pydantic-ai-slim 1.3.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pydantic-ai-slim might be problematic. Click here for more details.
- pydantic_ai/__init__.py +2 -0
- pydantic_ai/_agent_graph.py +33 -14
- pydantic_ai/_utils.py +8 -8
- pydantic_ai/agent/__init__.py +6 -18
- pydantic_ai/builtin_tools.py +71 -0
- pydantic_ai/durable_exec/temporal/__init__.py +11 -0
- pydantic_ai/durable_exec/temporal/_function_toolset.py +2 -1
- pydantic_ai/exceptions.py +1 -1
- pydantic_ai/messages.py +1 -1
- pydantic_ai/models/__init__.py +11 -3
- pydantic_ai/models/anthropic.py +130 -9
- pydantic_ai/models/google.py +26 -14
- pydantic_ai/models/openai.py +190 -13
- pydantic_ai/providers/google.py +31 -2
- pydantic_ai/run.py +40 -24
- {pydantic_ai_slim-1.3.0.dist-info → pydantic_ai_slim-1.5.0.dist-info}/METADATA +3 -3
- {pydantic_ai_slim-1.3.0.dist-info → pydantic_ai_slim-1.5.0.dist-info}/RECORD +20 -20
- {pydantic_ai_slim-1.3.0.dist-info → pydantic_ai_slim-1.5.0.dist-info}/WHEEL +0 -0
- {pydantic_ai_slim-1.3.0.dist-info → pydantic_ai_slim-1.5.0.dist-info}/entry_points.txt +0 -0
- {pydantic_ai_slim-1.3.0.dist-info → pydantic_ai_slim-1.5.0.dist-info}/licenses/LICENSE +0 -0
pydantic_ai/models/google.py
CHANGED
|
@@ -126,6 +126,8 @@ _FINISH_REASON_MAP: dict[GoogleFinishReason, FinishReason | None] = {
|
|
|
126
126
|
GoogleFinishReason.MALFORMED_FUNCTION_CALL: 'error',
|
|
127
127
|
GoogleFinishReason.IMAGE_SAFETY: 'content_filter',
|
|
128
128
|
GoogleFinishReason.UNEXPECTED_TOOL_CALL: 'error',
|
|
129
|
+
GoogleFinishReason.IMAGE_PROHIBITED_CONTENT: 'content_filter',
|
|
130
|
+
GoogleFinishReason.NO_IMAGE: 'error',
|
|
129
131
|
}
|
|
130
132
|
|
|
131
133
|
|
|
@@ -453,23 +455,28 @@ class GoogleModel(Model):
|
|
|
453
455
|
def _process_response(self, response: GenerateContentResponse) -> ModelResponse:
|
|
454
456
|
if not response.candidates:
|
|
455
457
|
raise UnexpectedModelBehavior('Expected at least one candidate in Gemini response') # pragma: no cover
|
|
458
|
+
|
|
456
459
|
candidate = response.candidates[0]
|
|
457
|
-
if candidate.content is None or candidate.content.parts is None:
|
|
458
|
-
if candidate.finish_reason == 'SAFETY':
|
|
459
|
-
raise UnexpectedModelBehavior('Safety settings triggered', str(response))
|
|
460
|
-
else:
|
|
461
|
-
raise UnexpectedModelBehavior(
|
|
462
|
-
'Content field missing from Gemini response', str(response)
|
|
463
|
-
) # pragma: no cover
|
|
464
|
-
parts = candidate.content.parts or []
|
|
465
460
|
|
|
466
461
|
vendor_id = response.response_id
|
|
467
462
|
vendor_details: dict[str, Any] | None = None
|
|
468
463
|
finish_reason: FinishReason | None = None
|
|
469
|
-
|
|
464
|
+
raw_finish_reason = candidate.finish_reason
|
|
465
|
+
if raw_finish_reason: # pragma: no branch
|
|
470
466
|
vendor_details = {'finish_reason': raw_finish_reason.value}
|
|
471
467
|
finish_reason = _FINISH_REASON_MAP.get(raw_finish_reason)
|
|
472
468
|
|
|
469
|
+
if candidate.content is None or candidate.content.parts is None:
|
|
470
|
+
if finish_reason == 'content_filter' and raw_finish_reason:
|
|
471
|
+
raise UnexpectedModelBehavior(
|
|
472
|
+
f'Content filter {raw_finish_reason.value!r} triggered', response.model_dump_json()
|
|
473
|
+
)
|
|
474
|
+
else:
|
|
475
|
+
raise UnexpectedModelBehavior(
|
|
476
|
+
'Content field missing from Gemini response', response.model_dump_json()
|
|
477
|
+
) # pragma: no cover
|
|
478
|
+
parts = candidate.content.parts or []
|
|
479
|
+
|
|
473
480
|
usage = _metadata_as_usage(response)
|
|
474
481
|
return _process_response_from_parts(
|
|
475
482
|
parts,
|
|
@@ -623,7 +630,8 @@ class GeminiStreamedResponse(StreamedResponse):
|
|
|
623
630
|
if chunk.response_id: # pragma: no branch
|
|
624
631
|
self.provider_response_id = chunk.response_id
|
|
625
632
|
|
|
626
|
-
|
|
633
|
+
raw_finish_reason = candidate.finish_reason
|
|
634
|
+
if raw_finish_reason:
|
|
627
635
|
self.provider_details = {'finish_reason': raw_finish_reason.value}
|
|
628
636
|
self.finish_reason = _FINISH_REASON_MAP.get(raw_finish_reason)
|
|
629
637
|
|
|
@@ -641,13 +649,17 @@ class GeminiStreamedResponse(StreamedResponse):
|
|
|
641
649
|
# )
|
|
642
650
|
|
|
643
651
|
if candidate.content is None or candidate.content.parts is None:
|
|
644
|
-
if
|
|
652
|
+
if self.finish_reason == 'stop': # pragma: no cover
|
|
645
653
|
# Normal completion - skip this chunk
|
|
646
654
|
continue
|
|
647
|
-
elif
|
|
648
|
-
raise UnexpectedModelBehavior(
|
|
655
|
+
elif self.finish_reason == 'content_filter' and raw_finish_reason: # pragma: no cover
|
|
656
|
+
raise UnexpectedModelBehavior(
|
|
657
|
+
f'Content filter {raw_finish_reason.value!r} triggered', chunk.model_dump_json()
|
|
658
|
+
)
|
|
649
659
|
else: # pragma: no cover
|
|
650
|
-
raise UnexpectedModelBehavior(
|
|
660
|
+
raise UnexpectedModelBehavior(
|
|
661
|
+
'Content field missing from streaming Gemini response', chunk.model_dump_json()
|
|
662
|
+
)
|
|
651
663
|
|
|
652
664
|
parts = candidate.content.parts
|
|
653
665
|
if not parts:
|
pydantic_ai/models/openai.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations as _annotations
|
|
2
2
|
|
|
3
3
|
import base64
|
|
4
|
+
import json
|
|
4
5
|
import warnings
|
|
5
6
|
from collections.abc import AsyncIterable, AsyncIterator, Sequence
|
|
6
7
|
from contextlib import asynccontextmanager
|
|
@@ -17,7 +18,7 @@ from .._output import DEFAULT_OUTPUT_TOOL_NAME, OutputObjectDefinition
|
|
|
17
18
|
from .._run_context import RunContext
|
|
18
19
|
from .._thinking_part import split_content_into_text_and_thinking
|
|
19
20
|
from .._utils import guard_tool_call_id as _guard_tool_call_id, now_utc as _now_utc, number_to_datetime
|
|
20
|
-
from ..builtin_tools import CodeExecutionTool, ImageGenerationTool, WebSearchTool
|
|
21
|
+
from ..builtin_tools import CodeExecutionTool, ImageGenerationTool, MCPServerTool, WebSearchTool
|
|
21
22
|
from ..exceptions import UserError
|
|
22
23
|
from ..messages import (
|
|
23
24
|
AudioUrl,
|
|
@@ -109,6 +110,11 @@ Using this more broad type for the model name instead of the ChatModel definitio
|
|
|
109
110
|
allows this model to be used more easily with other model types (ie, Ollama, Deepseek).
|
|
110
111
|
"""
|
|
111
112
|
|
|
113
|
+
MCP_SERVER_TOOL_CONNECTOR_URI_SCHEME: Literal['x-openai-connector'] = 'x-openai-connector'
|
|
114
|
+
"""
|
|
115
|
+
Prefix for OpenAI connector IDs. OpenAI supports either a URL or a connector ID when passing MCP configuration to a model,
|
|
116
|
+
by using that prefix like `x-openai-connector:<connector-id>` in a URL, you can pass a connector ID to a model.
|
|
117
|
+
"""
|
|
112
118
|
|
|
113
119
|
_CHAT_FINISH_REASON_MAP: dict[
|
|
114
120
|
Literal['stop', 'length', 'tool_calls', 'content_filter', 'function_call'], FinishReason
|
|
@@ -1061,13 +1067,16 @@ class OpenAIResponsesModel(Model):
|
|
|
1061
1067
|
elif isinstance(item, responses.ResponseFileSearchToolCall): # pragma: no cover
|
|
1062
1068
|
# Pydantic AI doesn't yet support the FileSearch built-in tool
|
|
1063
1069
|
pass
|
|
1064
|
-
elif isinstance(
|
|
1065
|
-
item,
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
|
|
1069
|
-
|
|
1070
|
-
|
|
1070
|
+
elif isinstance(item, responses.response_output_item.McpCall):
|
|
1071
|
+
call_part, return_part = _map_mcp_call(item, self.system)
|
|
1072
|
+
items.append(call_part)
|
|
1073
|
+
items.append(return_part)
|
|
1074
|
+
elif isinstance(item, responses.response_output_item.McpListTools):
|
|
1075
|
+
call_part, return_part = _map_mcp_list_tools(item, self.system)
|
|
1076
|
+
items.append(call_part)
|
|
1077
|
+
items.append(return_part)
|
|
1078
|
+
elif isinstance(item, responses.response_output_item.McpApprovalRequest): # pragma: no cover
|
|
1079
|
+
# Pydantic AI doesn't yet support McpApprovalRequest (explicit tool usage approval)
|
|
1071
1080
|
pass
|
|
1072
1081
|
|
|
1073
1082
|
finish_reason: FinishReason | None = None
|
|
@@ -1256,6 +1265,32 @@ class OpenAIResponsesModel(Model):
|
|
|
1256
1265
|
elif isinstance(tool, CodeExecutionTool):
|
|
1257
1266
|
has_image_generating_tool = True
|
|
1258
1267
|
tools.append({'type': 'code_interpreter', 'container': {'type': 'auto'}})
|
|
1268
|
+
elif isinstance(tool, MCPServerTool):
|
|
1269
|
+
mcp_tool = responses.tool_param.Mcp(
|
|
1270
|
+
type='mcp',
|
|
1271
|
+
server_label=tool.id,
|
|
1272
|
+
require_approval='never',
|
|
1273
|
+
)
|
|
1274
|
+
|
|
1275
|
+
if tool.authorization_token: # pragma: no branch
|
|
1276
|
+
mcp_tool['authorization'] = tool.authorization_token
|
|
1277
|
+
|
|
1278
|
+
if tool.allowed_tools is not None: # pragma: no branch
|
|
1279
|
+
mcp_tool['allowed_tools'] = tool.allowed_tools
|
|
1280
|
+
|
|
1281
|
+
if tool.description: # pragma: no branch
|
|
1282
|
+
mcp_tool['server_description'] = tool.description
|
|
1283
|
+
|
|
1284
|
+
if tool.headers: # pragma: no branch
|
|
1285
|
+
mcp_tool['headers'] = tool.headers
|
|
1286
|
+
|
|
1287
|
+
if tool.url.startswith(MCP_SERVER_TOOL_CONNECTOR_URI_SCHEME + ':'):
|
|
1288
|
+
_, connector_id = tool.url.split(':', maxsplit=1)
|
|
1289
|
+
mcp_tool['connector_id'] = connector_id # pyright: ignore[reportGeneralTypeIssues]
|
|
1290
|
+
else:
|
|
1291
|
+
mcp_tool['server_url'] = tool.url
|
|
1292
|
+
|
|
1293
|
+
tools.append(mcp_tool)
|
|
1259
1294
|
elif isinstance(tool, ImageGenerationTool): # pragma: no branch
|
|
1260
1295
|
has_image_generating_tool = True
|
|
1261
1296
|
tools.append(
|
|
@@ -1428,7 +1463,7 @@ class OpenAIResponsesModel(Model):
|
|
|
1428
1463
|
type='web_search_call',
|
|
1429
1464
|
)
|
|
1430
1465
|
openai_messages.append(web_search_item)
|
|
1431
|
-
elif item.tool_name == ImageGenerationTool.kind and item.tool_call_id:
|
|
1466
|
+
elif item.tool_name == ImageGenerationTool.kind and item.tool_call_id:
|
|
1432
1467
|
# The cast is necessary because of https://github.com/openai/openai-python/issues/2648
|
|
1433
1468
|
image_generation_item = cast(
|
|
1434
1469
|
responses.response_input_item_param.ImageGenerationCall,
|
|
@@ -1438,6 +1473,37 @@ class OpenAIResponsesModel(Model):
|
|
|
1438
1473
|
},
|
|
1439
1474
|
)
|
|
1440
1475
|
openai_messages.append(image_generation_item)
|
|
1476
|
+
elif ( # pragma: no branch
|
|
1477
|
+
item.tool_name.startswith(MCPServerTool.kind)
|
|
1478
|
+
and item.tool_call_id
|
|
1479
|
+
and (server_id := item.tool_name.split(':', 1)[1])
|
|
1480
|
+
and (args := item.args_as_dict())
|
|
1481
|
+
and (action := args.get('action'))
|
|
1482
|
+
):
|
|
1483
|
+
if action == 'list_tools':
|
|
1484
|
+
mcp_list_tools_item = responses.response_input_item_param.McpListTools(
|
|
1485
|
+
id=item.tool_call_id,
|
|
1486
|
+
type='mcp_list_tools',
|
|
1487
|
+
server_label=server_id,
|
|
1488
|
+
tools=[], # These can be read server-side
|
|
1489
|
+
)
|
|
1490
|
+
openai_messages.append(mcp_list_tools_item)
|
|
1491
|
+
elif ( # pragma: no branch
|
|
1492
|
+
action == 'call_tool'
|
|
1493
|
+
and (tool_name := args.get('tool_name'))
|
|
1494
|
+
and (tool_args := args.get('tool_args'))
|
|
1495
|
+
):
|
|
1496
|
+
mcp_call_item = responses.response_input_item_param.McpCall(
|
|
1497
|
+
id=item.tool_call_id,
|
|
1498
|
+
server_label=server_id,
|
|
1499
|
+
name=tool_name,
|
|
1500
|
+
arguments=to_json(tool_args).decode(),
|
|
1501
|
+
error=None, # These can be read server-side
|
|
1502
|
+
output=None, # These can be read server-side
|
|
1503
|
+
type='mcp_call',
|
|
1504
|
+
)
|
|
1505
|
+
openai_messages.append(mcp_call_item)
|
|
1506
|
+
|
|
1441
1507
|
elif isinstance(item, BuiltinToolReturnPart):
|
|
1442
1508
|
if item.provider_name == self.system and send_item_ids:
|
|
1443
1509
|
if (
|
|
@@ -1456,9 +1522,12 @@ class OpenAIResponsesModel(Model):
|
|
|
1456
1522
|
and (status := content.get('status'))
|
|
1457
1523
|
):
|
|
1458
1524
|
web_search_item['status'] = status
|
|
1459
|
-
elif item.tool_name == ImageGenerationTool.kind:
|
|
1525
|
+
elif item.tool_name == ImageGenerationTool.kind:
|
|
1460
1526
|
# Image generation result does not need to be sent back, just the `id` off of `BuiltinToolCallPart`.
|
|
1461
1527
|
pass
|
|
1528
|
+
elif item.tool_name.startswith(MCPServerTool.kind): # pragma: no branch
|
|
1529
|
+
# MCP call result does not need to be sent back, just the fields off of `BuiltinToolCallPart`.
|
|
1530
|
+
pass
|
|
1462
1531
|
elif isinstance(item, FilePart):
|
|
1463
1532
|
# This was generated by the `ImageGenerationTool` or `CodeExecutionTool`,
|
|
1464
1533
|
# and does not need to be sent back separately from the corresponding `BuiltinToolReturnPart`.
|
|
@@ -1772,7 +1841,7 @@ class OpenAIResponsesStreamedResponse(StreamedResponse):
|
|
|
1772
1841
|
args_json = call_part.args_as_json_str()
|
|
1773
1842
|
# Drop the final `"}` so that we can add code deltas
|
|
1774
1843
|
args_json_delta = args_json[:-2]
|
|
1775
|
-
assert args_json_delta.endswith('code":"')
|
|
1844
|
+
assert args_json_delta.endswith('"code":"'), f'Expected {args_json_delta!r} to end in `"code":"`'
|
|
1776
1845
|
|
|
1777
1846
|
yield self._parts_manager.handle_part(
|
|
1778
1847
|
vendor_part_id=f'{chunk.item.id}-call', part=replace(call_part, args=None)
|
|
@@ -1786,7 +1855,28 @@ class OpenAIResponsesStreamedResponse(StreamedResponse):
|
|
|
1786
1855
|
elif isinstance(chunk.item, responses.response_output_item.ImageGenerationCall):
|
|
1787
1856
|
call_part, _, _ = _map_image_generation_tool_call(chunk.item, self.provider_name)
|
|
1788
1857
|
yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-call', part=call_part)
|
|
1858
|
+
elif isinstance(chunk.item, responses.response_output_item.McpCall):
|
|
1859
|
+
call_part, _ = _map_mcp_call(chunk.item, self.provider_name)
|
|
1789
1860
|
|
|
1861
|
+
args_json = call_part.args_as_json_str()
|
|
1862
|
+
# Drop the final `{}}` so that we can add tool args deltas
|
|
1863
|
+
args_json_delta = args_json[:-3]
|
|
1864
|
+
assert args_json_delta.endswith('"tool_args":'), (
|
|
1865
|
+
f'Expected {args_json_delta!r} to end in `"tool_args":"`'
|
|
1866
|
+
)
|
|
1867
|
+
|
|
1868
|
+
yield self._parts_manager.handle_part(
|
|
1869
|
+
vendor_part_id=f'{chunk.item.id}-call', part=replace(call_part, args=None)
|
|
1870
|
+
)
|
|
1871
|
+
maybe_event = self._parts_manager.handle_tool_call_delta(
|
|
1872
|
+
vendor_part_id=f'{chunk.item.id}-call',
|
|
1873
|
+
args=args_json_delta,
|
|
1874
|
+
)
|
|
1875
|
+
if maybe_event is not None: # pragma: no branch
|
|
1876
|
+
yield maybe_event
|
|
1877
|
+
elif isinstance(chunk.item, responses.response_output_item.McpListTools):
|
|
1878
|
+
call_part, _ = _map_mcp_list_tools(chunk.item, self.provider_name)
|
|
1879
|
+
yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-call', part=call_part)
|
|
1790
1880
|
else:
|
|
1791
1881
|
warnings.warn( # pragma: no cover
|
|
1792
1882
|
f'Handling of this item type is not yet implemented. Please report on our GitHub: {chunk}',
|
|
@@ -1827,6 +1917,13 @@ class OpenAIResponsesStreamedResponse(StreamedResponse):
|
|
|
1827
1917
|
yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-file', part=file_part)
|
|
1828
1918
|
yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)
|
|
1829
1919
|
|
|
1920
|
+
elif isinstance(chunk.item, responses.response_output_item.McpCall):
|
|
1921
|
+
_, return_part = _map_mcp_call(chunk.item, self.provider_name)
|
|
1922
|
+
yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)
|
|
1923
|
+
elif isinstance(chunk.item, responses.response_output_item.McpListTools):
|
|
1924
|
+
_, return_part = _map_mcp_list_tools(chunk.item, self.provider_name)
|
|
1925
|
+
yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)
|
|
1926
|
+
|
|
1830
1927
|
elif isinstance(chunk, responses.ResponseReasoningSummaryPartAddedEvent):
|
|
1831
1928
|
yield self._parts_manager.handle_thinking_delta(
|
|
1832
1929
|
vendor_part_id=f'{chunk.item_id}-{chunk.summary_index}',
|
|
@@ -1921,6 +2018,40 @@ class OpenAIResponsesStreamedResponse(StreamedResponse):
|
|
|
1921
2018
|
)
|
|
1922
2019
|
yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item_id}-file', part=file_part)
|
|
1923
2020
|
|
|
2021
|
+
elif isinstance(chunk, responses.ResponseMcpCallArgumentsDoneEvent):
|
|
2022
|
+
maybe_event = self._parts_manager.handle_tool_call_delta(
|
|
2023
|
+
vendor_part_id=f'{chunk.item_id}-call',
|
|
2024
|
+
args='}',
|
|
2025
|
+
)
|
|
2026
|
+
if maybe_event is not None: # pragma: no branch
|
|
2027
|
+
yield maybe_event
|
|
2028
|
+
|
|
2029
|
+
elif isinstance(chunk, responses.ResponseMcpCallArgumentsDeltaEvent):
|
|
2030
|
+
maybe_event = self._parts_manager.handle_tool_call_delta(
|
|
2031
|
+
vendor_part_id=f'{chunk.item_id}-call',
|
|
2032
|
+
args=chunk.delta,
|
|
2033
|
+
)
|
|
2034
|
+
if maybe_event is not None: # pragma: no branch
|
|
2035
|
+
yield maybe_event
|
|
2036
|
+
|
|
2037
|
+
elif isinstance(chunk, responses.ResponseMcpListToolsInProgressEvent):
|
|
2038
|
+
pass # there's nothing we need to do here
|
|
2039
|
+
|
|
2040
|
+
elif isinstance(chunk, responses.ResponseMcpListToolsCompletedEvent):
|
|
2041
|
+
pass # there's nothing we need to do here
|
|
2042
|
+
|
|
2043
|
+
elif isinstance(chunk, responses.ResponseMcpListToolsFailedEvent): # pragma: no cover
|
|
2044
|
+
pass # there's nothing we need to do here
|
|
2045
|
+
|
|
2046
|
+
elif isinstance(chunk, responses.ResponseMcpCallInProgressEvent):
|
|
2047
|
+
pass # there's nothing we need to do here
|
|
2048
|
+
|
|
2049
|
+
elif isinstance(chunk, responses.ResponseMcpCallFailedEvent): # pragma: no cover
|
|
2050
|
+
pass # there's nothing we need to do here
|
|
2051
|
+
|
|
2052
|
+
elif isinstance(chunk, responses.ResponseMcpCallCompletedEvent):
|
|
2053
|
+
pass # there's nothing we need to do here
|
|
2054
|
+
|
|
1924
2055
|
else: # pragma: no cover
|
|
1925
2056
|
warnings.warn(
|
|
1926
2057
|
f'Handling of this event type is not yet implemented. Please report on our GitHub: {chunk}',
|
|
@@ -1990,7 +2121,6 @@ def _map_usage(
|
|
|
1990
2121
|
def _split_combined_tool_call_id(combined_id: str) -> tuple[str, str | None]:
|
|
1991
2122
|
# When reasoning, the Responses API requires the `ResponseFunctionToolCall` to be returned with both the `call_id` and `id` fields.
|
|
1992
2123
|
# Before our `ToolCallPart` gained the `id` field alongside `tool_call_id` field, we combined the two fields into a single string stored on `tool_call_id`.
|
|
1993
|
-
|
|
1994
2124
|
if '|' in combined_id:
|
|
1995
2125
|
call_id, id = combined_id.split('|', 1)
|
|
1996
2126
|
return call_id, id
|
|
@@ -2030,7 +2160,7 @@ def _map_code_interpreter_tool_call(
|
|
|
2030
2160
|
tool_call_id=item.id,
|
|
2031
2161
|
args={
|
|
2032
2162
|
'container_id': item.container_id,
|
|
2033
|
-
'code': item.code,
|
|
2163
|
+
'code': item.code or '',
|
|
2034
2164
|
},
|
|
2035
2165
|
provider_name=provider_name,
|
|
2036
2166
|
),
|
|
@@ -2122,3 +2252,50 @@ def _map_image_generation_tool_call(
|
|
|
2122
2252
|
),
|
|
2123
2253
|
file_part,
|
|
2124
2254
|
)
|
|
2255
|
+
|
|
2256
|
+
|
|
2257
|
+
def _map_mcp_list_tools(
|
|
2258
|
+
item: responses.response_output_item.McpListTools, provider_name: str
|
|
2259
|
+
) -> tuple[BuiltinToolCallPart, BuiltinToolReturnPart]:
|
|
2260
|
+
tool_name = ':'.join([MCPServerTool.kind, item.server_label])
|
|
2261
|
+
return (
|
|
2262
|
+
BuiltinToolCallPart(
|
|
2263
|
+
tool_name=tool_name,
|
|
2264
|
+
tool_call_id=item.id,
|
|
2265
|
+
provider_name=provider_name,
|
|
2266
|
+
args={'action': 'list_tools'},
|
|
2267
|
+
),
|
|
2268
|
+
BuiltinToolReturnPart(
|
|
2269
|
+
tool_name=tool_name,
|
|
2270
|
+
tool_call_id=item.id,
|
|
2271
|
+
content=item.model_dump(mode='json', include={'tools', 'error'}),
|
|
2272
|
+
provider_name=provider_name,
|
|
2273
|
+
),
|
|
2274
|
+
)
|
|
2275
|
+
|
|
2276
|
+
|
|
2277
|
+
def _map_mcp_call(
|
|
2278
|
+
item: responses.response_output_item.McpCall, provider_name: str
|
|
2279
|
+
) -> tuple[BuiltinToolCallPart, BuiltinToolReturnPart]:
|
|
2280
|
+
tool_name = ':'.join([MCPServerTool.kind, item.server_label])
|
|
2281
|
+
return (
|
|
2282
|
+
BuiltinToolCallPart(
|
|
2283
|
+
tool_name=tool_name,
|
|
2284
|
+
tool_call_id=item.id,
|
|
2285
|
+
args={
|
|
2286
|
+
'action': 'call_tool',
|
|
2287
|
+
'tool_name': item.name,
|
|
2288
|
+
'tool_args': json.loads(item.arguments) if item.arguments else {},
|
|
2289
|
+
},
|
|
2290
|
+
provider_name=provider_name,
|
|
2291
|
+
),
|
|
2292
|
+
BuiltinToolReturnPart(
|
|
2293
|
+
tool_name=tool_name,
|
|
2294
|
+
tool_call_id=item.id,
|
|
2295
|
+
content={
|
|
2296
|
+
'output': item.output,
|
|
2297
|
+
'error': item.error,
|
|
2298
|
+
},
|
|
2299
|
+
provider_name=provider_name,
|
|
2300
|
+
),
|
|
2301
|
+
)
|
pydantic_ai/providers/google.py
CHANGED
|
@@ -13,7 +13,8 @@ from pydantic_ai.providers import Provider
|
|
|
13
13
|
|
|
14
14
|
try:
|
|
15
15
|
from google.auth.credentials import Credentials
|
|
16
|
-
from google.genai import
|
|
16
|
+
from google.genai._api_client import BaseApiClient
|
|
17
|
+
from google.genai.client import Client, DebugConfig
|
|
17
18
|
from google.genai.types import HttpOptions
|
|
18
19
|
except ImportError as _import_error:
|
|
19
20
|
raise ImportError(
|
|
@@ -114,7 +115,7 @@ class GoogleProvider(Provider[Client]):
|
|
|
114
115
|
base_url=base_url,
|
|
115
116
|
headers={'User-Agent': get_user_agent()},
|
|
116
117
|
httpx_async_client=http_client,
|
|
117
|
-
# TODO: Remove once https://github.com/googleapis/python-genai/
|
|
118
|
+
# TODO: Remove once https://github.com/googleapis/python-genai/issues/1565 is solved.
|
|
118
119
|
async_client_args={'transport': httpx.AsyncHTTPTransport()},
|
|
119
120
|
)
|
|
120
121
|
if not vertexai:
|
|
@@ -186,9 +187,37 @@ More details [here](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/
|
|
|
186
187
|
|
|
187
188
|
|
|
188
189
|
class _SafelyClosingClient(Client):
|
|
190
|
+
@staticmethod
|
|
191
|
+
def _get_api_client(
|
|
192
|
+
vertexai: bool | None = None,
|
|
193
|
+
api_key: str | None = None,
|
|
194
|
+
credentials: Credentials | None = None,
|
|
195
|
+
project: str | None = None,
|
|
196
|
+
location: str | None = None,
|
|
197
|
+
debug_config: DebugConfig | None = None,
|
|
198
|
+
http_options: HttpOptions | None = None,
|
|
199
|
+
) -> BaseApiClient:
|
|
200
|
+
return _NonClosingApiClient(
|
|
201
|
+
vertexai=vertexai,
|
|
202
|
+
api_key=api_key,
|
|
203
|
+
credentials=credentials,
|
|
204
|
+
project=project,
|
|
205
|
+
location=location,
|
|
206
|
+
http_options=http_options,
|
|
207
|
+
)
|
|
208
|
+
|
|
189
209
|
def close(self) -> None:
|
|
190
210
|
# This is called from `Client.__del__`, even if `Client.__init__` raised an error before `self._api_client` is set, which would raise an `AttributeError` here.
|
|
211
|
+
# TODO: Remove once https://github.com/googleapis/python-genai/issues/1567 is solved.
|
|
191
212
|
try:
|
|
192
213
|
super().close()
|
|
193
214
|
except AttributeError:
|
|
194
215
|
pass
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
class _NonClosingApiClient(BaseApiClient):
|
|
219
|
+
async def aclose(self) -> None:
|
|
220
|
+
# The original implementation also calls `await self._async_httpx_client.aclose()`, but we don't want to close our `cached_async_http_client` or the one the user passed in.
|
|
221
|
+
# TODO: Remove once https://github.com/googleapis/python-genai/issues/1566 is solved.
|
|
222
|
+
if self._aiohttp_session:
|
|
223
|
+
await self._aiohttp_session.close() # pragma: no cover
|
pydantic_ai/run.py
CHANGED
|
@@ -1,12 +1,14 @@
|
|
|
1
1
|
from __future__ import annotations as _annotations
|
|
2
2
|
|
|
3
3
|
import dataclasses
|
|
4
|
-
from collections.abc import AsyncIterator
|
|
4
|
+
from collections.abc import AsyncIterator, Sequence
|
|
5
5
|
from copy import deepcopy
|
|
6
6
|
from datetime import datetime
|
|
7
7
|
from typing import TYPE_CHECKING, Any, Generic, Literal, overload
|
|
8
8
|
|
|
9
|
-
from pydantic_graph import
|
|
9
|
+
from pydantic_graph import BaseNode, End, GraphRunContext
|
|
10
|
+
from pydantic_graph.beta.graph import EndMarker, GraphRun, GraphTask, JoinItem
|
|
11
|
+
from pydantic_graph.beta.step import NodeStep
|
|
10
12
|
|
|
11
13
|
from . import (
|
|
12
14
|
_agent_graph,
|
|
@@ -112,12 +114,8 @@ class AgentRun(Generic[AgentDepsT, OutputDataT]):
|
|
|
112
114
|
|
|
113
115
|
This is the next node that will be used during async iteration, or if a node is not passed to `self.next(...)`.
|
|
114
116
|
"""
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
return next_node
|
|
118
|
-
if _agent_graph.is_agent_node(next_node):
|
|
119
|
-
return next_node
|
|
120
|
-
raise exceptions.AgentRunError(f'Unexpected node type: {type(next_node)}') # pragma: no cover
|
|
117
|
+
task = self._graph_run.next_task
|
|
118
|
+
return self._task_to_node(task)
|
|
121
119
|
|
|
122
120
|
@property
|
|
123
121
|
def result(self) -> AgentRunResult[OutputDataT] | None:
|
|
@@ -126,13 +124,13 @@ class AgentRun(Generic[AgentDepsT, OutputDataT]):
|
|
|
126
124
|
Once the run returns an [`End`][pydantic_graph.nodes.End] node, `result` is populated
|
|
127
125
|
with an [`AgentRunResult`][pydantic_ai.agent.AgentRunResult].
|
|
128
126
|
"""
|
|
129
|
-
|
|
130
|
-
if
|
|
127
|
+
graph_run_output = self._graph_run.output
|
|
128
|
+
if graph_run_output is None:
|
|
131
129
|
return None
|
|
132
130
|
return AgentRunResult(
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
131
|
+
graph_run_output.output,
|
|
132
|
+
graph_run_output.tool_name,
|
|
133
|
+
self._graph_run.state,
|
|
136
134
|
self._graph_run.deps.new_message_index,
|
|
137
135
|
self._traceparent(required=False),
|
|
138
136
|
)
|
|
@@ -147,11 +145,28 @@ class AgentRun(Generic[AgentDepsT, OutputDataT]):
|
|
|
147
145
|
self,
|
|
148
146
|
) -> _agent_graph.AgentNode[AgentDepsT, OutputDataT] | End[FinalResult[OutputDataT]]:
|
|
149
147
|
"""Advance to the next node automatically based on the last returned node."""
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
148
|
+
task = await anext(self._graph_run)
|
|
149
|
+
return self._task_to_node(task)
|
|
150
|
+
|
|
151
|
+
def _task_to_node(
|
|
152
|
+
self, task: EndMarker[FinalResult[OutputDataT]] | JoinItem | Sequence[GraphTask]
|
|
153
|
+
) -> _agent_graph.AgentNode[AgentDepsT, OutputDataT] | End[FinalResult[OutputDataT]]:
|
|
154
|
+
if isinstance(task, Sequence) and len(task) == 1:
|
|
155
|
+
first_task = task[0]
|
|
156
|
+
if isinstance(first_task.inputs, BaseNode): # pragma: no branch
|
|
157
|
+
base_node: BaseNode[
|
|
158
|
+
_agent_graph.GraphAgentState,
|
|
159
|
+
_agent_graph.GraphAgentDeps[AgentDepsT, OutputDataT],
|
|
160
|
+
FinalResult[OutputDataT],
|
|
161
|
+
] = first_task.inputs # type: ignore[reportUnknownMemberType]
|
|
162
|
+
if _agent_graph.is_agent_node(node=base_node): # pragma: no branch
|
|
163
|
+
return base_node
|
|
164
|
+
if isinstance(task, EndMarker):
|
|
165
|
+
return End(task.value)
|
|
166
|
+
raise exceptions.AgentRunError(f'Unexpected node: {task}') # pragma: no cover
|
|
167
|
+
|
|
168
|
+
def _node_to_task(self, node: _agent_graph.AgentNode[AgentDepsT, OutputDataT]) -> GraphTask:
|
|
169
|
+
return GraphTask(NodeStep(type(node)).id, inputs=node, fork_stack=())
|
|
155
170
|
|
|
156
171
|
async def next(
|
|
157
172
|
self,
|
|
@@ -222,11 +237,12 @@ class AgentRun(Generic[AgentDepsT, OutputDataT]):
|
|
|
222
237
|
"""
|
|
223
238
|
# Note: It might be nice to expose a synchronous interface for iteration, but we shouldn't do it
|
|
224
239
|
# on this class, or else IDEs won't warn you if you accidentally use `for` instead of `async for` to iterate.
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
240
|
+
task = [self._node_to_task(node)]
|
|
241
|
+
try:
|
|
242
|
+
task = await self._graph_run.next(task)
|
|
243
|
+
except StopAsyncIteration:
|
|
244
|
+
pass
|
|
245
|
+
return self._task_to_node(task)
|
|
230
246
|
|
|
231
247
|
# TODO (v2): Make this a property
|
|
232
248
|
def usage(self) -> _usage.RunUsage:
|
|
@@ -234,7 +250,7 @@ class AgentRun(Generic[AgentDepsT, OutputDataT]):
|
|
|
234
250
|
return self._graph_run.state.usage
|
|
235
251
|
|
|
236
252
|
def __repr__(self) -> str: # pragma: no cover
|
|
237
|
-
result = self._graph_run.
|
|
253
|
+
result = self._graph_run.output
|
|
238
254
|
result_repr = '<run not finished>' if result is None else repr(result.output)
|
|
239
255
|
return f'<{type(self).__name__} result={result_repr} usage={self.usage()}>'
|
|
240
256
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: pydantic-ai-slim
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.5.0
|
|
4
4
|
Summary: Agent Framework / shim to use Pydantic with LLMs, slim package
|
|
5
5
|
Project-URL: Homepage, https://github.com/pydantic/pydantic-ai/tree/main/pydantic_ai_slim
|
|
6
6
|
Project-URL: Source, https://github.com/pydantic/pydantic-ai/tree/main/pydantic_ai_slim
|
|
@@ -33,7 +33,7 @@ Requires-Dist: genai-prices>=0.0.35
|
|
|
33
33
|
Requires-Dist: griffe>=1.3.2
|
|
34
34
|
Requires-Dist: httpx>=0.27
|
|
35
35
|
Requires-Dist: opentelemetry-api>=1.28.0
|
|
36
|
-
Requires-Dist: pydantic-graph==1.
|
|
36
|
+
Requires-Dist: pydantic-graph==1.5.0
|
|
37
37
|
Requires-Dist: pydantic>=2.10
|
|
38
38
|
Requires-Dist: typing-inspection>=0.4.0
|
|
39
39
|
Provides-Extra: a2a
|
|
@@ -57,7 +57,7 @@ Requires-Dist: dbos>=1.14.0; extra == 'dbos'
|
|
|
57
57
|
Provides-Extra: duckduckgo
|
|
58
58
|
Requires-Dist: ddgs>=9.0.0; extra == 'duckduckgo'
|
|
59
59
|
Provides-Extra: evals
|
|
60
|
-
Requires-Dist: pydantic-evals==1.
|
|
60
|
+
Requires-Dist: pydantic-evals==1.5.0; extra == 'evals'
|
|
61
61
|
Provides-Extra: google
|
|
62
62
|
Requires-Dist: google-genai>=1.46.0; extra == 'google'
|
|
63
63
|
Provides-Extra: groq
|