pyelq 1.1.4__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyelq/__init__.py +1 -0
- pyelq/component/__init__.py +1 -0
- pyelq/component/background.py +19 -13
- pyelq/component/component.py +2 -1
- pyelq/component/error_model.py +2 -1
- pyelq/component/offset.py +2 -1
- pyelq/component/source_model.py +78 -29
- pyelq/coordinate_system.py +1 -0
- pyelq/data_access/__init__.py +1 -0
- pyelq/data_access/data_access.py +1 -1
- pyelq/dispersion_model/__init__.py +4 -3
- pyelq/dispersion_model/dispersion_model.py +202 -0
- pyelq/dispersion_model/finite_volume.py +1084 -0
- pyelq/dispersion_model/gaussian_plume.py +8 -189
- pyelq/dispersion_model/site_layout.py +97 -0
- pyelq/dlm.py +11 -15
- pyelq/gas_species.py +1 -0
- pyelq/meteorology/__init__.py +6 -0
- pyelq/{meteorology.py → meteorology/meteorology.py} +388 -387
- pyelq/meteorology/meteorology_windfield.py +180 -0
- pyelq/model.py +2 -1
- pyelq/plotting/__init__.py +1 -0
- pyelq/plotting/plot.py +1 -0
- pyelq/preprocessing.py +98 -38
- pyelq/sensor/__init__.py +1 -0
- pyelq/sensor/sensor.py +70 -5
- pyelq/source_map.py +1 -0
- pyelq/support_functions/__init__.py +1 -0
- pyelq/support_functions/post_processing.py +1 -0
- pyelq/support_functions/spatio_temporal_interpolation.py +1 -0
- {pyelq-1.1.4.dist-info → pyelq-1.2.0.dist-info}/METADATA +45 -44
- pyelq-1.2.0.dist-info/RECORD +37 -0
- {pyelq-1.1.4.dist-info → pyelq-1.2.0.dist-info}/WHEEL +1 -1
- pyelq-1.1.4.dist-info/RECORD +0 -32
- {pyelq-1.1.4.dist-info → pyelq-1.2.0.dist-info/licenses}/LICENSE.md +0 -0
- {pyelq-1.1.4.dist-info → pyelq-1.2.0.dist-info/licenses}/LICENSES/Apache-2.0.txt +0 -0
|
@@ -1,27 +1,28 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: pyelq
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.2.0
|
|
4
4
|
Summary: Package for detection, localization and quantification code.
|
|
5
5
|
License: Apache-2.0
|
|
6
|
+
License-File: LICENSE.md
|
|
7
|
+
License-File: LICENSES/Apache-2.0.txt
|
|
6
8
|
Keywords: gas dispersion,emission,detection,localization,quantification
|
|
7
9
|
Author: Bas van de Kerkhof
|
|
8
|
-
Requires-Python: >=3.
|
|
10
|
+
Requires-Python: >=3.11
|
|
9
11
|
Classifier: License :: OSI Approved :: Apache Software License
|
|
10
12
|
Classifier: Programming Language :: Python :: 3
|
|
11
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
12
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.11
|
|
14
14
|
Classifier: Programming Language :: Python :: 3.12
|
|
15
15
|
Classifier: Programming Language :: Python :: 3.13
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
16
17
|
Requires-Dist: geojson (>=3.2.0)
|
|
17
|
-
Requires-Dist: numpy (>=2.0
|
|
18
|
-
Requires-Dist: openmcmc (==1.0.
|
|
19
|
-
Requires-Dist: pandas (>=2.
|
|
20
|
-
Requires-Dist: plotly (>=6.
|
|
21
|
-
Requires-Dist: pymap3d (>=3.
|
|
22
|
-
Requires-Dist: scikit-learn (>=1.
|
|
23
|
-
Requires-Dist: scipy (>=1.
|
|
24
|
-
Requires-Dist: shapely (>=2.
|
|
18
|
+
Requires-Dist: numpy (>=2.4.0)
|
|
19
|
+
Requires-Dist: openmcmc (==1.0.8)
|
|
20
|
+
Requires-Dist: pandas (>=2.3.3,<3.0.0)
|
|
21
|
+
Requires-Dist: plotly (>=6.5.0)
|
|
22
|
+
Requires-Dist: pymap3d (>=3.2.0)
|
|
23
|
+
Requires-Dist: scikit-learn (>=1.8.0)
|
|
24
|
+
Requires-Dist: scipy (>=1.16.3)
|
|
25
|
+
Requires-Dist: shapely (>=2.1.2)
|
|
25
26
|
Project-URL: Documentation, https://sede-open.github.io/pyELQ/
|
|
26
27
|
Project-URL: Homepage, https://sede-open.github.io/pyELQ/
|
|
27
28
|
Project-URL: Repository, https://github.com/sede-open/pyELQ
|
|
@@ -51,27 +52,27 @@ SPDX-License-Identifier: Apache-2.0
|
|
|
51
52
|
</div>
|
|
52
53
|
|
|
53
54
|
# pyELQ
|
|
54
|
-
This repository contains the Python Emission Localization and Quantification software we call pyELQ. It is code used
|
|
55
|
-
for gas dispersion modelling, in particular methane emissions detection, localization and quantification.
|
|
55
|
+
This repository contains the Python Emission Localization and Quantification software we call pyELQ. It is code used
|
|
56
|
+
for gas dispersion modelling, in particular methane emissions detection, localization and quantification.
|
|
56
57
|
|
|
57
58
|
***
|
|
58
59
|
# Background
|
|
59
|
-
The **py**thon **E**mission **L**ocalization and **Q**uantification (pyELQ) code aims to maximize effective use of
|
|
60
|
-
existing measurement data, especially from continuous monitoring solutions. The code has been developed to detect,
|
|
61
|
-
localize, and quantify methane emissions from concentration and wind measurements. It can be used in combination with
|
|
60
|
+
The **py**thon **E**mission **L**ocalization and **Q**uantification (pyELQ) code aims to maximize effective use of
|
|
61
|
+
existing measurement data, especially from continuous monitoring solutions. The code has been developed to detect,
|
|
62
|
+
localize, and quantify methane emissions from concentration and wind measurements. It can be used in combination with
|
|
62
63
|
point or beam sensors that are placed strategically on an area of interest.
|
|
63
64
|
|
|
64
|
-
The algorithms in the pyELQ code are based a Bayesian statistics framework. pyELQ can ingest long-term concentration
|
|
65
|
-
and wind data, and it performs an inversion to predict the likely strengths and locations of persistent methane sources.
|
|
66
|
-
The goal is to arrive at a plausible estimate of methane emissions from an area of interest that matches the measured
|
|
67
|
-
data. The predictions from pyELQ come with uncertainty ranges that are representative of probability density functions
|
|
68
|
-
sampled by a Markov Chain Monte Carlo method. Time series of varying length can be processed by pyELQ: in general,
|
|
69
|
-
the Bayesian inversion leads to a more constrained solution if more high-precision measurement data is available.
|
|
65
|
+
The algorithms in the pyELQ code are based a Bayesian statistics framework. pyELQ can ingest long-term concentration
|
|
66
|
+
and wind data, and it performs an inversion to predict the likely strengths and locations of persistent methane sources.
|
|
67
|
+
The goal is to arrive at a plausible estimate of methane emissions from an area of interest that matches the measured
|
|
68
|
+
data. The predictions from pyELQ come with uncertainty ranges that are representative of probability density functions
|
|
69
|
+
sampled by a Markov Chain Monte Carlo method. Time series of varying length can be processed by pyELQ: in general,
|
|
70
|
+
the Bayesian inversion leads to a more constrained solution if more high-precision measurement data is available.
|
|
70
71
|
We have tested our code under controlled conditions as well as in operating oil and gas facilities.
|
|
71
72
|
|
|
72
|
-
The information on the strength and the approximate location of methane emission sources provided by pyELQ can help
|
|
73
|
-
operators with more efficient identification and quantification of (unexpected) methane sources, in order to start
|
|
74
|
-
appropriate mitigating actions accordingly. The pyELQ code is being made available in an open-source environment,
|
|
73
|
+
The information on the strength and the approximate location of methane emission sources provided by pyELQ can help
|
|
74
|
+
operators with more efficient identification and quantification of (unexpected) methane sources, in order to start
|
|
75
|
+
appropriate mitigating actions accordingly. The pyELQ code is being made available in an open-source environment,
|
|
75
76
|
to support various assets in their quest to reduce methane emissions.
|
|
76
77
|
|
|
77
78
|
Use cases where the pyELQ code has been applied are described in the following papers:
|
|
@@ -81,30 +82,30 @@ Use cases where the pyELQ code has been applied are described in the following p
|
|
|
81
82
|
* Weidmann, D., Hirst, B. et al. "Locating and Quantifying Methane Emissions by Inverse Analysis of Path-Integrated Concentration Data Using a Markov-Chain Monte Carlo Approach." ACS Earth and Space Chemistry 2022 6 (9), 2190-2198 (https://doi.org/10.1021/acsearthspacechem.2c00093)
|
|
82
83
|
|
|
83
84
|
## Deployment design
|
|
84
|
-
The pyELQ code needs high-quality methane concentration and wind data to be able to provide reliable output on location
|
|
85
|
-
and quantification of methane emission sources. This requires methane concentration sensors of sufficiently high
|
|
86
|
-
precision in a layout that allows the detection of relevant methane emission sources, in combination with wind
|
|
87
|
-
measurements of high enough frequency and accuracy. The optimal sensor layout typically depends on the prevailing
|
|
88
|
-
meteorological conditions at the site of interest and requires multiple concentration sensors to cover the site under
|
|
89
|
-
different wind directions.
|
|
85
|
+
The pyELQ code needs high-quality methane concentration and wind data to be able to provide reliable output on location
|
|
86
|
+
and quantification of methane emission sources. This requires methane concentration sensors of sufficiently high
|
|
87
|
+
precision in a layout that allows the detection of relevant methane emission sources, in combination with wind
|
|
88
|
+
measurements of high enough frequency and accuracy. The optimal sensor layout typically depends on the prevailing
|
|
89
|
+
meteorological conditions at the site of interest and requires multiple concentration sensors to cover the site under
|
|
90
|
+
different wind directions.
|
|
90
91
|
|
|
91
92
|
## pyELQ data interpretation
|
|
92
|
-
The results from pyELQ come with uncertainty ranges that are representative of probability density functions sampled
|
|
93
|
-
by a Markov Chain Monte Carlo method. One should take these uncertainty ranges into account when interpreting the pyELQ
|
|
94
|
-
output data. Remember that absence of evidence for methane emissions does not always imply evidence for absence of
|
|
95
|
-
methane emissions; for instance, when meteorological conditions are such that there is no sensor downwind of a methane
|
|
96
|
-
source during the selected monitoring period, then it will be impossible to detect, localize and quantify
|
|
97
|
-
this particular source.
|
|
98
|
-
Also, there are limitations to the forward dispersion model which is used in the analysis.
|
|
99
|
-
For example, the performance of the Gaussian plume dispersion model will degrade at lower wind speeds.
|
|
100
|
-
Therefore, careful interpretation of the data is always required.
|
|
93
|
+
The results from pyELQ come with uncertainty ranges that are representative of probability density functions sampled
|
|
94
|
+
by a Markov Chain Monte Carlo method. One should take these uncertainty ranges into account when interpreting the pyELQ
|
|
95
|
+
output data. Remember that absence of evidence for methane emissions does not always imply evidence for absence of
|
|
96
|
+
methane emissions; for instance, when meteorological conditions are such that there is no sensor downwind of a methane
|
|
97
|
+
source during the selected monitoring period, then it will be impossible to detect, localize and quantify
|
|
98
|
+
this particular source.
|
|
99
|
+
Also, there are limitations to the forward dispersion model which is used in the analysis.
|
|
100
|
+
For example, the performance of the Gaussian plume dispersion model will degrade at lower wind speeds.
|
|
101
|
+
Therefore, careful interpretation of the data is always required.
|
|
101
102
|
|
|
102
103
|
***
|
|
103
104
|
# Installing pyELQ as a package
|
|
104
105
|
Suppose you want to use this pyELQ package in a different project.
|
|
105
|
-
You can install it from [PyPi](https://pypi.org/project/pyelq/) through pip
|
|
106
|
+
You can install it from [PyPi](https://pypi.org/project/pyelq/) through pip
|
|
106
107
|
`pip install pyelq`.
|
|
107
|
-
Or you could clone the repository and install it from the source code.
|
|
108
|
+
Or you could clone the repository and install it from the source code.
|
|
108
109
|
After activating the environment you want to install pyELQ in, open a terminal, move to the main pyELQ folder
|
|
109
110
|
where pyproject.toml is located and run `pip install .`, optionally you can pass the `-e` flag is for editable mode.
|
|
110
111
|
All the main options, info and settings for the package are found in the pyproject.toml file which sits in this repo
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
pyelq/__init__.py,sha256=QTy9T8kZm6WlCn5fZtb8oMrOYQQY1VaSp35YcCX8www,415
|
|
2
|
+
pyelq/component/__init__.py,sha256=z-fBVCQdUyioLsUdVyOph4NtjCaNvey9oEOMhOn4FcM,247
|
|
3
|
+
pyelq/component/background.py,sha256=zEy4Z7Rsy6mojJ5o4yfIpDDF1G22L-EHd-JuNKwwQBs,19133
|
|
4
|
+
pyelq/component/component.py,sha256=zaO2xYVu764niqLWP8bX23ieS1BhCKEhZ3HZ_UyB-m4,2374
|
|
5
|
+
pyelq/component/error_model.py,sha256=zl8H7LJpe3GtUdVeFKQkX8-gLn0XCTC9miPMHgwC4VA,16275
|
|
6
|
+
pyelq/component/offset.py,sha256=Ag9UGeVxW4q6l1E2blkYZvdw9CyGdRbhwKF8uV1YAsA,7732
|
|
7
|
+
pyelq/component/source_model.py,sha256=_44lQvGh2tYpR37u4uwhN6rQIznIW8x10nZ_HLhauQw,47671
|
|
8
|
+
pyelq/coordinate_system.py,sha256=VnyRDi22R1L99iRUyyhdBj67wSfgJG_1dU1Cgw9s8xQ,22283
|
|
9
|
+
pyelq/data_access/__init__.py,sha256=hj7V4vJq4Z4OKehHZvooHuFhzRxVfdLx6hzxr5869rk,187
|
|
10
|
+
pyelq/data_access/data_access.py,sha256=L7W92NCQMp0XffNACKm-V5EpYmLDjsYynbdaLSL_taM,3985
|
|
11
|
+
pyelq/dispersion_model/__init__.py,sha256=eSvJp7PYNcs_pVIlYdHxc85vaTOrPkPOo3uq2cv6Hqk,242
|
|
12
|
+
pyelq/dispersion_model/dispersion_model.py,sha256=ClYTlmp7fKT1gB9QvDB0Swjsgtpprzg4uBWq7xRhjo0,9644
|
|
13
|
+
pyelq/dispersion_model/finite_volume.py,sha256=bgFEUFcphV5GgjKOCi1sgyp55ngOsJOrXpe7045Q6Uk,56843
|
|
14
|
+
pyelq/dispersion_model/gaussian_plume.py,sha256=V1Edu6-G_s08yhTVNLWaVYuwss2ARVZcPZPDH5xWGLY,21211
|
|
15
|
+
pyelq/dispersion_model/site_layout.py,sha256=F7kzEKK1yTV3zbPj5Aj6dcEDimudqm5G0PVDLxSghCs,4439
|
|
16
|
+
pyelq/dlm.py,sha256=4FIEtCJtSCznST2tlURkPrxavfDFrwYGkN-OXmOmQpE,25307
|
|
17
|
+
pyelq/gas_species.py,sha256=WcZBtmrP-JjgluCAxNmNLvD-ndGNWEvxBVI_DCznAlI,6909
|
|
18
|
+
pyelq/meteorology/__init__.py,sha256=3rS7hCKJ5-dwH3I2FxdoWbSy6ena7-YugiNZ4lmGhGk,212
|
|
19
|
+
pyelq/meteorology/meteorology.py,sha256=HxQ5UJmkGLzNQ8EqKtepph9SIox9N6ayazBe2q41iLE,17027
|
|
20
|
+
pyelq/meteorology/meteorology_windfield.py,sha256=mZ6M3ECGYmv6MN_-3_IatkfTx1OUMLHMUTZd6FrckGE,8891
|
|
21
|
+
pyelq/model.py,sha256=52mPqGC0GbivafE7rgXBzYVKGhVEeXq5pAUF08mwYv8,15266
|
|
22
|
+
pyelq/plotting/__init__.py,sha256=qD90WWAAcrDBjSbvAMV464bp4BLJEJ6hcB_sRqmTh7k,177
|
|
23
|
+
pyelq/plotting/plot.py,sha256=nOEg9GdJoZk_MnAic3nSswfBWI6Do61S_fU3xZ6wPiM,50125
|
|
24
|
+
pyelq/preprocessing.py,sha256=9fknWjJA4pousDljOnKLO_lTPaljSLqJyzqOC1gfuPo,16381
|
|
25
|
+
pyelq/sensor/__init__.py,sha256=eEkhOjjJtyIkRrnpkmdFNFAEwZcqtbRX5DxbOXN-Dy4,198
|
|
26
|
+
pyelq/sensor/beam.py,sha256=6E7-cH_IoBRgferIcyOWUfnFjnakhpTbnfWDAyABezA,1806
|
|
27
|
+
pyelq/sensor/satellite.py,sha256=2T6NcSPc_YxgnhyOTQz8zlz6IqWl6uSnDTFHGBoy0lI,2316
|
|
28
|
+
pyelq/sensor/sensor.py,sha256=o48pd2-BxBwIGD3Eb1g1iooQAGTpB_wWATINuGbu3y0,12729
|
|
29
|
+
pyelq/source_map.py,sha256=pX02fw_fji489_vTwo2g1Xy0rh16ffMGJhHfahQeeeM,5743
|
|
30
|
+
pyelq/support_functions/__init__.py,sha256=-7w2WoaaQuyK0-abgKBscl97-gA9Cf1xVl2cPDBUqbU,230
|
|
31
|
+
pyelq/support_functions/post_processing.py,sha256=hT46tgj1SXuWEaO99Hk812CbtTGj_33OoNHlIkkL7bk,16997
|
|
32
|
+
pyelq/support_functions/spatio_temporal_interpolation.py,sha256=QPjd5ncho7YMDe4Y0WwWsQcAKnbNGQa-rfZ6RN4YAdY,10610
|
|
33
|
+
pyelq-1.2.0.dist-info/METADATA,sha256=ZWDMjbyp8cQMJZYNQkeWI8zHPPiyJxR1YDh5aLjaNv4,8505
|
|
34
|
+
pyelq-1.2.0.dist-info/WHEEL,sha256=kJCRJT_g0adfAJzTx2GUMmS80rTJIVHRCfG0DQgLq3o,88
|
|
35
|
+
pyelq-1.2.0.dist-info/licenses/LICENSE.md,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
36
|
+
pyelq-1.2.0.dist-info/licenses/LICENSES/Apache-2.0.txt,sha256=B05uMshqTA74s-0ltyHKI6yoPfJ3zYgQbvcXfDVGFf8,10280
|
|
37
|
+
pyelq-1.2.0.dist-info/RECORD,,
|
pyelq-1.1.4.dist-info/RECORD
DELETED
|
@@ -1,32 +0,0 @@
|
|
|
1
|
-
pyelq/__init__.py,sha256=DWp54sQ6AiZv9IKwd9y0Y7pZBVv5QA9em4n9Oq34MoM,414
|
|
2
|
-
pyelq/component/__init__.py,sha256=6uV-V7spjDQ1sI6PT02Q9ljuqacChygAteNYfv99RCA,245
|
|
3
|
-
pyelq/component/background.py,sha256=kalBr0fck1ktDUoNlLNff805tM2yZI0TVHPbUL5uZ5s,18705
|
|
4
|
-
pyelq/component/component.py,sha256=rOQSWhhnKnx8Vc5MevX9B1rt42UY9gabFKq_7cJFQO8,2360
|
|
5
|
-
pyelq/component/error_model.py,sha256=NLPKEuEPnb2DwaX78CibHy7ioMkljRzwT96Y8h6_sDc,16261
|
|
6
|
-
pyelq/component/offset.py,sha256=RPQLjdzvS-7Moy1u_wAF84DQEEn4MqfW6RMozwf-11g,7718
|
|
7
|
-
pyelq/component/source_model.py,sha256=eAAI8CDpd9Q474W8-1KA5t9-Zjoa2Jz-hwZ3asOxtLc,44873
|
|
8
|
-
pyelq/coordinate_system.py,sha256=UXk6GOghMxEE3NfWcGPSVsI1q89xEjHTe9sfHbh-gDc,22281
|
|
9
|
-
pyelq/data_access/__init__.py,sha256=hLTVYOMdmEVsckJ5OOCX9jf2Cqw5xRkQnmxCmYCGWXw,186
|
|
10
|
-
pyelq/data_access/data_access.py,sha256=mI2HYxsZCr4vmmV-t85HYlHuZ06GJEBX4ypx9Putou0,3973
|
|
11
|
-
pyelq/dispersion_model/__init__.py,sha256=KN1hyrEBsfoIHd0_u_BGy2n-KliiDr-_7YAHiNzhyT0,194
|
|
12
|
-
pyelq/dispersion_model/gaussian_plume.py,sha256=q19ZB0wJBEAcdTOYb5AUw85T7yGlM7lImXPc2Uh0Gfo,31404
|
|
13
|
-
pyelq/dlm.py,sha256=LnD3BpvYjuHw_MiZaFfamfyJMQTMxd0kay_Z7w_yWH0,25375
|
|
14
|
-
pyelq/gas_species.py,sha256=tQy41zINgI8Q1P1iHKQWU2X48FwtzYb-mCMdYT2yqOc,6908
|
|
15
|
-
pyelq/meteorology.py,sha256=INs_Y-SGVD27re2THTANsgnw81iu9olr-ozA4lnD08U,17433
|
|
16
|
-
pyelq/model.py,sha256=P3H_MzQRwQpsK1aW69NcwKNyTuft_MHhsc82uSox8s4,15252
|
|
17
|
-
pyelq/plotting/__init__.py,sha256=E3qUfLWIHlC11-P5GJKOkflKclZB8TzHpRnOZbg9swk,176
|
|
18
|
-
pyelq/plotting/plot.py,sha256=2JYl1bR2794Lh6OezodZKTPJnRqms-n7l8Cl3nnWQEQ,50124
|
|
19
|
-
pyelq/preprocessing.py,sha256=KDYrfOJSJHePWqdn4rWBum8AKLuO8FzaZBJjTB3uImY,12654
|
|
20
|
-
pyelq/sensor/__init__.py,sha256=RK00UUnv4z45_kAdFoSIUKD6WmzPbbqYOlbyGG-_ZLw,197
|
|
21
|
-
pyelq/sensor/beam.py,sha256=6E7-cH_IoBRgferIcyOWUfnFjnakhpTbnfWDAyABezA,1806
|
|
22
|
-
pyelq/sensor/satellite.py,sha256=2T6NcSPc_YxgnhyOTQz8zlz6IqWl6uSnDTFHGBoy0lI,2316
|
|
23
|
-
pyelq/sensor/sensor.py,sha256=t7bqU3222BRS7hXs4pWeTdeB1IkKlFYH6VdNtDU2RbU,9183
|
|
24
|
-
pyelq/source_map.py,sha256=L82dvrZTpVQBy10BhoCJ09-gVO5d90DDwvIdIST9l4g,5741
|
|
25
|
-
pyelq/support_functions/__init__.py,sha256=ZYcVLitB51BXYojlt6FEZ4ciDFkRlA5ZkJvnzWQsdD4,229
|
|
26
|
-
pyelq/support_functions/post_processing.py,sha256=MBoe75SifPnsFyooA1oaF-waC-rVxtqEk-HiNjrJpQQ,16996
|
|
27
|
-
pyelq/support_functions/spatio_temporal_interpolation.py,sha256=sU_-9Yz4I1YgNa78_KvRclsaP4LlZiE0HG7_OZ1Vahk,10609
|
|
28
|
-
pyelq-1.1.4.dist-info/LICENSE.md,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
29
|
-
pyelq-1.1.4.dist-info/LICENSES/Apache-2.0.txt,sha256=B05uMshqTA74s-0ltyHKI6yoPfJ3zYgQbvcXfDVGFf8,10280
|
|
30
|
-
pyelq-1.1.4.dist-info/METADATA,sha256=JFuMlUv03rEPR9UyIA_Gcxt-eHY6sH_X9CgqNswgPYs,8515
|
|
31
|
-
pyelq-1.1.4.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
|
32
|
-
pyelq-1.1.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|