pyeggp 1.0.2__cp311-cp311-win_amd64.whl → 1.0.4__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pyeggp/__init__.py CHANGED
@@ -13,6 +13,7 @@ import atexit
13
13
  from contextlib import contextmanager
14
14
  from threading import Lock
15
15
  from typing import Iterator, List
16
+ import string
16
17
  from io import StringIO
17
18
  import tempfile
18
19
  import csv
@@ -31,7 +32,7 @@ from ._binding import (
31
32
  unsafe_hs_pyeggp_exit,
32
33
  )
33
34
 
34
- VERSION: str = "1.3.0"
35
+ VERSION: str = "1.0.4"
35
36
 
36
37
 
37
38
  _hs_rts_init: bool = False
@@ -69,8 +70,140 @@ def pyeggp_run(dataset: str, gen: int, nPop: int, maxSize: int, nTournament: int
69
70
  with hs_rts_init():
70
71
  return unsafe_hs_pyeggp_run(dataset, gen, nPop, maxSize, nTournament, pc, pm, nonterminals, loss, optIter, optRepeat, nParams, split, simplify, dumpTo, loadFrom)
71
72
 
73
+ def make_function(expression, loss="MSE"):
74
+ def func(x, t):
75
+ y = eval(expression)
76
+ if loss == "Bernoulli":
77
+ return 1/(1 + np.exp(-y))
78
+ elif loss == "Poisson":
79
+ return np.exp(y)
80
+ return y
81
+ return func
82
+
72
83
  class PyEGGP(BaseEstimator, RegressorMixin):
84
+ """ Builds a symbolic regression model using eggp.
85
+
86
+ Parameters
87
+ ----------
88
+ gen : int, default=100
89
+ The number of generations.
90
+
91
+ nPop : int, default=100
92
+ Population size.
93
+
94
+ maxSize : int, default=15
95
+ Maximum allowed size for the expression.
96
+ This should not be larger than 100 as the e-graph may grow
97
+ too large.
98
+
99
+ nTournament : int, default=3
100
+ Tournament size. During parent selection it will
101
+ pick `nTournament` expressions at random and
102
+ return the best among them.
103
+
104
+ pc : float, default=0.9
105
+ Probability of performing the crossover operator.
106
+
107
+ pm : float, default=0.3
108
+ Probability of performing the mutation operator.
109
+
110
+ nonterminals : str, default="add,sub,mul,div"
111
+ String of a comma separated list of nonterminals.
112
+ These are the allowed functions to be used during the search.
113
+ Available functions: add,sub,mul,div,power,powerabs,aq,abs,sin,cos,
114
+ tan,sinh,cosh,tanh,asin,acos,atan,asinh,acosh,
115
+ atanh,sqrt,sqrtabs,cbrt,square,log,logabs,exp,
116
+ recip,cube.
117
+ Where `aq` is the analytical quotient (x/sqrt(1 + y^2)),
118
+ `powerabs` is the protected power (x^|y|)
119
+ `sqrtabs` is the protected sqrt (sqrt(|x|))
120
+ `logabs` is the protected log (log(|x|))
121
+ `recip` is the reciprocal (1/x)
122
+ `cbrt` is the cubic root
123
+
124
+ loss : {"MSE", "Gaussian", "Bernoulli", "Poisson"}, default="MSE"
125
+ Loss function used to evaluate the expressions:
126
+ - MSE (mean squared error) should be used for regression problems.
127
+ - Gaussian likelihood should be used for regression problem when you want to
128
+ fit the error term.
129
+ - Bernoulli likelihood should be used for classification problem.
130
+ - Poisson likelihood should be used when the data distribution follows a Poisson.
131
+
132
+ optIter : int, default=50
133
+ Number of iterations for the parameter optimization.
134
+
135
+ optRepeat : int, default=2
136
+ Number of restarts for the parameter optimization.
137
+
138
+ nParams : int, default=-1
139
+ Maximum number of parameters. If set to -1 it will
140
+ allow the expression to have any number of parameters.
141
+ If set to a number > 0, it will limit the number of parameters,
142
+ but allow it to appear multiple times in the expression.
143
+ E.g., t0 * x0 + exp(t0*x0 + t1)
144
+
145
+ split : int, default=1
146
+ How to split the data to create the validation set.
147
+ If set to 1, it will use the whole data for fitting the parameter and
148
+ calculating the fitness function.
149
+ If set to n>1, it will use 1/n for calculating the fitness function
150
+ and the reminder for fitting the parameter.
151
+
152
+ simplify : bool, default=False
153
+ Whether to apply a final step of equality saturation to simplify the expressions.
154
+
155
+ dumpTo : str, default=""
156
+ If not empty, it will save the final e-graph into the filename.
157
+
158
+ loadFrom : str, default=""
159
+ If not empty, it will load an e-graph and resume the search.
160
+ The user must ensure that the loaded e-graph is from the same
161
+ dataset and loss function.
162
+
163
+ Examples
164
+ --------
165
+ >>> from pyeggp import PyEGGP
166
+ >>> import numpy as np
167
+ >>> X = np.arange(100).reshape(100, 1)
168
+ >>> y = np.zeros((100, ))
169
+ >>> estimator = PyEGGP()
170
+ >>> estimator.fit(X, y)
171
+ >>>
172
+ >>> estimator = PyEGGP(loss="Bernoulli")
173
+ >>> estimator.fit(X, y)
174
+ """
73
175
  def __init__(self, gen = 100, nPop = 100, maxSize = 15, nTournament = 3, pc = 0.9, pm = 0.3, nonterminals = "add,sub,mul,div", loss = "MSE", optIter = 50, optRepeat = 2, nParams = -1, split = 1, simplify = False, dumpTo = "", loadFrom = ""):
176
+ nts = "add,sub,mul,div,power,powerabs,\
177
+ aq,abs,sin,cos,tan,sinh,cosh,tanh,\
178
+ asin,acos,atan,asinh,acosh,atanh,sqrt,\
179
+ sqrtabs,cbrt,square,log,logabs,exp,recip,cube"
180
+ losses = ["MSE", "Gaussian", "Bernoulli", "Poisson"]
181
+ if gen < 1:
182
+ raise ValueError('gen should be greater than 1')
183
+ if nPop < 1:
184
+ raise ValueError('nPop should be greater than 1')
185
+ if maxSize < 1 or maxSize > 100:
186
+ raise ValueError('maxSize should be a value between 1 and 100')
187
+ if nTournament < 1 or nTournament > nPop:
188
+ raise ValueError('nTournament should be a value between 1 and nPop')
189
+ if pc < 0 or pc > 1:
190
+ raise ValueError('pc should be between 0 and 1')
191
+ if pm < 0 or pm > 1:
192
+ raise ValueError('pm should be between 0 and 1')
193
+ if any(t not in nts for t in nonterminals):
194
+ raise ValueError('nonterminals must be a comma separated list of one or more of ', nts)
195
+ if loss not in losses:
196
+ raise ValueError('loss must be one of ', losses)
197
+ if optIter < 0:
198
+ raise ValueError('optIter must be a positive number')
199
+ if optRepeat < 0:
200
+ raise ValueError('optRepeat must be a positive number')
201
+ if nParams < -1:
202
+ raise ValueError('nParams must be either -1 or a positive number')
203
+ if split < 1:
204
+ raise ValueError('split must be equal or greater than 1')
205
+ if not isinstance(simplify, bool):
206
+ raise TypeError('simplify must be a boolean')
74
207
  self.gen = gen
75
208
  self.nPop = nPop
76
209
  self.maxSize = maxSize
@@ -89,6 +222,15 @@ class PyEGGP(BaseEstimator, RegressorMixin):
89
222
  self.is_fitted_ = False
90
223
 
91
224
  def fit(self, X, y):
225
+ ''' Fits the regression model.
226
+
227
+ Parameters
228
+ ----------
229
+ X : np.array
230
+ An m x n np.array describing m observations of n features.
231
+ y : np.array
232
+ An np.array of size m with the measured target values.
233
+ '''
92
234
  if X.ndim == 1:
93
235
  X = X.reshape(-1,1)
94
236
  y = y.reshape(-1, 1)
@@ -108,6 +250,15 @@ class PyEGGP(BaseEstimator, RegressorMixin):
108
250
  return self
109
251
 
110
252
  def fit_mvsr(self, Xs, ys):
253
+ ''' Fits a multi-view regression model.
254
+
255
+ Parameters
256
+ ----------
257
+ Xs : list(np.array)
258
+ A list with k elements of m_k x n np.arrays describing m_k observations of n features.
259
+ ys : list(np.array)
260
+ A list of k elements of np.arrays of size m_k with the measured target values.
261
+ '''
111
262
  if Xs[0].ndim == 1:
112
263
  Xs = [X.reshape(-1,1) for X in Xs]
113
264
  ys = [y.reshape(-1, 1) for y in ys]
@@ -129,10 +280,43 @@ class PyEGGP(BaseEstimator, RegressorMixin):
129
280
  return self
130
281
 
131
282
  def predict(self, X):
283
+ ''' Generates the prediction using the best model (selected by accuracy)
284
+
285
+ Parameters
286
+ ----------
287
+ X : np.array
288
+ An m x n np.array describing m observations of n features.
289
+ This array must have the same number of features as the training data.
290
+
291
+ Return
292
+ ------
293
+ y : np.array
294
+ A vector of predictions
295
+
296
+ A table with the fitted models and additional information
297
+ will be stored as a Pandas dataframe in self.results.
298
+ '''
132
299
  check_is_fitted(self)
133
300
  return self.evaluate_best_model(X)
134
301
 
135
302
  def predict_mvsr(self, X, view):
303
+ ''' Generates the prediction using the best model (selected by accuracy)
304
+ of the sepecified `view`
305
+
306
+ Parameters
307
+ ----------
308
+ X : np.array
309
+ An m x n np.array describing m observations of n features.
310
+ This array must have the same number of features as the training data.
311
+
312
+ view : int
313
+ The index of the view (starting at 0).
314
+
315
+ Return
316
+ ------
317
+ y : np.array
318
+ A vector of predictions
319
+ '''
136
320
  check_is_fitted(self)
137
321
  return self.evaluate_best_model_view(X, view)
138
322
 
@@ -140,26 +324,65 @@ class PyEGGP(BaseEstimator, RegressorMixin):
140
324
  if x.ndim == 1:
141
325
  x = x.reshape(-1,1)
142
326
  t = np.array(list(map(float, self.results.iloc[-1].theta.split(";"))))
143
- return eval(self.results.iloc[-1].Numpy)
327
+ y = eval(self.results.iloc[-1].Numpy)
328
+ if self.loss == "Bernoulli":
329
+ return 1/(1 + np.exp(-y))
330
+ elif self.loss == "Poisson":
331
+ return np.exp(y)
332
+ return y
144
333
  def evaluate_best_model_view(self, x, view):
145
334
  if x.ndim == 1:
146
335
  x = x.reshape(-1,1)
147
336
  ix = self.results.iloc[-1].id
148
337
  best = self.results[self.results.id==ix].iloc[view]
149
338
  t = np.array(list(map(float, best.theta.split(";"))))
150
- return eval(best.Numpy)
339
+ y = eval(best.Numpy)
340
+ if self.loss == "Bernoulli":
341
+ return 1/(1 + np.exp(-y))
342
+ elif self.loss == "Poisson":
343
+ return np.exp(y)
344
+ return y
151
345
 
152
346
  def evaluate_model_view(self, x, ix, view):
153
347
  if x.ndim == 1:
154
348
  x = x.reshape(-1,1)
155
349
  best = self.results[self.results.id==ix].iloc[view]
156
350
  t = np.array(list(map(float, best.theta.split(";"))))
157
- return eval(best.Numpy)
351
+ y = eval(best.Numpy)
352
+ if self.loss == "Bernoulli":
353
+ return 1/(1 + np.exp(-y))
354
+ elif self.loss == "Poisson":
355
+ return np.exp(y)
356
+ return y
158
357
  def evaluate_model(self, ix, x):
159
358
  if x.ndim == 1:
160
359
  x = x.reshape(-1,1)
161
360
  t = np.array(list(map(float, self.results.iloc[-1].theta.split(";"))))
162
- return eval(self.results.iloc[i].Numpy)
361
+ y = eval(self.results.iloc[i].Numpy)
362
+ if self.loss == "Bernoulli":
363
+ return 1/(1 + np.exp(-y))
364
+ elif self.loss == "Poisson":
365
+ return np.exp(y)
366
+ return y
163
367
  def score(self, X, y):
368
+ ''' Calculates the score (single-view only).
369
+ '''
164
370
  ypred = self.evaluate_best_model(X)
165
371
  return r2_score(y, ypred)
372
+ def get_model(self, idx):
373
+ ''' Get a `model` function and its visual representation. '''
374
+ alphabet = list(string.ascii_uppercase)
375
+ row = self.results[self.results['id']==idx].iloc[0]
376
+ visual_expression = row['Numpy']
377
+ model = make_function(visual_expression, self.loss)
378
+ n_params_used = len(row['theta'].split(sep=';'))
379
+
380
+ # Works for solutions with less than 26 parameters
381
+ for i in range(n_params_used):
382
+ visual_expression = visual_expression.replace(f't[{i}]', alphabet[i])
383
+
384
+ # Works for data with less than 50 dimensions
385
+ for i in range(50):
386
+ visual_expression = visual_expression.replace(f'x[:, {i}]', f'X{i}')
387
+
388
+ return model, visual_expression
Binary file
@@ -1,2 +1,2 @@
1
1
  Version: 1.10.0
2
- Arguments: ['C:\\hostedtoolcache\\windows\\Python\\3.12.9\\x64\\Scripts\\delvewheel', 'repair', '-w', 'C:\\Users\\runneradmin\\AppData\\Local\\Temp\\cibw-run-pdi273kw\\cp311-win_amd64\\repaired_wheel', 'C:\\Users\\runneradmin\\AppData\\Local\\Temp\\cibw-run-pdi273kw\\cp311-win_amd64\\built_wheel\\pyeggp-1.0.2-cp311-cp311-win_amd64.whl', '--add-path', 'C:\\nlopt\\bin']
2
+ Arguments: ['C:\\hostedtoolcache\\windows\\Python\\3.12.9\\x64\\Scripts\\delvewheel', 'repair', '-w', 'C:\\Users\\runneradmin\\AppData\\Local\\Temp\\cibw-run-ig5ht48y\\cp311-win_amd64\\repaired_wheel', 'C:\\Users\\runneradmin\\AppData\\Local\\Temp\\cibw-run-ig5ht48y\\cp311-win_amd64\\built_wheel\\pyeggp-1.0.4-cp311-cp311-win_amd64.whl', '--add-path', 'C:\\nlopt\\bin']
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyeggp
3
- Version: 1.0.2
3
+ Version: 1.0.4
4
4
  Summary: Python Wheels for eggp algorithm.
5
5
  Author-email: Fabricio Olivetti <folivetti@users.noreply.github.com>
6
6
  License: GNU GENERAL PUBLIC LICENSE
@@ -695,16 +695,181 @@ Provides-Extra: mypy
695
695
  Requires-Dist: types_setuptools>=45; extra == "mypy"
696
696
  Dynamic: license-file
697
697
 
698
- # pyeggp - Python e-graph GP
698
+ # PyEGGP
699
699
 
700
- Python bindings for [eggp](https://github.com/folivetti/srtree/blob/main/apps/eggp/README.md).
700
+ A Python package for symbolic regression using e-graph-based genetic programming. PyEGGP provides a scikit-learn compatible API for evolutionary symbolic regression tasks.
701
701
 
702
- ggp (e-graph genetic programming), follows the same structure as the traditional GP. The initial population is created using ramped half-and-half respecting a maximum size and maximum depth parameter and, for a number of generations, it will choose two parents using tournament selection, apply the subtree crossover with probability $pc$ followed by the subtree mutation with probability $pm$, when the offsprings replace the current population following a dominance criteria.
702
+ More info [here](https://github.com/folivetti/srtree/tree/main/apps/eggp)
703
703
 
704
- How to install the package:
704
+ ## Installation
705
705
 
706
706
  ```bash
707
707
  pip install pyeggp
708
708
  ```
709
709
 
710
+ ## Features
711
+
712
+ - Scikit-learn compatible API with `fit()` and `predict()` methods
713
+ - Genetic programming approach with e-graph representation
714
+ - Support for **multi-view symbolic regression** [see here](https://arxiv.org/abs/2402.04298)
715
+ - Customizable evolutionary parameters (population size, tournament selection, etc.)
716
+ - Flexible function set selection
717
+ - Various loss functions for different problem types
718
+ - Parameter optimization with multiple restarts
719
+ - Optional expression simplification through equality saturation
720
+ - Ability to save and load e-graphs
721
+
722
+ ## Usage
723
+
724
+ ### Basic Example
725
+
726
+ ```python
727
+ from pyeggp import PyEGGP
728
+ import numpy as np
729
+
730
+ # Create sample data
731
+ X = np.linspace(-10, 10, 100).reshape(-1, 1)
732
+ y = 2 * X.ravel() + 3 * np.sin(X.ravel()) + np.random.normal(0, 1, 100)
733
+
734
+ # Create and fit the model
735
+ model = PyEGGP(gen=100, nonterminals="add,sub,mul,div,sin,cos")
736
+ model.fit(X, y)
737
+
738
+ # Make predictions
739
+ y_pred = model.predict(X)
740
+
741
+ # Examine the results
742
+ print(model.results)
743
+ ```
744
+
745
+ ### Multi-View Symbolic Regression
746
+
747
+ ```python
748
+ from pyeggp import PyEGGP
749
+ import numpy as np
750
+
751
+ # Create multiple views of data
752
+ X1 = np.linspace(-5, 5, 50).reshape(-1, 1)
753
+ y1 = np.sin(X1.ravel()) + np.random.normal(0, 0.1, 50)
754
+
755
+ X2 = np.linspace(0, 10, 100).reshape(-1, 1)
756
+ y2 = np.sin(X2.ravel()) + np.random.normal(0, 0.2, 100)
757
+
758
+ # Create and fit multi-view model
759
+ model = PyEGGP(gen=150, nPop=200)
760
+ model.fit_mvsr([X1, X2], [y1, y2])
761
+
762
+ # Make predictions for each view
763
+ y_pred1 = model.predict_mvsr(X1, view=0)
764
+ y_pred2 = model.predict_mvsr(X2, view=1)
765
+ ```
766
+
767
+ ### Integration with scikit-learn
768
+
769
+ ```python
770
+ from sklearn.model_selection import train_test_split
771
+ from sklearn.metrics import mean_squared_error
772
+ from pyeggp import PyEGGP
773
+
774
+ # Split data
775
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
776
+
777
+ # Create and fit model
778
+ model = PyEGGP(gen=150, nPop=150, optIter=100)
779
+ model.fit(X_train, y_train)
780
+
781
+ # Evaluate on test set
782
+ y_pred = model.predict(X_test)
783
+ mse = mean_squared_error(y_test, y_pred)
784
+ print(f"Test MSE: {mse}")
785
+ ```
786
+
787
+ ## Parameters
788
+
789
+ | Parameter | Type | Default | Description |
790
+ |-----------|------|---------|-------------|
791
+ | `gen` | int | 100 | Number of generations to run |
792
+ | `nPop` | int | 100 | Population size |
793
+ | `maxSize` | int | 15 | Maximum allowed size for expressions (max 100) |
794
+ | `nTournament` | int | 3 | Tournament size for parent selection |
795
+ | `pc` | float | 0.9 | Probability of performing crossover |
796
+ | `pm` | float | 0.3 | Probability of performing mutation |
797
+ | `nonterminals` | str | "add,sub,mul,div" | Comma-separated list of allowed functions |
798
+ | `loss` | str | "MSE" | Loss function: "MSE", "Gaussian", "Bernoulli", or "Poisson" |
799
+ | `optIter` | int | 50 | Number of iterations for parameter optimization |
800
+ | `optRepeat` | int | 2 | Number of restarts for parameter optimization |
801
+ | `nParams` | int | -1 | Maximum number of parameters (-1 for unlimited) |
802
+ | `split` | int | 1 | Data splitting ratio for validation |
803
+ | `simplify` | bool | False | Whether to apply equality saturation to simplify expressions |
804
+ | `dumpTo` | str | "" | Filename to save the final e-graph |
805
+ | `loadFrom` | str | "" | Filename to load an e-graph to resume search |
806
+
807
+ ## Available Functions
808
+
809
+ The following functions can be used in the `nonterminals` parameter:
810
+
811
+ - Basic operations: `add`, `sub`, `mul`, `div`
812
+ - Powers: `power`, `powerabs`, `square`, `cube`
813
+ - Roots: `sqrt`, `sqrtabs`, `cbrt`
814
+ - Trigonometric: `sin`, `cos`, `tan`, `asin`, `acos`, `atan`
815
+ - Hyperbolic: `sinh`, `cosh`, `tanh`, `asinh`, `acosh`, `atanh`
816
+ - Others: `abs`, `log`, `logabs`, `exp`, `recip`, `aq` (analytical quotient)
817
+
818
+ ## Methods
819
+
820
+ ### Core Methods
821
+ - `fit(X, y)`: Fits the symbolic regression model
822
+ - `predict(X)`: Generates predictions using the best model
823
+ - `score(X, y)`: Computes R² score of the best model
824
+
825
+ ### Multi-View Methods
826
+ - `fit_mvsr(Xs, ys)`: Fits a multi-view regression model
827
+ - `predict_mvsr(X, view)`: Generates predictions for a specific view
828
+ - `evaluate_best_model_view(X, view)`: Evaluates the best model on a specific view
829
+ - `evaluate_model_view(X, ix, view)`: Evaluates a specific model on a specific view
830
+
831
+ ### Utility Methods
832
+ - `evaluate_best_model(X)`: Evaluates the best model on the given data
833
+ - `evaluate_model(ix, X)`: Evaluates the model with index `ix` on the given data
834
+ - `get_model(idx)`: Returns a model function and its visual representation
835
+
836
+ ## Results
837
+
838
+ After fitting, the `results` attribute contains a pandas DataFrame with details about the discovered models, including:
839
+ - Mathematical expressions
840
+ - Model complexity
841
+ - Parameter values
842
+ - Error metrics
843
+ - NumPy-compatible expressions
844
+
845
+ ## License
846
+
847
+ [LICENSE]
848
+
849
+ ## Citation
850
+
851
+ If you use PyEGGP in your research, please cite:
852
+
853
+ ```
854
+ @inproceedings{eggp,
855
+ author = {de Franca, Fabricio Olivetti and Kronberger, Gabriel},
856
+ title = {Improving Genetic Programming for Symbolic Regression with Equality Graphs},
857
+ year = {2025},
858
+ isbn = {9798400714658},
859
+ publisher = {Association for Computing Machinery},
860
+ address = {New York, NY, USA},
861
+ url = {https://doi.org/10.1145/3712256.3726383},
862
+ doi = {10.1145/3712256.3726383},
863
+ booktitle = {Proceedings of the Genetic and Evolutionary Computation Conference},
864
+ pages = {},
865
+ numpages = {9},
866
+ keywords = {Symbolic regression, Genetic programming, Equality saturation, Equality graphs},
867
+ location = {Malaga, Spain},
868
+ series = {GECCO '25},
869
+ archivePrefix = {arXiv},
870
+ eprint = {2501.17848},
871
+ primaryClass = {cs.LG},
872
+ }
873
+ ```
874
+
710
875
  The bindings were created following the amazing example written by [wenkokke](https://github.com/wenkokke/example-haskell-wheel)
@@ -1,19 +1,19 @@
1
1
  pyeggp/binding.i,sha256=UvqL1SWs47LNCpgN3F6l3oufPvwaqUzdHpk0cEZQa5M,1972
2
2
  pyeggp/binding.py,sha256=EhVDh4fL2Zs7erIc8YmMq8Z3VW256E2dkKdPpaprMq8,2701
3
3
  pyeggp/typing.py,sha256=aVUeV85Ig86cccHbyV1KDWjp_ioTl6z3omPA2ZPk0-4,531
4
- pyeggp/_binding.cp311-win_amd64.pyd,sha256=4duaq4X876_TZrwRoVXzxFdmYh-VRYqbgw74Lh61_hI,40249856
4
+ pyeggp/_binding.cp311-win_amd64.pyd,sha256=u0HUUKmq9yDRzHpfLcZlkmMtpOSaZi2eY07z1DLmL38,40249856
5
5
  pyeggp/_binding.py,sha256=6f4Z0L1t0gM_KYnA3hscHGIe1xVqnLt7bxph-_HpC2o,598
6
6
  pyeggp/_binding.pyi,sha256=tLpel6vl4zZ_mftC6zVaWVfV2zhVxDLIZpFQ3cisgH4,467
7
- pyeggp/__init__.py,sha256=oJQldrtBzrfTTRx235K8iEzdTdHJF3V1OLTOYp6MXYg,6257
7
+ pyeggp/__init__.py,sha256=9GnmBOdWA0nwF09fqnA0tUE5sh_EB5TMXxaEvdXHrOk,14995
8
8
  pyeggp/__main__.py,sha256=b5xBNv5E7XRE2a2cCHvSYQvDTJ7i6SR2JuAvstvEaFE,166
9
- pyeggp-1.0.2.dist-info/DELVEWHEEL,sha256=PETyt-BxNqlgXeyoJUJya2EWtj74QnWHWi0FkWxJ2wg,387
10
- pyeggp-1.0.2.dist-info/entry_points.txt,sha256=NJouaQ2UoCLBu7Toqer0FBvNSDYMawR_Wx9STMdopyY,48
11
- pyeggp-1.0.2.dist-info/METADATA,sha256=HTNWY_wO97MHCGBqRfJUOod-zCK4S6gtN3xn8aYsX-c,42930
12
- pyeggp-1.0.2.dist-info/RECORD,,
13
- pyeggp-1.0.2.dist-info/top_level.txt,sha256=iLrWfWZHh4NruYDgVyn2ntEB-uJ8fIs95nzNVLIhKE4,7
14
- pyeggp-1.0.2.dist-info/WHEEL,sha256=_ZWIY2n7n6SpiuIFl1-RvcMp4Ty36T57FKf-7NzqZHM,101
15
- pyeggp-1.0.2.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
9
+ pyeggp-1.0.4.dist-info/DELVEWHEEL,sha256=PpJhDf7Xk7LH2vXtn7pNc7gpZCB1xv5u_QaKouI0lDU,387
10
+ pyeggp-1.0.4.dist-info/entry_points.txt,sha256=NJouaQ2UoCLBu7Toqer0FBvNSDYMawR_Wx9STMdopyY,48
11
+ pyeggp-1.0.4.dist-info/METADATA,sha256=qKFsu0PQJFYSvHTxWONiYsmZy5rpe7brGh5LG7OKHAY,48133
12
+ pyeggp-1.0.4.dist-info/RECORD,,
13
+ pyeggp-1.0.4.dist-info/top_level.txt,sha256=iLrWfWZHh4NruYDgVyn2ntEB-uJ8fIs95nzNVLIhKE4,7
14
+ pyeggp-1.0.4.dist-info/WHEEL,sha256=pkI-s5KKCTCXRcuamRCpmUHK9lBRiVf1mC9_VUZSXgc,101
15
+ pyeggp-1.0.4.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
16
16
  pyeggp.libs/libgcc_s_seh-1-c7e71e753d95ee0b157469f5daa29a03.dll,sha256=OaympRU538qibFmFvn4Gt-RCKJiOQeGMApqEFl7_fKY,101376
17
- pyeggp.libs/libnlopt-d04b99da04931c2c76fbfa6fc8945575.dll,sha256=tJ6Hw54UDvKe_x7jgChu1Mov5vyk5l3wBaA5sbixjH8,749190
17
+ pyeggp.libs/libnlopt-58b7f3854da0d511f4c514d3d8ae1baf.dll,sha256=hz1uvtchRLmi07vtE0YdBCWx2-Ee2t-Iye0R6am1fvg,749190
18
18
  pyeggp.libs/libstdc++-6-a07611cfa5f65b02dbc1ace58f4dc030.dll,sha256=F4uaDJoJUOIf4DY3GuDR8SWay0W_LEel8SY8zJYod-k,2020352
19
19
  pyeggp.libs/libwinpthread-1-2db4a17751d27a5781b70c35799daa95.dll,sha256=4BuOhf1nwrhh9k1MzH32B1m1iapBAACij6K4SiCJF1s,54784
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.1.0)
2
+ Generator: setuptools (78.1.1)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp311-cp311-win_amd64
5
5