pyerualjetwork 1.1.4__py3-none-any.whl → 1.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- plan/__init__.py +5 -0
- DPNN/DPNN.py → plan/plan.py +47 -47
- {pyerualjetwork-1.1.4.dist-info → pyerualjetwork-1.1.6.dist-info}/METADATA +1 -1
- pyerualjetwork-1.1.6.dist-info/RECORD +6 -0
- pyerualjetwork-1.1.6.dist-info/top_level.txt +1 -0
- DPNN/__init__.py +0 -20
- pyerualjetwork-1.1.4.dist-info/RECORD +0 -6
- pyerualjetwork-1.1.4.dist-info/top_level.txt +0 -1
- {pyerualjetwork-1.1.4.dist-info → pyerualjetwork-1.1.6.dist-info}/WHEEL +0 -0
plan/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
1
|
+
# pyerualjetwork/PLAN/__init__.py
|
2
|
+
|
3
|
+
# Bu dosya, plan modülünün ana giriş noktasıdır.
|
4
|
+
|
5
|
+
from .plan import AutoBalancer, Normalization, Softmax, Sigmoid, Relu, SynapticPruning, SynapticDividing, WeightIdentification, Fex, Cat, TrainPLAN, TestPLAN, SavePLAN, LoadPLAN, PredictFromDiscPLAN, PredictFromRamPLAN
|
DPNN/DPNN.py → plan/plan.py
RENAMED
@@ -4,7 +4,7 @@ from colorama import Fore,Style
|
|
4
4
|
from typing import List, Union
|
5
5
|
import math
|
6
6
|
# BUILD -----
|
7
|
-
def
|
7
|
+
def TrainPLAN(
|
8
8
|
Inputs: List[Union[int, float]],
|
9
9
|
Labels: List[Union[int, float, str]], # At least two.. and one hot encoded
|
10
10
|
ClassCount: int,
|
@@ -16,8 +16,8 @@ def TrainDPNN(
|
|
16
16
|
Activations: List[str]
|
17
17
|
) -> str:
|
18
18
|
|
19
|
-
|
20
|
-
Creates and configures a
|
19
|
+
infoPLAN = """
|
20
|
+
Creates and configures a PLAN model.
|
21
21
|
|
22
22
|
Args:
|
23
23
|
Inputs (list[num]): List of input data.
|
@@ -37,30 +37,30 @@ def TrainDPNN(
|
|
37
37
|
|
38
38
|
LastNeuron = Neurons[-1:][0]
|
39
39
|
if LastNeuron != ClassCount:
|
40
|
-
print(Fore.RED + "ERROR108: Last layer of neuron count must be equal class count. from:
|
40
|
+
print(Fore.RED + "ERROR108: Last layer of neuron count must be equal class count. from: TrainPLAN",infoPLAN)
|
41
41
|
return 'e'
|
42
42
|
|
43
43
|
if len(Normalizations) != len(ThresholdValues):
|
44
44
|
|
45
|
-
print(Fore.RED + "ERROR307: Normalization list length must be equal to length of ThresholdSigns List,ThresholdValues List,Layers List,Neurons List. from:
|
45
|
+
print(Fore.RED + "ERROR307: Normalization list length must be equal to length of ThresholdSigns List,ThresholdValues List,Layers List,Neurons List. from: TrainPLAN",infoPLAN)
|
46
46
|
return 'e'
|
47
47
|
|
48
48
|
if len(Inputs) != len(Labels):
|
49
|
-
print(Fore.RED + "ERROR301: Inputs list and Labels list must be same length.",
|
49
|
+
print(Fore.RED + "ERROR301: Inputs list and Labels list must be same length.",infoPLAN)
|
50
50
|
return 'e'
|
51
51
|
|
52
52
|
for i, Value in enumerate(ThresholdValues):
|
53
53
|
|
54
54
|
if Normalizations[i] != 'y' and Normalizations[i] != 'n':
|
55
|
-
print(Fore.RED + "ERROR105: Normalization list must be 'y' or 'n'.",
|
55
|
+
print(Fore.RED + "ERROR105: Normalization list must be 'y' or 'n'.",infoPLAN)
|
56
56
|
return 'e'
|
57
57
|
|
58
58
|
if ThresholdSigns[i] == 'none':
|
59
|
-
print(Fore.MAGENTA + "WARNING102: We are advise to do not put 'none' Threshold sign. But some cases improves performance of the model from:
|
59
|
+
print(Fore.MAGENTA + "WARNING102: We are advise to do not put 'none' Threshold sign. But some cases improves performance of the model from: TrainPLAN",infoPLAN + Style.RESET_ALL)
|
60
60
|
time.sleep(3)
|
61
61
|
|
62
62
|
if isinstance(Value, str):
|
63
|
-
print(Fore.RED + "ERROR201: Threshold values must be numeric. from:
|
63
|
+
print(Fore.RED + "ERROR201: Threshold values must be numeric. from: TrainPLAN")
|
64
64
|
return 'e'
|
65
65
|
|
66
66
|
if isinstance(Neurons[i], str):
|
@@ -68,53 +68,53 @@ def TrainDPNN(
|
|
68
68
|
return 'e'
|
69
69
|
|
70
70
|
if len(ThresholdSigns) != len(ThresholdValues):
|
71
|
-
print(Fore.RED + "ERROR302: Threshold signs list and Threshold Values list must be same length. from:
|
71
|
+
print(Fore.RED + "ERROR302: Threshold signs list and Threshold Values list must be same length. from: TrainPLAN",infoPLAN)
|
72
72
|
return 'e'
|
73
73
|
|
74
74
|
if len(Layers) != len(Neurons):
|
75
|
-
print(Fore.RED + "ERROR303: Layers list and Neurons list must same length. from:
|
75
|
+
print(Fore.RED + "ERROR303: Layers list and Neurons list must same length. from: TrainPLAN",infoPLAN)
|
76
76
|
return 'e'
|
77
77
|
|
78
78
|
if len(ThresholdValues) != len(Layers) or len(ThresholdSigns) != len(Layers):
|
79
|
-
print(Fore.RED + "ERROR306: Threshold Values and Threshold Signs lists length must be same Layers list length. from:
|
79
|
+
print(Fore.RED + "ERROR306: Threshold Values and Threshold Signs lists length must be same Layers list length. from: TrainPLAN",infoPLAN)
|
80
80
|
return 'e'
|
81
81
|
|
82
82
|
|
83
83
|
for Activation in Activations:
|
84
84
|
if Activation != 'softmax' and Activation != 'sigmoid' and Activation != 'relu' and Activation != 'none':
|
85
|
-
print(Fore.RED + "ERROR108: Activations list must be 'sigmoid' or 'softmax' or 'relu' or 'none' from:
|
85
|
+
print(Fore.RED + "ERROR108: Activations list must be 'sigmoid' or 'softmax' or 'relu' or 'none' from: TrainPLAN",infoPLAN)
|
86
86
|
return 'e'
|
87
87
|
|
88
88
|
|
89
89
|
for index, Neuron in enumerate(Neurons):
|
90
90
|
if Neuron < 1:
|
91
|
-
print(Fore.RED + "ERROR101: Neurons list must be positive non zero integer. from:
|
91
|
+
print(Fore.RED + "ERROR101: Neurons list must be positive non zero integer. from: TrainPLAN",infoPLAN)
|
92
92
|
return 'e'
|
93
93
|
|
94
94
|
if index + 1 != len(Neurons) and Neuron % 2 != 0:
|
95
|
-
print(Fore.MAGENTA + "WARNING101: We strongly advise to do Neuron counts be should even numbers. from:
|
95
|
+
print(Fore.MAGENTA + "WARNING101: We strongly advise to do Neuron counts be should even numbers. from: TrainPLAN",infoPLAN)
|
96
96
|
time.sleep(3)
|
97
97
|
|
98
98
|
if Neuron < ClassCount:
|
99
|
-
print(Fore.RED + "ERROR102: Neuron count must be greater than class count(For
|
99
|
+
print(Fore.RED + "ERROR102: Neuron count must be greater than class count(For PLAN). from: TrainPLAN")
|
100
100
|
return 'e'
|
101
101
|
|
102
102
|
if Layers[index] != 'fex' and Layers[index] != 'cat':
|
103
|
-
print(Fore.RED + "ERROR107: Layers list must be 'fex'(Feature Extraction Layer) or 'cat' (Catalyser Layer). from:
|
103
|
+
print(Fore.RED + "ERROR107: Layers list must be 'fex'(Feature Extraction Layer) or 'cat' (Catalyser Layer). from: TrainPLAN",infoPLAN)
|
104
104
|
return 'e'
|
105
105
|
|
106
106
|
if len(ThresholdSigns) != len(ThresholdValues):
|
107
|
-
print(Fore.RED + "ERROR305: Threshold signs list and Threshold values list must be same length. from:
|
107
|
+
print(Fore.RED + "ERROR305: Threshold signs list and Threshold values list must be same length. from: TrainPLAN",infoPLAN)
|
108
108
|
return 'e'
|
109
109
|
|
110
110
|
|
111
111
|
for i, Sign in enumerate(ThresholdSigns):
|
112
112
|
if Sign != '>' and Sign != '<' and Sign != '==' and Sign != '!=' and Sign != 'none':
|
113
|
-
print(Fore.RED + "ERROR104: Threshold signs must be '>' or '<' or '==' or '!='. or 'none' from:
|
113
|
+
print(Fore.RED + "ERROR104: Threshold signs must be '>' or '<' or '==' or '!='. or 'none' from: TrainPLAN",infoPLAN)
|
114
114
|
return 'e'
|
115
115
|
|
116
116
|
if Layers[i] == 'fex' and Sign == 'none':
|
117
|
-
print(Fore.RED + "ERROR109: at layer type 'fex', pairing with 'none' Threshold is not acceptlable. if you want to 'none' put '==' and make threshold value '0'. from:
|
117
|
+
print(Fore.RED + "ERROR109: at layer type 'fex', pairing with 'none' Threshold is not acceptlable. if you want to 'none' put '==' and make threshold value '0'. from: TrainPLAN ",infoPLAN)
|
118
118
|
return 'e'
|
119
119
|
|
120
120
|
UniqueLabels = set()
|
@@ -129,7 +129,7 @@ def TrainDPNN(
|
|
129
129
|
|
130
130
|
|
131
131
|
if len(UniqueLabels) != ClassCount:
|
132
|
-
print(Fore.RED + "ERROR106: Label variety length must be same Class Count. from:
|
132
|
+
print(Fore.RED + "ERROR106: Label variety length must be same Class Count. from: TrainPLAN",infoPLAN)
|
133
133
|
return 'e'
|
134
134
|
|
135
135
|
Inputs[0] = np.array(Inputs[0])
|
@@ -150,7 +150,7 @@ def TrainDPNN(
|
|
150
150
|
inp = inp.ravel()
|
151
151
|
|
152
152
|
if InputSize != len(inp):
|
153
|
-
print(Fore.RED +"ERROR304: All input matrices or vectors in inputs list, must be same size. from:
|
153
|
+
print(Fore.RED +"ERROR304: All input matrices or vectors in inputs list, must be same size. from: TrainPLAN",infoPLAN + Style.RESET_ALL)
|
154
154
|
return 'e'
|
155
155
|
|
156
156
|
|
@@ -551,7 +551,7 @@ def Relu(
|
|
551
551
|
return np.maximum(0, x)
|
552
552
|
|
553
553
|
|
554
|
-
def
|
554
|
+
def TestPLAN(
|
555
555
|
TestInputs, # list[list[num]]: Test input data.
|
556
556
|
TestLabels, # list[num]: Test labels.
|
557
557
|
Layers, # list[str]: List of layer names.
|
@@ -661,12 +661,12 @@ def TestDPNN(
|
|
661
661
|
|
662
662
|
except:
|
663
663
|
|
664
|
-
print(Fore.RED + "ERROR: Testing model parameters like 'Layers' 'ThresholdCounts' must be same as trained model. Check parameters. Are you sure weights are loaded ? from:
|
664
|
+
print(Fore.RED + "ERROR: Testing model parameters like 'Layers' 'ThresholdCounts' must be same as trained model. Check parameters. Are you sure weights are loaded ? from: TestPLAN" + infoTestModel + Style.RESET_ALL)
|
665
665
|
return 'e'
|
666
666
|
|
667
667
|
return TestPredictions,Acc
|
668
668
|
|
669
|
-
def
|
669
|
+
def SavePLAN(ModelName,
|
670
670
|
ModelType,
|
671
671
|
Layers,
|
672
672
|
ClassCount,
|
@@ -682,12 +682,12 @@ def SaveDPNN(ModelName,
|
|
682
682
|
W
|
683
683
|
):
|
684
684
|
|
685
|
-
|
685
|
+
infoSavePLAN = """
|
686
686
|
Function to save a deep learning model.
|
687
687
|
|
688
688
|
Arguments:
|
689
689
|
ModelName (str): Name of the model.
|
690
|
-
ModelType (str): Type of the model.(options:
|
690
|
+
ModelType (str): Type of the model.(options: PLAN)
|
691
691
|
Layers (list): List containing 'fex' and 'cat' layers.
|
692
692
|
ClassCount (int): Number of classes.
|
693
693
|
ThresholdSigns (list): List containing threshold signs.
|
@@ -698,7 +698,7 @@ def SaveDPNN(ModelName,
|
|
698
698
|
LogType (str): Type of log to save (options: 'csv', 'txt', 'hdf5').
|
699
699
|
WeightsType (str): Type of weights to save (options: 'txt', 'npy', 'mat').
|
700
700
|
WeightFormat (str): Format of the weights (options: 'd', 'f', 'raw').
|
701
|
-
SavePath (str): Path where the model will be saved. For example: C:/Users/beydili/Desktop/
|
701
|
+
SavePath (str): Path where the model will be saved. For example: C:/Users/beydili/Desktop/denemePLAN/
|
702
702
|
W: Weights of the model.
|
703
703
|
|
704
704
|
Returns:
|
@@ -709,15 +709,15 @@ def SaveDPNN(ModelName,
|
|
709
709
|
pass
|
710
710
|
|
711
711
|
if LogType != 'csv' and LogType != 'txt' and LogType != 'hdf5':
|
712
|
-
print(Fore.RED + "ERROR109: Save Log Type (File Extension) must be 'csv' or 'txt' or 'hdf5' from:
|
712
|
+
print(Fore.RED + "ERROR109: Save Log Type (File Extension) must be 'csv' or 'txt' or 'hdf5' from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
713
713
|
return 'e'
|
714
714
|
|
715
715
|
if WeightsType != 'txt' and WeightsType != 'npy' and WeightsType != 'mat':
|
716
|
-
print(Fore.RED + "ERROR110: Save Weight type (File Extension) Type must be 'txt' or 'npy' or 'mat' from:
|
716
|
+
print(Fore.RED + "ERROR110: Save Weight type (File Extension) Type must be 'txt' or 'npy' or 'mat' from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
717
717
|
return 'e'
|
718
718
|
|
719
719
|
if WeightFormat != 'd' and WeightFormat != 'f' and WeightFormat != 'raw':
|
720
|
-
print(Fore.RED + "ERROR111: Weight Format Type must be 'd' or 'f' or 'raw' from:
|
720
|
+
print(Fore.RED + "ERROR111: Weight Format Type must be 'd' or 'f' or 'raw' from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
721
721
|
return 'e'
|
722
722
|
|
723
723
|
NeuronCount = 0
|
@@ -728,7 +728,7 @@ def SaveDPNN(ModelName,
|
|
728
728
|
SynapseCount += np.shape(w)[0] * np.shape(w)[1]
|
729
729
|
except:
|
730
730
|
|
731
|
-
print(Fore.RED + "ERROR: Weight matrices has a problem from:
|
731
|
+
print(Fore.RED + "ERROR: Weight matrices has a problem from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
732
732
|
return 'e'
|
733
733
|
import pandas as pd
|
734
734
|
from datetime import datetime
|
@@ -769,7 +769,7 @@ def SaveDPNN(ModelName,
|
|
769
769
|
|
770
770
|
except:
|
771
771
|
|
772
|
-
print(Fore.RED + "ERROR: Model log not saved. Check the log parameters from:
|
772
|
+
print(Fore.RED + "ERROR: Model log not saved. Check the log parameters from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
773
773
|
return 'e'
|
774
774
|
try:
|
775
775
|
|
@@ -831,7 +831,7 @@ def SaveDPNN(ModelName,
|
|
831
831
|
|
832
832
|
except:
|
833
833
|
|
834
|
-
print(Fore.RED + "ERROR: Model Weights not saved. Check the Weight parameters. SaveFilePath expl: 'C:/Users/hasancanbeydili/Desktop/
|
834
|
+
print(Fore.RED + "ERROR: Model Weights not saved. Check the Weight parameters. SaveFilePath expl: 'C:/Users/hasancanbeydili/Desktop/denemePLAN/' from: SavePLAN" + infoSavePLAN + Style.RESET_ALL)
|
835
835
|
return 'e'
|
836
836
|
print(df)
|
837
837
|
message = (
|
@@ -843,11 +843,11 @@ def SaveDPNN(ModelName,
|
|
843
843
|
return print(message)
|
844
844
|
|
845
845
|
|
846
|
-
def
|
846
|
+
def LoadPLAN(ModelName,
|
847
847
|
LoadPath,
|
848
848
|
LogType,
|
849
849
|
):
|
850
|
-
|
850
|
+
infoLoadPLAN = """
|
851
851
|
Function to load a deep learning model.
|
852
852
|
|
853
853
|
Arguments:
|
@@ -877,7 +877,7 @@ def LoadDPNN(ModelName,
|
|
877
877
|
if LogType == 'hdf5':
|
878
878
|
df = pd.read_hdf(LoadPath + ModelName + '.' + LogType)
|
879
879
|
except:
|
880
|
-
print(Fore.RED + "ERROR: Model Path error. Accaptable form: 'C:/Users/hasancanbeydili/Desktop/
|
880
|
+
print(Fore.RED + "ERROR: Model Path error. Accaptable form: 'C:/Users/hasancanbeydili/Desktop/denemePLAN/' from: LoadPLAN" + infoLoadPLAN + Style.RESET_ALL)
|
881
881
|
|
882
882
|
ModelName = str(df['MODEL NAME'].iloc[0])
|
883
883
|
Layers = df['LAYERS'].tolist()
|
@@ -907,13 +907,13 @@ def LoadDPNN(ModelName,
|
|
907
907
|
for i in range(LayerCount):
|
908
908
|
W[i] = sio.loadmat(LoadPath + ModelName + str(i+1) + 'w.mat')
|
909
909
|
else:
|
910
|
-
raise ValueError(Fore.RED + "Incorrect weight type value. Value must be 'txt', 'npy' or 'mat' from:
|
910
|
+
raise ValueError(Fore.RED + "Incorrect weight type value. Value must be 'txt', 'npy' or 'mat' from: LoadPLAN." + infoLoadPLAN + Style.RESET_ALL)
|
911
911
|
print(Fore.GREEN + "Model loaded succesfully" + Style.RESET_ALL)
|
912
912
|
return W,Layers,ThresholdSigns,ThresholdValues,Normalization,Activations,df
|
913
913
|
|
914
|
-
def
|
915
|
-
|
916
|
-
Function to make a prediction using a divided pruning deep learning neural network (
|
914
|
+
def PredictFromDiscPLAN(Input,ModelName,ModelPath,LogType):
|
915
|
+
infoPredictFromDİscPLAN = """
|
916
|
+
Function to make a prediction using a divided pruning deep learning neural network (PLAN).
|
917
917
|
|
918
918
|
Arguments:
|
919
919
|
Input (list or ndarray): Input data for the model (single vector or single matrix).
|
@@ -924,7 +924,7 @@ def PredictFromDiscDPNN(Input,ModelName,ModelPath,LogType):
|
|
924
924
|
Returns:
|
925
925
|
ndarray: Output from the model.
|
926
926
|
"""
|
927
|
-
W,Layers,ThresholdSigns,ThresholdValues,Normalization,Activations =
|
927
|
+
W,Layers,ThresholdSigns,ThresholdValues,Normalization,Activations = LoadPLAN(ModelName,ModelPath,
|
928
928
|
LogType)[0:6]
|
929
929
|
Wc = [0] * len(W)
|
930
930
|
for i, w in enumerate(W):
|
@@ -953,16 +953,16 @@ def PredictFromDiscDPNN(Input,ModelName,ModelPath,LogType):
|
|
953
953
|
ThresholdValues[index],
|
954
954
|
0)
|
955
955
|
except:
|
956
|
-
print(Fore.RED + "ERROR: The input was probably entered incorrectly. from:
|
956
|
+
print(Fore.RED + "ERROR: The input was probably entered incorrectly. from: PredictFromDiscPLAN" + infoPredictFromDİscPLAN + Style.RESET_ALL)
|
957
957
|
return 'e'
|
958
958
|
for i, w in enumerate(Wc):
|
959
959
|
W[i] = np.copy(w)
|
960
960
|
return NeuralLayer
|
961
961
|
|
962
962
|
|
963
|
-
def
|
964
|
-
|
965
|
-
Function to make a prediction using a
|
963
|
+
def PredictFromRamPLAN(Input,Layers,ThresholdSigns,ThresholdValues,Normalizations,Activations,W):
|
964
|
+
infoPredictFromRamPLAN = """
|
965
|
+
Function to make a prediction using a pruning learning artificial neural network (PLAN)
|
966
966
|
from weights and parameters stored in memory.
|
967
967
|
|
968
968
|
Arguments:
|
@@ -1004,7 +1004,7 @@ def PredictFromRamDPNN(Input,Layers,ThresholdSigns,ThresholdValues,Normalization
|
|
1004
1004
|
ThresholdSigns[index],
|
1005
1005
|
ThresholdValues[index],0)
|
1006
1006
|
except:
|
1007
|
-
print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from:
|
1007
|
+
print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: PredictFromRamPLAN." + infoPredictFromRamPLAN + Style.RESET_ALL)
|
1008
1008
|
return 'e'
|
1009
1009
|
for i, w in enumerate(Wc):
|
1010
1010
|
W[i] = np.copy(w)
|
@@ -0,0 +1,6 @@
|
|
1
|
+
plan/__init__.py,sha256=cyb3DkUey_4zEApoFtf-UBMGwd8uFADSjy3osQUG_pY,315
|
2
|
+
plan/plan.py,sha256=B_IpTzNSmxh2C3GURqUGg56tEPgjZ1_LYA2IeeRNzx4,40246
|
3
|
+
pyerualjetwork-1.1.6.dist-info/METADATA,sha256=LKU89fAGbxzH8ddOer_lSOKnvX0HKoR6EHPmDRu2UA8,278
|
4
|
+
pyerualjetwork-1.1.6.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
5
|
+
pyerualjetwork-1.1.6.dist-info/top_level.txt,sha256=G0Al3HuNJ88434XneyDtRKAIUaLCizOFYFYNhd7e2OM,5
|
6
|
+
pyerualjetwork-1.1.6.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
plan
|
DPNN/__init__.py
DELETED
@@ -1,20 +0,0 @@
|
|
1
|
-
# pyerualjetwork/DPNN/__init__.py
|
2
|
-
|
3
|
-
# Bu dosya, DPNN modülünün ana giriş noktasıdır.
|
4
|
-
|
5
|
-
from .AutoBalancer import AutoBalancer
|
6
|
-
from .Normalization import Normalization
|
7
|
-
from .Softmax import Softmax
|
8
|
-
from .Sigmoid import Sigmoid
|
9
|
-
from .Relu import Relu
|
10
|
-
from .SynapticPruning import SynapticPruning
|
11
|
-
from .SynapticDividing import SynapticDividing
|
12
|
-
from .WeightIdentification import WeightIdentification
|
13
|
-
from .Fex import Fex
|
14
|
-
from .Cat import Cat
|
15
|
-
from .TrainDPNN import TrainDPNN
|
16
|
-
from .TestDPNN import TestDPNN
|
17
|
-
from .SaveDPNN import SaveDPNN
|
18
|
-
from .LoadDPNN import LoadDPNN
|
19
|
-
from .PredictFromDiscDPNN import PredictFromDiscDPNN
|
20
|
-
from .PredictFromRamDPNN import PredictFromRamDPNN
|
@@ -1,6 +0,0 @@
|
|
1
|
-
DPNN/DPNN.py,sha256=YX4G0vaDOZHRF1tXITiIiE6MdidhQEESYh257dzLxn0,40243
|
2
|
-
DPNN/__init__.py,sha256=CIh25uo9Jl6Sz8YRI-1yQqX-nDh2e2qHoq1tAwy2inI,691
|
3
|
-
pyerualjetwork-1.1.4.dist-info/METADATA,sha256=vbjhZnYRUD1UNUXsPAucmKHyuXw36afnDTk5tpAeap8,278
|
4
|
-
pyerualjetwork-1.1.4.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
5
|
-
pyerualjetwork-1.1.4.dist-info/top_level.txt,sha256=FP80qXxAtwGIzBS7B8QpXzoYD7L5aFSBVzlmcFBjq7k,5
|
6
|
-
pyerualjetwork-1.1.4.dist-info/RECORD,,
|
@@ -1 +0,0 @@
|
|
1
|
-
DPNN
|
File without changes
|