pydantic-graph 1.2.1__py3-none-any.whl → 1.22.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pydantic_graph/_utils.py +39 -0
- pydantic_graph/beta/__init__.py +25 -0
- pydantic_graph/beta/decision.py +276 -0
- pydantic_graph/beta/graph.py +978 -0
- pydantic_graph/beta/graph_builder.py +1053 -0
- pydantic_graph/beta/id_types.py +76 -0
- pydantic_graph/beta/join.py +249 -0
- pydantic_graph/beta/mermaid.py +208 -0
- pydantic_graph/beta/node.py +95 -0
- pydantic_graph/beta/node_types.py +90 -0
- pydantic_graph/beta/parent_forks.py +232 -0
- pydantic_graph/beta/paths.py +421 -0
- pydantic_graph/beta/step.py +253 -0
- pydantic_graph/beta/util.py +90 -0
- pydantic_graph/exceptions.py +22 -0
- pydantic_graph/graph.py +12 -4
- pydantic_graph/nodes.py +0 -2
- pydantic_graph/persistence/in_mem.py +1 -1
- {pydantic_graph-1.2.1.dist-info → pydantic_graph-1.22.0.dist-info}/METADATA +1 -1
- pydantic_graph-1.22.0.dist-info/RECORD +28 -0
- pydantic_graph-1.2.1.dist-info/RECORD +0 -15
- {pydantic_graph-1.2.1.dist-info → pydantic_graph-1.22.0.dist-info}/WHEEL +0 -0
- {pydantic_graph-1.2.1.dist-info → pydantic_graph-1.22.0.dist-info}/licenses/LICENSE +0 -0
pydantic_graph/_utils.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations as _annotations
|
|
2
2
|
|
|
3
3
|
import asyncio
|
|
4
|
+
import inspect
|
|
4
5
|
import types
|
|
5
6
|
import warnings
|
|
6
7
|
from collections.abc import Callable, Generator
|
|
@@ -163,3 +164,41 @@ else:
|
|
|
163
164
|
warnings.filterwarnings('ignore', category=LogfireNotConfiguredWarning)
|
|
164
165
|
with _logfire.span(*args, **kwargs) as span:
|
|
165
166
|
yield span
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def infer_obj_name(obj: Any, *, depth: int) -> str | None:
|
|
170
|
+
"""Infer the variable name of an object from the calling frame's scope.
|
|
171
|
+
|
|
172
|
+
This function examines the call stack to find what variable name was used
|
|
173
|
+
for the given object in the calling scope. This is useful for automatic
|
|
174
|
+
naming of objects based on their variable names.
|
|
175
|
+
|
|
176
|
+
Args:
|
|
177
|
+
obj: The object whose variable name to infer.
|
|
178
|
+
depth: Number of stack frames to traverse upward from the current frame.
|
|
179
|
+
|
|
180
|
+
Returns:
|
|
181
|
+
The inferred variable name if found, None otherwise.
|
|
182
|
+
|
|
183
|
+
Example:
|
|
184
|
+
Usage should generally look like `infer_name(self, depth=2)` or similar.
|
|
185
|
+
"""
|
|
186
|
+
target_frame = inspect.currentframe()
|
|
187
|
+
if target_frame is None:
|
|
188
|
+
return None # pragma: no cover
|
|
189
|
+
for _ in range(depth):
|
|
190
|
+
target_frame = target_frame.f_back
|
|
191
|
+
if target_frame is None:
|
|
192
|
+
return None
|
|
193
|
+
|
|
194
|
+
for name, item in target_frame.f_locals.items():
|
|
195
|
+
if item is obj:
|
|
196
|
+
return name
|
|
197
|
+
|
|
198
|
+
if target_frame.f_locals != target_frame.f_globals: # pragma: no branch
|
|
199
|
+
# if we couldn't find the agent in locals and globals are a different dict, try globals
|
|
200
|
+
for name, item in target_frame.f_globals.items():
|
|
201
|
+
if item is obj:
|
|
202
|
+
return name
|
|
203
|
+
|
|
204
|
+
return None
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
"""The next version of the pydantic-graph framework with enhanced graph execution capabilities.
|
|
2
|
+
|
|
3
|
+
This module provides a parallel control flow graph execution framework with support for:
|
|
4
|
+
- 'Step' nodes for task execution
|
|
5
|
+
- 'Decision' nodes for conditional branching
|
|
6
|
+
- 'Fork' nodes for parallel execution coordination
|
|
7
|
+
- 'Join' nodes and 'Reducer's for re-joining parallel executions
|
|
8
|
+
- Mermaid diagram generation for graph visualization
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from .graph import Graph
|
|
12
|
+
from .graph_builder import GraphBuilder
|
|
13
|
+
from .node import EndNode, StartNode
|
|
14
|
+
from .step import StepContext, StepNode
|
|
15
|
+
from .util import TypeExpression
|
|
16
|
+
|
|
17
|
+
__all__ = (
|
|
18
|
+
'EndNode',
|
|
19
|
+
'Graph',
|
|
20
|
+
'GraphBuilder',
|
|
21
|
+
'StartNode',
|
|
22
|
+
'StepContext',
|
|
23
|
+
'StepNode',
|
|
24
|
+
'TypeExpression',
|
|
25
|
+
)
|
|
@@ -0,0 +1,276 @@
|
|
|
1
|
+
"""Decision node implementation for conditional branching in graph execution.
|
|
2
|
+
|
|
3
|
+
This module provides the Decision node type and related classes for implementing
|
|
4
|
+
conditional branching logic in parallel control flow graphs. Decision nodes allow the graph
|
|
5
|
+
to choose different execution paths based on runtime conditions.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from __future__ import annotations
|
|
9
|
+
|
|
10
|
+
import inspect
|
|
11
|
+
from collections.abc import AsyncIterable, Callable, Iterable, Sequence
|
|
12
|
+
from dataclasses import dataclass
|
|
13
|
+
from typing import TYPE_CHECKING, Any, Generic, get_origin
|
|
14
|
+
|
|
15
|
+
from typing_extensions import Never, Self, TypeVar
|
|
16
|
+
|
|
17
|
+
from pydantic_graph import BaseNode
|
|
18
|
+
from pydantic_graph.beta.id_types import NodeID
|
|
19
|
+
from pydantic_graph.beta.paths import Path, PathBuilder, TransformFunction
|
|
20
|
+
from pydantic_graph.beta.step import NodeStep
|
|
21
|
+
from pydantic_graph.beta.util import TypeOrTypeExpression
|
|
22
|
+
from pydantic_graph.exceptions import GraphBuildingError
|
|
23
|
+
|
|
24
|
+
if TYPE_CHECKING:
|
|
25
|
+
from pydantic_graph.beta.node_types import AnyDestinationNode, DestinationNode
|
|
26
|
+
|
|
27
|
+
StateT = TypeVar('StateT', infer_variance=True)
|
|
28
|
+
"""Type variable for graph state."""
|
|
29
|
+
|
|
30
|
+
DepsT = TypeVar('DepsT', infer_variance=True)
|
|
31
|
+
"""Type variable for graph dependencies."""
|
|
32
|
+
|
|
33
|
+
HandledT = TypeVar('HandledT', infer_variance=True)
|
|
34
|
+
"""Type variable used to track types handled by the branches of a Decision."""
|
|
35
|
+
|
|
36
|
+
T = TypeVar('T', infer_variance=True)
|
|
37
|
+
"""Generic type variable."""
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
@dataclass(kw_only=True)
|
|
41
|
+
class Decision(Generic[StateT, DepsT, HandledT]):
|
|
42
|
+
"""Decision node for conditional branching in graph execution.
|
|
43
|
+
|
|
44
|
+
A Decision node evaluates conditions and routes execution to different
|
|
45
|
+
branches based on the input data type or custom matching logic.
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
id: NodeID
|
|
49
|
+
"""Unique identifier for this decision node."""
|
|
50
|
+
|
|
51
|
+
branches: list[DecisionBranch[Any]]
|
|
52
|
+
"""List of branches that can be taken from this decision."""
|
|
53
|
+
|
|
54
|
+
note: str | None
|
|
55
|
+
"""Optional documentation note for this decision."""
|
|
56
|
+
|
|
57
|
+
def branch(self, branch: DecisionBranch[T]) -> Decision[StateT, DepsT, HandledT | T]:
|
|
58
|
+
"""Add a new branch to this decision.
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
branch: The branch to add to this decision.
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
A new Decision with the additional branch.
|
|
65
|
+
"""
|
|
66
|
+
return Decision(id=self.id, branches=self.branches + [branch], note=self.note)
|
|
67
|
+
|
|
68
|
+
def _force_handled_contravariant(self, inputs: HandledT) -> Never: # pragma: no cover
|
|
69
|
+
"""Forces this type to be contravariant in the HandledT type variable.
|
|
70
|
+
|
|
71
|
+
This is an implementation detail of how we can type-check that all possible input types have
|
|
72
|
+
been exhaustively covered.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
inputs: Input data of handled types.
|
|
76
|
+
|
|
77
|
+
Raises:
|
|
78
|
+
RuntimeError: Always, as this method should never be executed.
|
|
79
|
+
"""
|
|
80
|
+
raise RuntimeError('This method should never be called, it is just defined for typing purposes.')
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
SourceT = TypeVar('SourceT', infer_variance=True)
|
|
84
|
+
"""Type variable for source data for a DecisionBranch."""
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
@dataclass
|
|
88
|
+
class DecisionBranch(Generic[SourceT]):
|
|
89
|
+
"""Represents a single branch within a decision node.
|
|
90
|
+
|
|
91
|
+
Each branch defines the conditions under which it should be taken
|
|
92
|
+
and the path to follow when those conditions are met.
|
|
93
|
+
|
|
94
|
+
Note: with the current design, it is actually _critical_ that this class is invariant in SourceT for the sake
|
|
95
|
+
of type-checking that inputs to a Decision are actually handled. See the `# type: ignore` comment in
|
|
96
|
+
`tests.graph.beta.test_graph_edge_cases.test_decision_no_matching_branch` for an example of how this works.
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
source: TypeOrTypeExpression[SourceT]
|
|
100
|
+
"""The expected type of data for this branch.
|
|
101
|
+
|
|
102
|
+
This is necessary for exhaustiveness-checking when handling the inputs to a decision node."""
|
|
103
|
+
|
|
104
|
+
matches: Callable[[Any], bool] | None
|
|
105
|
+
"""An optional predicate function used to determine whether input data matches this branch.
|
|
106
|
+
|
|
107
|
+
If `None`, default logic is used which attempts to check the value for type-compatibility with the `source` type:
|
|
108
|
+
* If `source` is `Any` or `object`, the branch will always match
|
|
109
|
+
* If `source` is a `Literal` type, this branch will match if the value is one of the parametrizing literal values
|
|
110
|
+
* If `source` is any other type, the value will be checked for matching using `isinstance`
|
|
111
|
+
|
|
112
|
+
Inputs are tested against each branch of a decision node in order, and the path of the first matching branch is
|
|
113
|
+
used to handle the input value.
|
|
114
|
+
"""
|
|
115
|
+
|
|
116
|
+
path: Path
|
|
117
|
+
"""The execution path to follow when an input value matches this branch of a decision node.
|
|
118
|
+
|
|
119
|
+
This can include transforming, mapping, and broadcasting the output before sending to the next node or nodes.
|
|
120
|
+
|
|
121
|
+
The path can also include position-aware labels which are used when generating mermaid diagrams."""
|
|
122
|
+
|
|
123
|
+
destinations: list[AnyDestinationNode]
|
|
124
|
+
"""The destination nodes that can be referenced by DestinationMarker in the path."""
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
OutputT = TypeVar('OutputT', infer_variance=True)
|
|
128
|
+
"""Type variable for the output data of a node."""
|
|
129
|
+
|
|
130
|
+
NewOutputT = TypeVar('NewOutputT', infer_variance=True)
|
|
131
|
+
"""Type variable for transformed output."""
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
@dataclass(init=False)
|
|
135
|
+
class DecisionBranchBuilder(Generic[StateT, DepsT, OutputT, SourceT, HandledT]):
|
|
136
|
+
"""Builder for constructing decision branches with fluent API.
|
|
137
|
+
|
|
138
|
+
This builder provides methods to configure branches with destinations,
|
|
139
|
+
forks, and transformations in a type-safe manner.
|
|
140
|
+
|
|
141
|
+
Instances of this class should be created using [`GraphBuilder.match`][pydantic_graph.beta.graph_builder.GraphBuilder],
|
|
142
|
+
not created directly.
|
|
143
|
+
"""
|
|
144
|
+
|
|
145
|
+
_decision: Decision[StateT, DepsT, HandledT]
|
|
146
|
+
"""The parent decision node."""
|
|
147
|
+
_source: TypeOrTypeExpression[SourceT]
|
|
148
|
+
"""The expected source type for this branch."""
|
|
149
|
+
_matches: Callable[[Any], bool] | None
|
|
150
|
+
"""Optional matching predicate."""
|
|
151
|
+
|
|
152
|
+
_path_builder: PathBuilder[StateT, DepsT, OutputT]
|
|
153
|
+
"""Builder for the execution path."""
|
|
154
|
+
|
|
155
|
+
def __init__(
|
|
156
|
+
self,
|
|
157
|
+
*,
|
|
158
|
+
decision: Decision[StateT, DepsT, HandledT],
|
|
159
|
+
source: TypeOrTypeExpression[SourceT],
|
|
160
|
+
matches: Callable[[Any], bool] | None,
|
|
161
|
+
path_builder: PathBuilder[StateT, DepsT, OutputT],
|
|
162
|
+
):
|
|
163
|
+
# This manually-defined initializer is necessary due to https://github.com/python/mypy/issues/17623.
|
|
164
|
+
self._decision = decision
|
|
165
|
+
self._source = source
|
|
166
|
+
self._matches = matches
|
|
167
|
+
self._path_builder = path_builder
|
|
168
|
+
|
|
169
|
+
def to(
|
|
170
|
+
self,
|
|
171
|
+
destination: DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]],
|
|
172
|
+
/,
|
|
173
|
+
*extra_destinations: DestinationNode[StateT, DepsT, OutputT] | type[BaseNode[StateT, DepsT, Any]],
|
|
174
|
+
fork_id: str | None = None,
|
|
175
|
+
) -> DecisionBranch[SourceT]:
|
|
176
|
+
"""Set the destination(s) for this branch.
|
|
177
|
+
|
|
178
|
+
Args:
|
|
179
|
+
destination: The primary destination node.
|
|
180
|
+
*extra_destinations: Additional destination nodes.
|
|
181
|
+
fork_id: Optional node ID to use for the resulting broadcast fork if multiple destinations are provided.
|
|
182
|
+
|
|
183
|
+
Returns:
|
|
184
|
+
A completed DecisionBranch with the specified destinations.
|
|
185
|
+
"""
|
|
186
|
+
destination = get_origin(destination) or destination
|
|
187
|
+
extra_destinations = tuple(get_origin(d) or d for d in extra_destinations)
|
|
188
|
+
destinations = [(NodeStep(d) if inspect.isclass(d) else d) for d in (destination, *extra_destinations)]
|
|
189
|
+
return DecisionBranch(
|
|
190
|
+
source=self._source,
|
|
191
|
+
matches=self._matches,
|
|
192
|
+
path=self._path_builder.to(*destinations, fork_id=fork_id),
|
|
193
|
+
destinations=destinations,
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
def broadcast(
|
|
197
|
+
self, get_forks: Callable[[Self], Sequence[DecisionBranch[SourceT]]], /, *, fork_id: str | None = None
|
|
198
|
+
) -> DecisionBranch[SourceT]:
|
|
199
|
+
"""Broadcast this decision branch into multiple destinations.
|
|
200
|
+
|
|
201
|
+
Args:
|
|
202
|
+
get_forks: The callback that will return a sequence of decision branches to broadcast to.
|
|
203
|
+
fork_id: Optional node ID to use for the resulting broadcast fork.
|
|
204
|
+
|
|
205
|
+
Returns:
|
|
206
|
+
A completed DecisionBranch with the specified destinations.
|
|
207
|
+
"""
|
|
208
|
+
fork_decision_branches = get_forks(self)
|
|
209
|
+
new_paths = [b.path for b in fork_decision_branches]
|
|
210
|
+
if not new_paths:
|
|
211
|
+
raise GraphBuildingError(f'The call to {get_forks} returned no branches, but must return at least one.')
|
|
212
|
+
path = self._path_builder.broadcast(new_paths, fork_id=fork_id)
|
|
213
|
+
destinations = [d for fdp in fork_decision_branches for d in fdp.destinations]
|
|
214
|
+
return DecisionBranch(source=self._source, matches=self._matches, path=path, destinations=destinations)
|
|
215
|
+
|
|
216
|
+
def transform(
|
|
217
|
+
self, func: TransformFunction[StateT, DepsT, OutputT, NewOutputT], /
|
|
218
|
+
) -> DecisionBranchBuilder[StateT, DepsT, NewOutputT, SourceT, HandledT]:
|
|
219
|
+
"""Apply a transformation to the branch's output.
|
|
220
|
+
|
|
221
|
+
Args:
|
|
222
|
+
func: Transformation function to apply.
|
|
223
|
+
|
|
224
|
+
Returns:
|
|
225
|
+
A new DecisionBranchBuilder where the provided transform is applied prior to generating the final output.
|
|
226
|
+
"""
|
|
227
|
+
return DecisionBranchBuilder(
|
|
228
|
+
decision=self._decision,
|
|
229
|
+
source=self._source,
|
|
230
|
+
matches=self._matches,
|
|
231
|
+
path_builder=self._path_builder.transform(func),
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
def map(
|
|
235
|
+
self: DecisionBranchBuilder[StateT, DepsT, Iterable[T], SourceT, HandledT]
|
|
236
|
+
| DecisionBranchBuilder[StateT, DepsT, AsyncIterable[T], SourceT, HandledT],
|
|
237
|
+
*,
|
|
238
|
+
fork_id: str | None = None,
|
|
239
|
+
downstream_join_id: str | None = None,
|
|
240
|
+
) -> DecisionBranchBuilder[StateT, DepsT, T, SourceT, HandledT]:
|
|
241
|
+
"""Spread the branch's output.
|
|
242
|
+
|
|
243
|
+
To do this, the current output must be iterable, and any subsequent steps in the path being built for this
|
|
244
|
+
branch will be applied to each item of the current output in parallel.
|
|
245
|
+
|
|
246
|
+
Args:
|
|
247
|
+
fork_id: Optional ID for the fork, defaults to a generated value
|
|
248
|
+
downstream_join_id: Optional ID of a downstream join node which is involved when mapping empty iterables
|
|
249
|
+
|
|
250
|
+
Returns:
|
|
251
|
+
A new DecisionBranchBuilder where mapping is performed prior to generating the final output.
|
|
252
|
+
"""
|
|
253
|
+
return DecisionBranchBuilder(
|
|
254
|
+
decision=self._decision,
|
|
255
|
+
source=self._source,
|
|
256
|
+
matches=self._matches,
|
|
257
|
+
path_builder=self._path_builder.map(fork_id=fork_id, downstream_join_id=downstream_join_id),
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
def label(self, label: str) -> DecisionBranchBuilder[StateT, DepsT, OutputT, SourceT, HandledT]:
|
|
261
|
+
"""Apply a label to the branch at the current point in the path being built.
|
|
262
|
+
|
|
263
|
+
These labels are only used in generated mermaid diagrams.
|
|
264
|
+
|
|
265
|
+
Args:
|
|
266
|
+
label: The label to apply.
|
|
267
|
+
|
|
268
|
+
Returns:
|
|
269
|
+
A new DecisionBranchBuilder where the label has been applied at the end of the current path being built.
|
|
270
|
+
"""
|
|
271
|
+
return DecisionBranchBuilder(
|
|
272
|
+
decision=self._decision,
|
|
273
|
+
source=self._source,
|
|
274
|
+
matches=self._matches,
|
|
275
|
+
path_builder=self._path_builder.label(label),
|
|
276
|
+
)
|