TrainLabels[idx] for idx in BalancedIndices]
1046
1045
 
1047
1046
  print(Fore.GREEN + "All Training Data Succesfully Balanced from: " + str(len(TrainInputs)) + " to: " + str(len(BalancedInputs)) + ". from: AutoBalancer " + Style.RESET_ALL)
1048
- time.sleep(1.5)
1049
1047
  except:
1050
1048
  print(Fore.RED + "ERROR: Inputs and labels must be same length check parameters" + infoAutoBalancer)
1051
1049
  return 'e'
@@ -0,0 +1,8 @@
1
+ Metadata-Version: 2.1
2
+ Name: pyerualjetwork
3
+ Version: 1.2.0
4
+ Summary: Advanced python deep learning library.(Documentation in desc. Examples in GİTHUB: HCB06)
5
+ Author: Hasan Can Beydili
6
+ Author-email: tchasancan@gmail.com
7
+ Keywords: model evaluation,classifcation,pruning learning artficial neural networks
8
+
@@ -0,0 +1,6 @@
1
+ plan/__init__.py,sha256=cyb3DkUey_4zEApoFtf-UBMGwd8uFADSjy3osQUG_pY,315
2
+ plan/plan.py,sha256=dp-ZuhbyatgwrLDwEfEtuFWmTV-twvaFvD8TIC8FSXE,40179
3
+ pyerualjetwork-1.2.0.dist-info/METADATA,sha256=RKNNHxpHzKXhfgJ_M9VO0ln8sM076yc4H6rADoJQOJY,311
4
+ pyerualjetwork-1.2.0.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
5
+ pyerualjetwork-1.2.0.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
+ pyerualjetwork-1.2.0.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: pyerualjetwork
3
- Version: 1.1.8
4
- Summary: Advanced python deep learning library.(More document coming soon..)
5
- Author: Hasan Can Beydili
6
- Author-email: tchasancan@gmail.com
7
- Keywords: model evaluation,classifcation,divided pruning neural networks
8
-
@@ -1,6 +0,0 @@
1
- plan/__init__.py,sha256=cyb3DkUey_4zEApoFtf-UBMGwd8uFADSjy3osQUG_pY,315
2
- plan/plan.py,sha256=VtM3gyOiyGPHgiZKBo1gRbv4Bvxc4MQht_kP45he9zI,40201
3
- pyerualjetwork-1.1.8.dist-info/METADATA,sha256=9ieJju6xGncRPGsnutPJM069CItIz2ABIxslDUIh7i0,278
4
- pyerualjetwork-1.1.8.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
5
- pyerualjetwork-1.1.8.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
6
- pyerualjetwork-1.1.8.dist-info/RECORD,,