pyeasyphd 0.4.42__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. pyeasyphd/.python-version +1 -0
  2. pyeasyphd/Main.sublime-menu +43 -0
  3. pyeasyphd/__init__.py +5 -0
  4. pyeasyphd/data/templates/csl/apa-no-ampersand.csl +2183 -0
  5. pyeasyphd/data/templates/csl/apa.csl +2133 -0
  6. pyeasyphd/data/templates/csl/ieee.csl +512 -0
  7. pyeasyphd/data/templates/tex/Article.tex +38 -0
  8. pyeasyphd/data/templates/tex/Article_Header.tex +29 -0
  9. pyeasyphd/data/templates/tex/Article_Tail.tex +3 -0
  10. pyeasyphd/data/templates/tex/Beamer_Header.tex +79 -0
  11. pyeasyphd/data/templates/tex/Beamer_Tail.tex +14 -0
  12. pyeasyphd/data/templates/tex/Style.tex +240 -0
  13. pyeasyphd/data/templates/tex/TEVC_Header.tex +52 -0
  14. pyeasyphd/data/templates/tex/TEVC_Tail.tex +4 -0
  15. pyeasyphd/data/templates/tex/eisvogel.tex +1064 -0
  16. pyeasyphd/data/templates/tex/math.tex +201 -0
  17. pyeasyphd/data/templates/tex/math_commands.tex +677 -0
  18. pyeasyphd/data/templates/tex/nextaimathmacros.sty +681 -0
  19. pyeasyphd/main/__init__.py +6 -0
  20. pyeasyphd/main/basic_input.py +101 -0
  21. pyeasyphd/main/pandoc_md_to.py +380 -0
  22. pyeasyphd/main/python_run_md.py +320 -0
  23. pyeasyphd/main/python_run_tex.py +200 -0
  24. pyeasyphd/pyeasyphd.py +86 -0
  25. pyeasyphd/pyeasyphd.sublime-settings +100 -0
  26. pyeasyphd/pyeasyphd.sublime-syntax +5 -0
  27. pyeasyphd/scripts/__init__.py +34 -0
  28. pyeasyphd/scripts/_base.py +65 -0
  29. pyeasyphd/scripts/run_article_md.py +101 -0
  30. pyeasyphd/scripts/run_article_tex.py +94 -0
  31. pyeasyphd/scripts/run_beamer_tex.py +84 -0
  32. pyeasyphd/scripts/run_compare.py +71 -0
  33. pyeasyphd/scripts/run_format.py +62 -0
  34. pyeasyphd/scripts/run_generate.py +211 -0
  35. pyeasyphd/scripts/run_replace.py +34 -0
  36. pyeasyphd/scripts/run_search.py +251 -0
  37. pyeasyphd/tools/__init__.py +12 -0
  38. pyeasyphd/tools/generate/generate_from_bibs.py +181 -0
  39. pyeasyphd/tools/generate/generate_html.py +166 -0
  40. pyeasyphd/tools/generate/generate_library.py +203 -0
  41. pyeasyphd/tools/generate/generate_links.py +400 -0
  42. pyeasyphd/tools/py_run_bib_md_tex.py +398 -0
  43. pyeasyphd/tools/search/data.py +282 -0
  44. pyeasyphd/tools/search/search_base.py +146 -0
  45. pyeasyphd/tools/search/search_core.py +400 -0
  46. pyeasyphd/tools/search/search_keywords.py +229 -0
  47. pyeasyphd/tools/search/search_writers.py +350 -0
  48. pyeasyphd/tools/search/utils.py +190 -0
  49. pyeasyphd/utils/utils.py +99 -0
  50. pyeasyphd-0.4.42.dist-info/METADATA +33 -0
  51. pyeasyphd-0.4.42.dist-info/RECORD +53 -0
  52. pyeasyphd-0.4.42.dist-info/WHEEL +4 -0
  53. pyeasyphd-0.4.42.dist-info/licenses/LICENSE +674 -0
@@ -0,0 +1,201 @@
1
+ \section{Math Symbols}
2
+
3
+ \begin{table}[!htbp]
4
+ \caption{Math Symbols}
5
+ \resizebox{\textwidth}{!}
6
+ {
7
+ \begin{tabular}{|l|l|}
8
+ \hline
9
+ Name & Symbol \\
10
+ \hline
11
+ Vector - bm & $\va\vb\vc\vd\ve\vf\vg\vh\vi\vj\vk\vl\vm\vn\vo\vp\vq\vr\vs\vt\vu\vv\vw\vx\vy\vz$ \\
12
+ Element - \$ \$ & $\eva\evb\evc\evd\eve\evf\evg\evh\evi\evj\evk\evl\evm\evn\evo\evp\evq\evr\evs\evt\evu\evv\evw\evx\evy\evz$ \\
13
+ \hline
14
+ Matrix - bm & $\mA\mB\mC\mD\mE\mF\mG\mH\mI\mJ\mK\mL\mM\mN\mO\mP\mQ\mR\mS\mT\mU\mV\mW\mX\mY\mZ$ \\
15
+ Element - \$ \$ & $\emA\emB\emC\emD\emE\emF\emG\emH\emI\emJ\emK\emL\emM\emN\emO\emP\emQ\emR\emS\emT\emU\emV\emW\emX\emY\emZ$ \\
16
+ \hline
17
+ Random vector - mathbf & $\rva\rvb\rvc\rvd\rve\rvf\rvg\rvh\rvi\rvj\rvk\rvl\rvm\rvn\rvo\rvp\rvq\rvr\rvs\rvt\rvu\rvv\rvw\rvx\rvy\rvz$ \\
18
+ Element - textnormal & $\erva\ervb\ervc\ervd\erve\ervf\ervg\ervh\ervi\ervj\ervk\ervl\ervm\ervn\ervo\ervp\ervq\ervr\ervs\ervt\ervu\ervv\ervw\ervx\ervy\ervz$ \\
19
+ \hline
20
+ Random Matrix - mathbf & $\rmA\rmB\rmC\rmD\rmE\rmF\rmG\rmH\rmI\rmJ\rmK\rmL\rmM\rmN\rmO\rmP\rmQ\rmR\rmS\rmT\rmU\rmV\rmW\rmX\rmY\rmZ$ \\
21
+ Element - textnormal & $\ermA\ermB\ermC\ermD\ermE\ermF\ermG\ermH\ermI\ermJ\ermK\ermL\ermM\ermN\ermO\ermP\ermQ\ermR\ermS\ermT\ermU\ermV\ermW\ermX\ermY\ermZ$ \\
22
+ \hline
23
+ Tensor & $\tA\tB\tC\tD\tE\tF\tG\tH\tI\tJ\tK\tL\tM\tN\tO\tP\tQ\tR\tS\tT\tU\tV\tW\tX\tY\tZ$ \\
24
+ Element & $\etA\etB\etC\etD\etE\etF\etG\etH\etI\etJ\etK\etL\etM\etN\etO\etP\etQ\etR\etS\etT\etU\etV\etW\etX\etY\etZ$ \\
25
+ \hline
26
+ Set - mathbb & $\sA\sB\sC\sD\sE\sF\sG\sH\sI\sJ\sK\sL\sM\sN\sO\sP\sQ\sR\sS\sT\sU\sV\sW\sX\sY\sZ$ \\
27
+ Graph - mathcal & $\gA\gB\gC\gD\gE\gF\gG\gH\gI\gJ\gK\gL\gM\gN\gO\gP\gQ\gR\gS\gT\gU\gV\gW\gX\gY\gZ$ \\
28
+ \hline
29
+ \hline
30
+ Base & abcdefghijklmnopqrstuvwxyz \\
31
+ Base & ABCDEFGHIJKLMNOPQRSTUVWXYZ \\
32
+ textnormal & $\tnla\tnlb\tnlc\tnld\tnle\tnlf\tnlg\tnlh\tnli\tnlj\tnlk\tnll\tnlm\tnln\tnlo\tnlp\tnlq\tnlr\tnls\tnlt\tnlu\tnlv\tnlw\tnlx\tnly\tnlz$ \\
33
+ textnormal & $\tnlA\tnlB\tnlC\tnlD\tnlE\tnlF\tnlG\tnlH\tnlI\tnlJ\tnlK\tnlL\tnlM\tnlN\tnlO\tnlP\tnlQ\tnlR\tnlS\tnlT\tnlU\tnlV\tnlW\tnlX\tnlY\tnlZ$ \\
34
+ \hline
35
+ \$ \$ & $abcdefghijklmnopqrstuvwxyz$ \\
36
+ \$ \$ & $ABCDEFGHIJKLMNOPQRSTUVWXYZ$ \\
37
+ mathnormal & $\mnla\mnlb\mnlc\mnld\mnle\mnlf\mnlg\mnlh\mnli\mnlj\mnlk\mnll\mnlm\mnln\mnlo\mnlp\mnlq\mnlr\mnls\mnlt\mnlu\mnlv\mnlw\mnlx\mnly\mnlz$ \\
38
+ mathnormal & $\mnlA\mnlB\mnlC\mnlD\mnlE\mnlF\mnlG\mnlH\mnlI\mnlJ\mnlK\mnlL\mnlM\mnlN\mnlO\mnlP\mnlQ\mnlR\mnlS\mnlT\mnlU\mnlV\mnlW\mnlX\mnlY\mnlZ$ \\
39
+ \hline
40
+ \hline
41
+ mathbf & $\mbfa\mbfb\mbfc\mbfd\mbfe\mbff\mbfg\mbfh\mbfi\mbfj\mbfk\mbfl\mbfm\mbfn\mbfo\mbfp\mbfq\mbfr\mbfs\mbft\mbfu\mbfv\mbfw\mbfx\mbfy\mbfz$ \\
42
+ mathbf & $\mbfA\mbfB\mbfC\mbfD\mbfE\mbfF\mbfG\mbfH\mbfI\mbfJ\mbfK\mbfL\mbfM\mbfN\mbfO\mbfP\mbfQ\mbfR\mbfS\mbfT\mbfU\mbfV\mbfW\mbfX\mbfY\mbfZ$ \\
43
+ \hline
44
+ mathrm & $\mrma\mrmb\mrmc\mrmd\mrme\mrmf\mrmg\mrmh\mrmi\mrmj\mrmk\mrml\mrmm\mrmn\mrmo\mrmp\mrmq\mrmr\mrms\mrmt\mrmu\mrmv\mrmw\mrmx\mrmy\mrmz$ \\
45
+ mathrm & $\mrmA\mrmB\mrmC\mrmD\mrmE\mrmF\mrmG\mrmH\mrmI\mrmJ\mrmK\mrmL\mrmM\mrmN\mrmO\mrmP\mrmQ\mrmR\mrmS\mrmT\mrmU\mrmV\mrmW\mrmX\mrmY\mrmZ$ \\
46
+ \hline
47
+ mathit & $\mita\mitb\mitc\mitd\mite\mitf\mitg\mith\miti\mitj\mitk\mitl\mitm\mitn\mito\mitp\mitq\mitr\mits\mitt\mitu\mitv\mitw\mitx\mity\mitz$ \\
48
+ mathit & $\mitA\mitB\mitC\mitD\mitE\mitF\mitG\mitH\mitI\mitJ\mitK\mitL\mitM\mitN\mitO\mitP\mitQ\mitR\mitS\mitT\mitU\mitV\mitW\mitX\mitY\mitZ$ \\
49
+ \hline
50
+ mathtt & $\mtta\mttb\mttc\mttd\mtte\mttf\mttg\mtth\mtti\mttj\mttk\mttl\mttm\mttn\mtto\mttp\mttq\mttr\mtts\mttt\mttu\mttv\mttw\mttx\mtty\mttz$ \\
51
+ mathtt & $\mttA\mttB\mttC\mttD\mttE\mttF\mttG\mttH\mttI\mttJ\mttK\mttL\mttM\mttN\mttO\mttP\mttQ\mttR\mttS\mttT\mttU\mttV\mttW\mttX\mttY\mttZ$ \\
52
+ \hline
53
+ mathsf & $\msfa\msfb\msfc\msfd\msfe\msff\msfg\msfh\msfi\msfj\msfk\msfl\msfm\msfn\msfo\msfp\msfq\msfr\msfs\msft\msfu\msfv\msfw\msfx\msfy\msfz$ \\
54
+ mathsf & $\msfA\msfB\msfC\msfD\msfE\msfF\msfG\msfH\msfI\msfJ\msfK\msfL\msfM\msfN\msfO\msfP\msfQ\msfR\msfS\msfT\msfU\msfV\msfW\msfX\msfY\msfZ$ \\
55
+ \hline
56
+ mathfrak & $\mfraka\mfrakb\mfrakc\mfrakd\mfrake\mfrakf\mfrakg\mfrakh\mfraki\mfrakj\mfrakk\mfrakl\mfrakm\mfrakn\mfrako\mfrakp\mfrakq\mfrakr\mfraks\mfrakt\mfraku\mfrakv\mfrakw\mfrakx\mfraky\mfrakz$ \\
57
+ mathfrak & $\mfrakA\mfrakB\mfrakC\mfrakD\mfrakE\mfrakF\mfrakG\mfrakH\mfrakI\mfrakJ\mfrakK\mfrakL\mfrakM\mfrakN\mfrakO\mfrakP\mfrakQ\mfrakR\mfrakS\mfrakT\mfrakU\mfrakV\mfrakW\mfrakX\mfrakY\mfrakZ$ \\
58
+ \hline
59
+ \hline
60
+ mathbb & $\mbbA\mbbB\mbbC\mbbD\mbbE\mbbF\mbbG\mbbH\mbbI\mbbJ\mbbK\mbbL\mbbM\mbbN\mbbO\mbbP\mbbQ\mbbR\mbbS\mbbT\mbbU\mbbV\mbbW\mbbX\mbbY\mbbZ$ \\
61
+ mathcal &$\mcalA\mcalB\mcalC\mcalD\mcalE\mcalF\mcalG\mcalH\mcalI\mcalJ\mcalK\mcalL\mcalM\mcalN\mcalO\mcalP\mcalQ\mcalR\mcalS\mcalT\mcalU\mcalV\mcalW\mcalX\mcalY\mcalZ$ \\
62
+ mathscr & $\mscrA\mscrB\mscrC\mscrD\mscrE\mscrF\mscrG\mscrH\mscrI\mscrJ\mscrK\mscrL\mscrM\mscrN\mscrO\mscrP\mscrQ\mscrR\mscrS\mscrT\mscrU\mscrV\mscrW\mscrX\mscrY\mscrZ$ \\
63
+ \hline
64
+ \end{tabular}
65
+ }
66
+ \end{table}
67
+
68
+ \section{Default Notation}
69
+
70
+ \centering{\textbf {Numbers and Arrays}}
71
+ \bgroup
72
+ \def\arraystretch{1.5}
73
+ \begin{tabular}{p{1in}p{3.5in}}
74
+ $\displaystyle a$ & A scalar (integer or real) \\
75
+ $\displaystyle \va$ & A vector \\
76
+ $\displaystyle \mA$ & A matrix \\
77
+ $\displaystyle \tA$ & A tensor \\
78
+ $\displaystyle \mI_n$ & Identity matrix with $n$ rows and $n$ columns \\
79
+ $\displaystyle \mI$ & Identity matrix with dimensionality implied by context \\
80
+ $\displaystyle \ve^{(i)}$ & Standard basis vector $[0,\dots,0,1,0,\dots,0]$ with a 1 at position $i$ \\
81
+ $\displaystyle \text{diag}(\va)$ & A square, diagonal matrix with diagonal entries given by $\va$ \\
82
+ $\displaystyle \ra$ & A scalar random variable \\
83
+ $\displaystyle \rva$ & A vector-valued random variable \\
84
+ $\displaystyle \rmA$ & A matrix-valued random variable \\
85
+ \end{tabular}
86
+ \egroup
87
+ \vspace{0.5cm}
88
+
89
+ \clearpage
90
+ \centering{\textbf {Sets and Graphs}}
91
+ \bgroup
92
+ \def\arraystretch{1.5}
93
+ \begin{tabular}{p{1.5in}p{3.5in}}
94
+ $\displaystyle \sA$ & A set \\
95
+ $\displaystyle \sR$ & The set of real numbers \\
96
+ $\displaystyle \{0, 1\}$ & The set containing 0 and 1 \\
97
+ $\displaystyle \{0, 1, \dots, n \}$ & The set of all integers between $0$ and $n$ \\
98
+ $\displaystyle [a, b]$ & The real interval including $a$ and $b$ \\
99
+ $\displaystyle (a, b]$ & The real interval excluding $a$ but including $b$ \\
100
+ $\displaystyle \sA \backslash \sB$ & Set subtraction, i.e., the set containing the elements of $\sA$ that are not in $\sB$ \\
101
+ $\displaystyle \gG$ & A graph \\
102
+ $\displaystyle \parents_\gG(\ervx_i)$ & The parents of $\ervx_i$ in $\gG$
103
+ \end{tabular}
104
+ \vspace{0.5cm}
105
+
106
+ \clearpage
107
+ \centering{\textbf {Indexing}}
108
+ \bgroup
109
+ \def\arraystretch{1.5}
110
+ \begin{tabular}{p{1.5in}p{3.5in}}
111
+ $\displaystyle \eva_i$ & Element $i$ of vector $\va$, with indexing starting at 1 \\
112
+ $\displaystyle \eva_{-i}$ & All elements of vector $\va$ except for element $i$ \\
113
+ $\displaystyle \emA_{i,j}$ & Element $i, j$ of matrix $\mA$ \\
114
+ $\displaystyle \mA_{i, :}$ & Row $i$ of matrix $\mA$ \\
115
+ $\displaystyle \mA_{:, i}$ & Column $i$ of matrix $\mA$ \\
116
+ $\displaystyle \etA_{i, j, k}$ & Element $(i, j, k)$ of a 3-D tensor $\tA$ \\
117
+ $\displaystyle \tA_{:, :, i}$ & 2-D slice of a 3-D tensor\\
118
+ $\displaystyle \erva_i$ & Element $i$ of the random vector $\rva$ \\
119
+ \end{tabular}
120
+ \egroup
121
+ \vspace{0.5cm}
122
+
123
+ \clearpage
124
+ \centering{\textbf {Calculus}}
125
+ \bgroup
126
+ \def\arraystretch{1.5}
127
+ \begin{tabular}{p{1.5in}p{3.5in}}
128
+ % NOTE: the [2ex] on the next line adds extra height to that row of the table.
129
+ % Without that command, the fraction on the first line is too tall and collides
130
+ % with the fraction on the second line.
131
+ $\displaystyle\frac{d y} {d x}$ & Derivative of $y$ with respect to $x$ \\ [2ex]
132
+ $\displaystyle \frac{\partial y} {\partial x} $ & Partial derivative of $y$ with respect to $x$ \\
133
+ $\displaystyle \nabla_\vx y $ & Gradient of $y$ with respect to $\vx$ \\
134
+ $\displaystyle \nabla_\mX y $ & Matrix derivatives of $y$ with respect to $\mX$ \\
135
+ $\displaystyle \nabla_\tX y $ & Tensor containing derivatives of $y$ with respect to $\tX$ \\
136
+ $\displaystyle \frac{\partial f}{\partial \vx} $ & Jacobian matrix $\mJ \in \R^{m\times n}$ of $f: \R^n \rightarrow \R^m$ \\
137
+ $\displaystyle \nabla_\vx^2 f(\vx)\text{ or }\mH( f)(\vx)$ & The Hessian matrix of $f$ at input point $\vx$\\
138
+ $\displaystyle \int f(\vx) d\vx $ & Definite integral over the entire domain of $\vx$ \\
139
+ $\displaystyle \int_\sS f(\vx) d\vx$ & Definite integral with respect to $\vx$ over the set $\sS$ \\
140
+ \end{tabular}
141
+ \egroup
142
+ \vspace{0.5cm}
143
+
144
+ \clearpage
145
+ \centering{\textbf {Probability and Information Theory}}
146
+ \bgroup
147
+ \def\arraystretch{1.5}
148
+ \begin{tabular}{p{1.5in}p{3.5in}}
149
+ $\displaystyle P(\ra)$ & A probability distribution over a discrete variable \\
150
+ $\displaystyle p(\ra)$ & A probability distribution over a continuous variable, or over a variable whose type has not been specified \\
151
+ $\displaystyle \ra \sim P$ & Random variable $\ra$ has distribution $P$ \\% so thing on left of \sim should always be a random variable, with name beginning with \r
152
+ $\displaystyle \E_{\rx\sim P} [ f(x) ]\text{ or } \E f(x)$ & Expectation of $f(x)$ with respect to $P(\rx)$ \\
153
+ $\displaystyle \Var(f(x)) $ & Variance of $f(x)$ under $P(\rx)$ \\
154
+ $\displaystyle \Cov(f(x),g(x)) $ & Covariance of $f(x)$ and $g(x)$ under $P(\rx)$ \\
155
+ $\displaystyle H(\rx) $ & Shannon entropy of the random variable $\rx$ \\
156
+ $\displaystyle \KL ( P \Vert Q ) $ & Kullback-Leibler divergence of P and Q \\
157
+ $\displaystyle \mathcal{N} ( \vx ; \vmu , \mSigma)$ & Gaussian distribution % over $\vx$ with mean $\vmu$ and covariance $\mSigma$ \\
158
+ \end{tabular}
159
+ \egroup
160
+ \vspace{0.5cm}
161
+
162
+ \clearpage
163
+ \centering{\textbf {Functions}}
164
+ \bgroup
165
+ \def\arraystretch{1.5}
166
+ \begin{tabular}{p{1.5in}p{3.5in}}
167
+ $\displaystyle f: \sA \rightarrow \sB$ & The function $f$ with domain $\sA$ and range $\sB$ \\
168
+ $\displaystyle f \circ g $ & Composition of the functions $f$ and $g$ \\
169
+ $\displaystyle f(\vx ; \vtheta) $ & A function of $\vx$ parametrized by $\vtheta$.
170
+ (Sometimes we write $f(\vx)$ and omit the argument $\vtheta$ to lighten notation) \\
171
+ $\displaystyle \log x$ & Natural logarithm of $x$ \\
172
+ $\displaystyle \sigma(x)$ & Logistic sigmoid, $\displaystyle \frac{1} {1 + \exp(-x)}$ \\
173
+ $\displaystyle \zeta(x)$ & Softplus, $\log(1 + \exp(x))$ \\
174
+ $\displaystyle || \vx ||_p $ & $\normLp$ norm of $\vx$ \\
175
+ $\displaystyle || \vx || $ & $\normLtwo$ norm of $\vx$ \\
176
+ $\displaystyle x^+$ & Positive part of $x$, i.e., $\max(0,x)$ \\
177
+ $\displaystyle \bm{1}_\mathrm{condition}$ & is 1 if the condition is true, 0 otherwise \\
178
+ \end{tabular}
179
+ \egroup
180
+ \vspace{0.5cm}
181
+
182
+ \clearpage
183
+ \centering{\textbf {Machine Learning}}
184
+ \bgroup
185
+ \def\arraystretch{1.5}
186
+ \begin{tabular}{p{1.5in}p{3.5in}}
187
+ $\train$ & is \\
188
+ $\valid$ & is \\
189
+ $\test$ & is \\
190
+ $\pdata$ & is \\
191
+ $\ptrain$ & The empirical distribution defined by the training set \\
192
+ $\Ptrain$ & The empirical distribution defined by the training set \\
193
+ $\pmodel$ & The model distribution \\
194
+ $\Pmodel$ & The model distribution \\
195
+ $\ptildemodel$ & The model distribution \\
196
+ $\pencode$ & Stochastic autoencoder distributions \\
197
+ $\pdecode$ & Stochastic autoencoder distributions \\
198
+ $\precons$ & Stochastic autoencoder distributions \\
199
+ \end{tabular}
200
+ \egroup
201
+ \vspace{0.5cm}