pydantic-ai-slim 1.0.9__py3-none-any.whl → 1.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pydantic_ai/_agent_graph.py +59 -53
- pydantic_ai/_function_schema.py +18 -10
- pydantic_ai/_output.py +1 -8
- pydantic_ai/agent/__init__.py +2 -1
- pydantic_ai/format_prompt.py +109 -17
- pydantic_ai/mcp.py +1 -1
- pydantic_ai/messages.py +3 -5
- pydantic_ai/models/__init__.py +2 -81
- pydantic_ai/models/anthropic.py +15 -9
- pydantic_ai/models/google.py +27 -17
- pydantic_ai/models/instrumented.py +27 -11
- pydantic_ai/models/openai.py +39 -7
- pydantic_ai/output.py +12 -1
- pydantic_ai/profiles/harmony.py +3 -1
- pydantic_ai/providers/ollama.py +2 -0
- {pydantic_ai_slim-1.0.9.dist-info → pydantic_ai_slim-1.0.11.dist-info}/METADATA +6 -6
- {pydantic_ai_slim-1.0.9.dist-info → pydantic_ai_slim-1.0.11.dist-info}/RECORD +20 -20
- {pydantic_ai_slim-1.0.9.dist-info → pydantic_ai_slim-1.0.11.dist-info}/WHEEL +0 -0
- {pydantic_ai_slim-1.0.9.dist-info → pydantic_ai_slim-1.0.11.dist-info}/entry_points.txt +0 -0
- {pydantic_ai_slim-1.0.9.dist-info → pydantic_ai_slim-1.0.11.dist-info}/licenses/LICENSE +0 -0
pydantic_ai/_agent_graph.py
CHANGED
|
@@ -547,7 +547,7 @@ class CallToolsNode(AgentNode[DepsT, NodeRunEndT]):
|
|
|
547
547
|
async def _run_stream() -> AsyncIterator[_messages.HandleResponseEvent]: # noqa: C901
|
|
548
548
|
text = ''
|
|
549
549
|
tool_calls: list[_messages.ToolCallPart] = []
|
|
550
|
-
|
|
550
|
+
invisible_parts: bool = False
|
|
551
551
|
|
|
552
552
|
for part in self.model_response.parts:
|
|
553
553
|
if isinstance(part, _messages.TextPart):
|
|
@@ -558,11 +558,13 @@ class CallToolsNode(AgentNode[DepsT, NodeRunEndT]):
|
|
|
558
558
|
# Text parts before a built-in tool call are essentially thoughts,
|
|
559
559
|
# not part of the final result output, so we reset the accumulated text
|
|
560
560
|
text = ''
|
|
561
|
+
invisible_parts = True
|
|
561
562
|
yield _messages.BuiltinToolCallEvent(part) # pyright: ignore[reportDeprecated]
|
|
562
563
|
elif isinstance(part, _messages.BuiltinToolReturnPart):
|
|
564
|
+
invisible_parts = True
|
|
563
565
|
yield _messages.BuiltinToolResultEvent(part) # pyright: ignore[reportDeprecated]
|
|
564
566
|
elif isinstance(part, _messages.ThinkingPart):
|
|
565
|
-
|
|
567
|
+
invisible_parts = True
|
|
566
568
|
else:
|
|
567
569
|
assert_never(part)
|
|
568
570
|
|
|
@@ -570,43 +572,51 @@ class CallToolsNode(AgentNode[DepsT, NodeRunEndT]):
|
|
|
570
572
|
# In the future, we'd consider making this configurable at the agent or run level.
|
|
571
573
|
# This accounts for cases like anthropic returns that might contain a text response
|
|
572
574
|
# and a tool call response, where the text response just indicates the tool call will happen.
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
_messages.
|
|
585
|
-
|
|
575
|
+
try:
|
|
576
|
+
if tool_calls:
|
|
577
|
+
async for event in self._handle_tool_calls(ctx, tool_calls):
|
|
578
|
+
yield event
|
|
579
|
+
elif text:
|
|
580
|
+
# No events are emitted during the handling of text responses, so we don't need to yield anything
|
|
581
|
+
self._next_node = await self._handle_text_response(ctx, text)
|
|
582
|
+
elif invisible_parts:
|
|
583
|
+
# handle responses with only thinking or built-in tool parts.
|
|
584
|
+
# this can happen with models that support thinking mode when they don't provide
|
|
585
|
+
# actionable output alongside their thinking content. so we tell the model to try again.
|
|
586
|
+
m = _messages.RetryPromptPart(
|
|
587
|
+
content='Responses without text or tool calls are not permitted.',
|
|
586
588
|
)
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|
|
602
|
-
|
|
603
|
-
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
|
|
608
|
-
|
|
609
|
-
|
|
589
|
+
raise ToolRetryError(m)
|
|
590
|
+
else:
|
|
591
|
+
# we got an empty response with no tool calls, text, thinking, or built-in tool calls.
|
|
592
|
+
# this sometimes happens with anthropic (and perhaps other models)
|
|
593
|
+
# when the model has already returned text along side tool calls
|
|
594
|
+
# in this scenario, if text responses are allowed, we return text from the most recent model
|
|
595
|
+
# response, if any
|
|
596
|
+
if isinstance(ctx.deps.output_schema, _output.TextOutputSchema):
|
|
597
|
+
for message in reversed(ctx.state.message_history):
|
|
598
|
+
if isinstance(message, _messages.ModelResponse):
|
|
599
|
+
text = ''
|
|
600
|
+
for part in message.parts:
|
|
601
|
+
if isinstance(part, _messages.TextPart):
|
|
602
|
+
text += part.content
|
|
603
|
+
elif isinstance(part, _messages.BuiltinToolCallPart):
|
|
604
|
+
# Text parts before a built-in tool call are essentially thoughts,
|
|
605
|
+
# not part of the final result output, so we reset the accumulated text
|
|
606
|
+
text = '' # pragma: no cover
|
|
607
|
+
if text:
|
|
608
|
+
self._next_node = await self._handle_text_response(ctx, text)
|
|
609
|
+
return
|
|
610
|
+
|
|
611
|
+
# Go back to the model request node with an empty request, which means we'll essentially
|
|
612
|
+
# resubmit the most recent request that resulted in an empty response,
|
|
613
|
+
# as the empty response and request will not create any items in the API payload,
|
|
614
|
+
# in the hope the model will return a non-empty response this time.
|
|
615
|
+
ctx.state.increment_retries(ctx.deps.max_result_retries)
|
|
616
|
+
self._next_node = ModelRequestNode[DepsT, NodeRunEndT](_messages.ModelRequest(parts=[]))
|
|
617
|
+
except ToolRetryError as e:
|
|
618
|
+
ctx.state.increment_retries(ctx.deps.max_result_retries, e)
|
|
619
|
+
self._next_node = ModelRequestNode[DepsT, NodeRunEndT](_messages.ModelRequest(parts=[e.tool_retry]))
|
|
610
620
|
|
|
611
621
|
self._events_iterator = _run_stream()
|
|
612
622
|
|
|
@@ -666,23 +676,19 @@ class CallToolsNode(AgentNode[DepsT, NodeRunEndT]):
|
|
|
666
676
|
text: str,
|
|
667
677
|
) -> ModelRequestNode[DepsT, NodeRunEndT] | End[result.FinalResult[NodeRunEndT]]:
|
|
668
678
|
output_schema = ctx.deps.output_schema
|
|
669
|
-
|
|
670
|
-
run_context = build_run_context(ctx)
|
|
671
|
-
if isinstance(output_schema, _output.TextOutputSchema):
|
|
672
|
-
result_data = await output_schema.process(text, run_context)
|
|
673
|
-
else:
|
|
674
|
-
m = _messages.RetryPromptPart(
|
|
675
|
-
content='Plain text responses are not permitted, please include your response in a tool call',
|
|
676
|
-
)
|
|
677
|
-
raise ToolRetryError(m)
|
|
679
|
+
run_context = build_run_context(ctx)
|
|
678
680
|
|
|
679
|
-
|
|
680
|
-
|
|
681
|
-
except ToolRetryError as e:
|
|
682
|
-
ctx.state.increment_retries(ctx.deps.max_result_retries, e)
|
|
683
|
-
return ModelRequestNode[DepsT, NodeRunEndT](_messages.ModelRequest(parts=[e.tool_retry]))
|
|
681
|
+
if isinstance(output_schema, _output.TextOutputSchema):
|
|
682
|
+
result_data = await output_schema.process(text, run_context)
|
|
684
683
|
else:
|
|
685
|
-
|
|
684
|
+
m = _messages.RetryPromptPart(
|
|
685
|
+
content='Plain text responses are not permitted, please include your response in a tool call',
|
|
686
|
+
)
|
|
687
|
+
raise ToolRetryError(m)
|
|
688
|
+
|
|
689
|
+
for validator in ctx.deps.output_validators:
|
|
690
|
+
result_data = await validator.validate(result_data, run_context)
|
|
691
|
+
return self._handle_final_result(ctx, result.FinalResult(result_data), [])
|
|
686
692
|
|
|
687
693
|
__repr__ = dataclasses_no_defaults_repr
|
|
688
694
|
|
pydantic_ai/_function_schema.py
CHANGED
|
@@ -231,31 +231,39 @@ R = TypeVar('R')
|
|
|
231
231
|
|
|
232
232
|
WithCtx = Callable[Concatenate[RunContext[Any], P], R]
|
|
233
233
|
WithoutCtx = Callable[P, R]
|
|
234
|
-
|
|
234
|
+
TargetCallable = WithCtx[P, R] | WithoutCtx[P, R]
|
|
235
235
|
|
|
236
236
|
|
|
237
|
-
def _takes_ctx(
|
|
238
|
-
"""Check if a
|
|
237
|
+
def _takes_ctx(callable_obj: TargetCallable[P, R]) -> TypeIs[WithCtx[P, R]]:
|
|
238
|
+
"""Check if a callable takes a `RunContext` first argument.
|
|
239
239
|
|
|
240
240
|
Args:
|
|
241
|
-
|
|
241
|
+
callable_obj: The callable to check.
|
|
242
242
|
|
|
243
243
|
Returns:
|
|
244
|
-
`True` if the
|
|
244
|
+
`True` if the callable takes a `RunContext` as first argument, `False` otherwise.
|
|
245
245
|
"""
|
|
246
246
|
try:
|
|
247
|
-
sig = signature(
|
|
248
|
-
except ValueError:
|
|
249
|
-
return False
|
|
247
|
+
sig = signature(callable_obj)
|
|
248
|
+
except ValueError:
|
|
249
|
+
return False
|
|
250
250
|
try:
|
|
251
251
|
first_param_name = next(iter(sig.parameters.keys()))
|
|
252
252
|
except StopIteration:
|
|
253
253
|
return False
|
|
254
254
|
else:
|
|
255
|
-
|
|
255
|
+
# See https://github.com/pydantic/pydantic/pull/11451 for a similar implementation in Pydantic
|
|
256
|
+
if not isinstance(callable_obj, _decorators._function_like): # pyright: ignore[reportPrivateUsage]
|
|
257
|
+
call_func = getattr(type(callable_obj), '__call__', None)
|
|
258
|
+
if call_func is not None:
|
|
259
|
+
callable_obj = call_func
|
|
260
|
+
else:
|
|
261
|
+
return False # pragma: no cover
|
|
262
|
+
|
|
263
|
+
type_hints = _typing_extra.get_function_type_hints(_decorators.unwrap_wrapped_function(callable_obj))
|
|
256
264
|
annotation = type_hints.get(first_param_name)
|
|
257
265
|
if annotation is None:
|
|
258
|
-
return False
|
|
266
|
+
return False
|
|
259
267
|
return True is not sig.empty and _is_call_ctx(annotation)
|
|
260
268
|
|
|
261
269
|
|
pydantic_ai/_output.py
CHANGED
|
@@ -19,6 +19,7 @@ from .output import (
|
|
|
19
19
|
NativeOutput,
|
|
20
20
|
OutputDataT,
|
|
21
21
|
OutputMode,
|
|
22
|
+
OutputObjectDefinition,
|
|
22
23
|
OutputSpec,
|
|
23
24
|
OutputTypeOrFunction,
|
|
24
25
|
PromptedOutput,
|
|
@@ -581,14 +582,6 @@ class ToolOrTextOutputSchema(ToolOutputSchema[OutputDataT], PlainTextOutputSchem
|
|
|
581
582
|
return 'tool_or_text'
|
|
582
583
|
|
|
583
584
|
|
|
584
|
-
@dataclass
|
|
585
|
-
class OutputObjectDefinition:
|
|
586
|
-
json_schema: ObjectJsonSchema
|
|
587
|
-
name: str | None = None
|
|
588
|
-
description: str | None = None
|
|
589
|
-
strict: bool | None = None
|
|
590
|
-
|
|
591
|
-
|
|
592
585
|
@dataclass(init=False)
|
|
593
586
|
class BaseOutputProcessor(ABC, Generic[OutputDataT]):
|
|
594
587
|
@abstractmethod
|
pydantic_ai/agent/__init__.py
CHANGED
|
@@ -259,7 +259,8 @@ class Agent(AbstractAgent[AgentDepsT, OutputDataT]):
|
|
|
259
259
|
name: The name of the agent, used for logging. If `None`, we try to infer the agent name from the call frame
|
|
260
260
|
when the agent is first run.
|
|
261
261
|
model_settings: Optional model request settings to use for this agent's runs, by default.
|
|
262
|
-
retries: The default number of retries to allow before raising an error.
|
|
262
|
+
retries: The default number of retries to allow for tool calls and output validation, before raising an error.
|
|
263
|
+
For model request retries, see the [HTTP Request Retries](../retries.md) documentation.
|
|
263
264
|
output_retries: The maximum number of retries to allow for output validation, defaults to `retries`.
|
|
264
265
|
tools: Tools to register with the agent, you can also register tools via the decorators
|
|
265
266
|
[`@agent.tool`][pydantic_ai.Agent.tool] and [`@agent.tool_plain`][pydantic_ai.Agent.tool_plain].
|
pydantic_ai/format_prompt.py
CHANGED
|
@@ -1,15 +1,17 @@
|
|
|
1
1
|
from __future__ import annotations as _annotations
|
|
2
2
|
|
|
3
3
|
from collections.abc import Iterable, Iterator, Mapping
|
|
4
|
-
from dataclasses import asdict, dataclass, is_dataclass
|
|
4
|
+
from dataclasses import asdict, dataclass, field, fields, is_dataclass
|
|
5
5
|
from datetime import date
|
|
6
|
-
from typing import Any
|
|
6
|
+
from typing import Any, Literal
|
|
7
7
|
from xml.etree import ElementTree
|
|
8
8
|
|
|
9
9
|
from pydantic import BaseModel
|
|
10
10
|
|
|
11
11
|
__all__ = ('format_as_xml',)
|
|
12
12
|
|
|
13
|
+
from pydantic.fields import ComputedFieldInfo, FieldInfo
|
|
14
|
+
|
|
13
15
|
|
|
14
16
|
def format_as_xml(
|
|
15
17
|
obj: Any,
|
|
@@ -17,6 +19,7 @@ def format_as_xml(
|
|
|
17
19
|
item_tag: str = 'item',
|
|
18
20
|
none_str: str = 'null',
|
|
19
21
|
indent: str | None = ' ',
|
|
22
|
+
include_field_info: Literal['once'] | bool = False,
|
|
20
23
|
) -> str:
|
|
21
24
|
"""Format a Python object as XML.
|
|
22
25
|
|
|
@@ -33,6 +36,10 @@ def format_as_xml(
|
|
|
33
36
|
for dataclasses and Pydantic models.
|
|
34
37
|
none_str: String to use for `None` values.
|
|
35
38
|
indent: Indentation string to use for pretty printing.
|
|
39
|
+
include_field_info: Whether to include attributes like Pydantic `Field` attributes and dataclasses `field()`
|
|
40
|
+
`metadata` as XML attributes. In both cases the allowed `Field` attributes and `field()` metadata keys are
|
|
41
|
+
`title` and `description`. If a field is repeated in the data (e.g. in a list) by setting `once`
|
|
42
|
+
the attributes are included only in the first occurrence of an XML element relative to the same field.
|
|
36
43
|
|
|
37
44
|
Returns:
|
|
38
45
|
XML representation of the object.
|
|
@@ -51,7 +58,12 @@ def format_as_xml(
|
|
|
51
58
|
'''
|
|
52
59
|
```
|
|
53
60
|
"""
|
|
54
|
-
el = _ToXml(
|
|
61
|
+
el = _ToXml(
|
|
62
|
+
data=obj,
|
|
63
|
+
item_tag=item_tag,
|
|
64
|
+
none_str=none_str,
|
|
65
|
+
include_field_info=include_field_info,
|
|
66
|
+
).to_xml(root_tag)
|
|
55
67
|
if root_tag is None and el.text is None:
|
|
56
68
|
join = '' if indent is None else '\n'
|
|
57
69
|
return join.join(_rootless_xml_elements(el, indent))
|
|
@@ -63,11 +75,26 @@ def format_as_xml(
|
|
|
63
75
|
|
|
64
76
|
@dataclass
|
|
65
77
|
class _ToXml:
|
|
78
|
+
data: Any
|
|
66
79
|
item_tag: str
|
|
67
80
|
none_str: str
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
81
|
+
include_field_info: Literal['once'] | bool
|
|
82
|
+
# a map of Pydantic and dataclasses Field paths to their metadata:
|
|
83
|
+
# a field unique string representation and its class
|
|
84
|
+
_fields_info: dict[str, tuple[str, FieldInfo | ComputedFieldInfo]] = field(default_factory=dict)
|
|
85
|
+
# keep track of fields we have extracted attributes from
|
|
86
|
+
_included_fields: set[str] = field(default_factory=set)
|
|
87
|
+
# keep track of class names for dataclasses and Pydantic models, that occur in lists
|
|
88
|
+
_element_names: dict[str, str] = field(default_factory=dict)
|
|
89
|
+
# flag for parsing dataclasses and Pydantic models once
|
|
90
|
+
_is_info_extracted: bool = False
|
|
91
|
+
_FIELD_ATTRIBUTES = ('title', 'description')
|
|
92
|
+
|
|
93
|
+
def to_xml(self, tag: str | None = None) -> ElementTree.Element:
|
|
94
|
+
return self._to_xml(value=self.data, path='', tag=tag)
|
|
95
|
+
|
|
96
|
+
def _to_xml(self, value: Any, path: str, tag: str | None = None) -> ElementTree.Element:
|
|
97
|
+
element = self._create_element(self.item_tag if tag is None else tag, path)
|
|
71
98
|
if value is None:
|
|
72
99
|
element.text = self.none_str
|
|
73
100
|
elif isinstance(value, str):
|
|
@@ -79,31 +106,96 @@ class _ToXml:
|
|
|
79
106
|
elif isinstance(value, date):
|
|
80
107
|
element.text = value.isoformat()
|
|
81
108
|
elif isinstance(value, Mapping):
|
|
82
|
-
self.
|
|
109
|
+
if tag is None and path in self._element_names:
|
|
110
|
+
element.tag = self._element_names[path]
|
|
111
|
+
self._mapping_to_xml(element, value, path) # pyright: ignore[reportUnknownArgumentType]
|
|
83
112
|
elif is_dataclass(value) and not isinstance(value, type):
|
|
113
|
+
self._init_structure_info()
|
|
84
114
|
if tag is None:
|
|
85
|
-
element =
|
|
86
|
-
|
|
87
|
-
self._mapping_to_xml(element, dc_dict)
|
|
115
|
+
element.tag = value.__class__.__name__
|
|
116
|
+
self._mapping_to_xml(element, asdict(value), path)
|
|
88
117
|
elif isinstance(value, BaseModel):
|
|
118
|
+
self._init_structure_info()
|
|
89
119
|
if tag is None:
|
|
90
|
-
element =
|
|
91
|
-
|
|
120
|
+
element.tag = value.__class__.__name__
|
|
121
|
+
# by dumping the model we loose all metadata in nested data structures,
|
|
122
|
+
# but we have collected it when called _init_structure_info
|
|
123
|
+
self._mapping_to_xml(element, value.model_dump(), path)
|
|
92
124
|
elif isinstance(value, Iterable):
|
|
93
|
-
for item in value: # pyright: ignore[reportUnknownVariableType]
|
|
94
|
-
|
|
95
|
-
element.append(item_el)
|
|
125
|
+
for n, item in enumerate(value): # pyright: ignore[reportUnknownVariableType,reportUnknownArgumentType]
|
|
126
|
+
element.append(self._to_xml(value=item, path=f'{path}.[{n}]' if path else f'[{n}]'))
|
|
96
127
|
else:
|
|
97
128
|
raise TypeError(f'Unsupported type for XML formatting: {type(value)}')
|
|
98
129
|
return element
|
|
99
130
|
|
|
100
|
-
def
|
|
131
|
+
def _create_element(self, tag: str, path: str) -> ElementTree.Element:
|
|
132
|
+
element = ElementTree.Element(tag)
|
|
133
|
+
if path in self._fields_info:
|
|
134
|
+
field_repr, field_info = self._fields_info[path]
|
|
135
|
+
if self.include_field_info and self.include_field_info != 'once' or field_repr not in self._included_fields:
|
|
136
|
+
field_attributes = self._extract_attributes(field_info)
|
|
137
|
+
for k, v in field_attributes.items():
|
|
138
|
+
element.set(k, v)
|
|
139
|
+
self._included_fields.add(field_repr)
|
|
140
|
+
return element
|
|
141
|
+
|
|
142
|
+
def _init_structure_info(self):
|
|
143
|
+
"""Create maps with all data information (fields info and class names), if not already created."""
|
|
144
|
+
if not self._is_info_extracted:
|
|
145
|
+
self._parse_data_structures(self.data)
|
|
146
|
+
self._is_info_extracted = True
|
|
147
|
+
|
|
148
|
+
def _mapping_to_xml(
|
|
149
|
+
self,
|
|
150
|
+
element: ElementTree.Element,
|
|
151
|
+
mapping: Mapping[Any, Any],
|
|
152
|
+
path: str = '',
|
|
153
|
+
) -> None:
|
|
101
154
|
for key, value in mapping.items():
|
|
102
155
|
if isinstance(key, int):
|
|
103
156
|
key = str(key)
|
|
104
157
|
elif not isinstance(key, str):
|
|
105
158
|
raise TypeError(f'Unsupported key type for XML formatting: {type(key)}, only str and int are allowed')
|
|
106
|
-
element.append(self.
|
|
159
|
+
element.append(self._to_xml(value=value, path=f'{path}.{key}' if path else key, tag=key))
|
|
160
|
+
|
|
161
|
+
def _parse_data_structures(
|
|
162
|
+
self,
|
|
163
|
+
value: Any,
|
|
164
|
+
path: str = '',
|
|
165
|
+
):
|
|
166
|
+
"""Parse data structures as dataclasses or Pydantic models to extract element names and attributes."""
|
|
167
|
+
if value is None or isinstance(value, (str | int | float | date | bytearray | bytes | bool)):
|
|
168
|
+
return
|
|
169
|
+
elif isinstance(value, Mapping):
|
|
170
|
+
for k, v in value.items(): # pyright: ignore[reportUnknownVariableType]
|
|
171
|
+
self._parse_data_structures(v, f'{path}.{k}' if path else f'{k}')
|
|
172
|
+
elif is_dataclass(value) and not isinstance(value, type):
|
|
173
|
+
self._element_names[path] = value.__class__.__name__
|
|
174
|
+
for field in fields(value):
|
|
175
|
+
new_path = f'{path}.{field.name}' if path else field.name
|
|
176
|
+
if self.include_field_info and field.metadata:
|
|
177
|
+
attributes = {k: v for k, v in field.metadata.items() if k in self._FIELD_ATTRIBUTES}
|
|
178
|
+
if attributes:
|
|
179
|
+
field_repr = f'{value.__class__.__name__}.{field.name}'
|
|
180
|
+
self._fields_info[new_path] = (field_repr, FieldInfo(**attributes))
|
|
181
|
+
self._parse_data_structures(getattr(value, field.name), new_path)
|
|
182
|
+
elif isinstance(value, BaseModel):
|
|
183
|
+
self._element_names[path] = value.__class__.__name__
|
|
184
|
+
for model_fields in (value.__class__.model_fields, value.__class__.model_computed_fields):
|
|
185
|
+
for field, info in model_fields.items():
|
|
186
|
+
new_path = f'{path}.{field}' if path else field
|
|
187
|
+
if self.include_field_info and (isinstance(info, ComputedFieldInfo) or not info.exclude):
|
|
188
|
+
field_repr = f'{value.__class__.__name__}.{field}'
|
|
189
|
+
self._fields_info[new_path] = (field_repr, info)
|
|
190
|
+
self._parse_data_structures(getattr(value, field), new_path)
|
|
191
|
+
elif isinstance(value, Iterable):
|
|
192
|
+
for n, item in enumerate(value): # pyright: ignore[reportUnknownVariableType,reportUnknownArgumentType]
|
|
193
|
+
new_path = f'{path}.[{n}]' if path else f'[{n}]'
|
|
194
|
+
self._parse_data_structures(item, new_path)
|
|
195
|
+
|
|
196
|
+
@classmethod
|
|
197
|
+
def _extract_attributes(cls, info: FieldInfo | ComputedFieldInfo) -> dict[str, str]:
|
|
198
|
+
return {attr: str(value) for attr in cls._FIELD_ATTRIBUTES if (value := getattr(info, attr, None)) is not None}
|
|
107
199
|
|
|
108
200
|
|
|
109
201
|
def _rootless_xml_elements(root: ElementTree.Element, indent: str | None) -> Iterator[str]:
|
pydantic_ai/mcp.py
CHANGED
|
@@ -540,7 +540,7 @@ class MCPServerStdio(MCPServer):
|
|
|
540
540
|
f'args={self.args!r}',
|
|
541
541
|
]
|
|
542
542
|
if self.id:
|
|
543
|
-
repr_args.append(f'id={self.id!r}')
|
|
543
|
+
repr_args.append(f'id={self.id!r}') # pragma: lax no cover
|
|
544
544
|
return f'{self.__class__.__name__}({", ".join(repr_args)})'
|
|
545
545
|
|
|
546
546
|
def __eq__(self, value: object, /) -> bool:
|
pydantic_ai/messages.py
CHANGED
|
@@ -126,6 +126,7 @@ class FileUrl(ABC):
|
|
|
126
126
|
|
|
127
127
|
Supported by:
|
|
128
128
|
- `GoogleModel`: `VideoUrl.vendor_metadata` is used as `video_metadata`: https://ai.google.dev/gemini-api/docs/video-understanding#customize-video-processing
|
|
129
|
+
- `OpenAIChatModel`, `OpenAIResponsesModel`: `ImageUrl.vendor_metadata['detail']` is used as `detail` setting for images
|
|
129
130
|
"""
|
|
130
131
|
|
|
131
132
|
_media_type: Annotated[str | None, pydantic.Field(alias='media_type', default=None, exclude=True)] = field(
|
|
@@ -471,6 +472,7 @@ class BinaryContent:
|
|
|
471
472
|
|
|
472
473
|
Supported by:
|
|
473
474
|
- `GoogleModel`: `BinaryContent.vendor_metadata` is used as `video_metadata`: https://ai.google.dev/gemini-api/docs/video-understanding#customize-video-processing
|
|
475
|
+
- `OpenAIChatModel`, `OpenAIResponsesModel`: `BinaryContent.vendor_metadata['detail']` is used as `detail` setting for images
|
|
474
476
|
"""
|
|
475
477
|
|
|
476
478
|
kind: Literal['binary'] = 'binary'
|
|
@@ -1161,11 +1163,7 @@ class ModelResponse:
|
|
|
1161
1163
|
if settings.include_content and part.content is not None: # pragma: no branch
|
|
1162
1164
|
from .models.instrumented import InstrumentedModel
|
|
1163
1165
|
|
|
1164
|
-
return_part['result'] = (
|
|
1165
|
-
part.content
|
|
1166
|
-
if isinstance(part.content, str)
|
|
1167
|
-
else {k: InstrumentedModel.serialize_any(v) for k, v in part.content.items()}
|
|
1168
|
-
)
|
|
1166
|
+
return_part['result'] = InstrumentedModel.serialize_any(part.content)
|
|
1169
1167
|
|
|
1170
1168
|
parts.append(return_part)
|
|
1171
1169
|
return parts
|
pydantic_ai/models/__init__.py
CHANGED
|
@@ -65,6 +65,8 @@ KnownModelName = TypeAliasType(
|
|
|
65
65
|
'anthropic:claude-opus-4-20250514',
|
|
66
66
|
'anthropic:claude-sonnet-4-0',
|
|
67
67
|
'anthropic:claude-sonnet-4-20250514',
|
|
68
|
+
'anthropic:claude-sonnet-4-5',
|
|
69
|
+
'anthropic:claude-sonnet-4-5-20250929',
|
|
68
70
|
'bedrock:amazon.titan-tg1-large',
|
|
69
71
|
'bedrock:amazon.titan-text-lite-v1',
|
|
70
72
|
'bedrock:amazon.titan-text-express-v1',
|
|
@@ -121,23 +123,6 @@ KnownModelName = TypeAliasType(
|
|
|
121
123
|
'cerebras:qwen-3-32b',
|
|
122
124
|
'cerebras:qwen-3-coder-480b',
|
|
123
125
|
'cerebras:qwen-3-235b-a22b-thinking-2507',
|
|
124
|
-
'claude-3-5-haiku-20241022',
|
|
125
|
-
'claude-3-5-haiku-latest',
|
|
126
|
-
'claude-3-5-sonnet-20240620',
|
|
127
|
-
'claude-3-5-sonnet-20241022',
|
|
128
|
-
'claude-3-5-sonnet-latest',
|
|
129
|
-
'claude-3-7-sonnet-20250219',
|
|
130
|
-
'claude-3-7-sonnet-latest',
|
|
131
|
-
'claude-3-haiku-20240307',
|
|
132
|
-
'claude-3-opus-20240229',
|
|
133
|
-
'claude-3-opus-latest',
|
|
134
|
-
'claude-4-opus-20250514',
|
|
135
|
-
'claude-4-sonnet-20250514',
|
|
136
|
-
'claude-opus-4-0',
|
|
137
|
-
'claude-opus-4-1-20250805',
|
|
138
|
-
'claude-opus-4-20250514',
|
|
139
|
-
'claude-sonnet-4-0',
|
|
140
|
-
'claude-sonnet-4-20250514',
|
|
141
126
|
'cohere:c4ai-aya-expanse-32b',
|
|
142
127
|
'cohere:c4ai-aya-expanse-8b',
|
|
143
128
|
'cohere:command',
|
|
@@ -163,54 +148,6 @@ KnownModelName = TypeAliasType(
|
|
|
163
148
|
'google-vertex:gemini-2.5-flash',
|
|
164
149
|
'google-vertex:gemini-2.5-flash-lite',
|
|
165
150
|
'google-vertex:gemini-2.5-pro',
|
|
166
|
-
'gpt-3.5-turbo',
|
|
167
|
-
'gpt-3.5-turbo-0125',
|
|
168
|
-
'gpt-3.5-turbo-0301',
|
|
169
|
-
'gpt-3.5-turbo-0613',
|
|
170
|
-
'gpt-3.5-turbo-1106',
|
|
171
|
-
'gpt-3.5-turbo-16k',
|
|
172
|
-
'gpt-3.5-turbo-16k-0613',
|
|
173
|
-
'gpt-4',
|
|
174
|
-
'gpt-4-0125-preview',
|
|
175
|
-
'gpt-4-0314',
|
|
176
|
-
'gpt-4-0613',
|
|
177
|
-
'gpt-4-1106-preview',
|
|
178
|
-
'gpt-4-32k',
|
|
179
|
-
'gpt-4-32k-0314',
|
|
180
|
-
'gpt-4-32k-0613',
|
|
181
|
-
'gpt-4-turbo',
|
|
182
|
-
'gpt-4-turbo-2024-04-09',
|
|
183
|
-
'gpt-4-turbo-preview',
|
|
184
|
-
'gpt-4-vision-preview',
|
|
185
|
-
'gpt-4.1',
|
|
186
|
-
'gpt-4.1-2025-04-14',
|
|
187
|
-
'gpt-4.1-mini',
|
|
188
|
-
'gpt-4.1-mini-2025-04-14',
|
|
189
|
-
'gpt-4.1-nano',
|
|
190
|
-
'gpt-4.1-nano-2025-04-14',
|
|
191
|
-
'gpt-4o',
|
|
192
|
-
'gpt-4o-2024-05-13',
|
|
193
|
-
'gpt-4o-2024-08-06',
|
|
194
|
-
'gpt-4o-2024-11-20',
|
|
195
|
-
'gpt-4o-audio-preview',
|
|
196
|
-
'gpt-4o-audio-preview-2024-10-01',
|
|
197
|
-
'gpt-4o-audio-preview-2024-12-17',
|
|
198
|
-
'gpt-4o-audio-preview-2025-06-03',
|
|
199
|
-
'gpt-4o-mini',
|
|
200
|
-
'gpt-4o-mini-2024-07-18',
|
|
201
|
-
'gpt-4o-mini-audio-preview',
|
|
202
|
-
'gpt-4o-mini-audio-preview-2024-12-17',
|
|
203
|
-
'gpt-4o-mini-search-preview',
|
|
204
|
-
'gpt-4o-mini-search-preview-2025-03-11',
|
|
205
|
-
'gpt-4o-search-preview',
|
|
206
|
-
'gpt-4o-search-preview-2025-03-11',
|
|
207
|
-
'gpt-5',
|
|
208
|
-
'gpt-5-2025-08-07',
|
|
209
|
-
'gpt-5-chat-latest',
|
|
210
|
-
'gpt-5-mini',
|
|
211
|
-
'gpt-5-mini-2025-08-07',
|
|
212
|
-
'gpt-5-nano',
|
|
213
|
-
'gpt-5-nano-2025-08-07',
|
|
214
151
|
'grok:grok-4',
|
|
215
152
|
'grok:grok-4-0709',
|
|
216
153
|
'grok:grok-3',
|
|
@@ -271,22 +208,6 @@ KnownModelName = TypeAliasType(
|
|
|
271
208
|
'moonshotai:kimi-latest',
|
|
272
209
|
'moonshotai:kimi-thinking-preview',
|
|
273
210
|
'moonshotai:kimi-k2-0711-preview',
|
|
274
|
-
'o1',
|
|
275
|
-
'o1-2024-12-17',
|
|
276
|
-
'o1-mini',
|
|
277
|
-
'o1-mini-2024-09-12',
|
|
278
|
-
'o1-preview',
|
|
279
|
-
'o1-preview-2024-09-12',
|
|
280
|
-
'o1-pro',
|
|
281
|
-
'o1-pro-2025-03-19',
|
|
282
|
-
'o3',
|
|
283
|
-
'o3-2025-04-16',
|
|
284
|
-
'o3-deep-research',
|
|
285
|
-
'o3-deep-research-2025-06-26',
|
|
286
|
-
'o3-mini',
|
|
287
|
-
'o3-mini-2025-01-31',
|
|
288
|
-
'o3-pro',
|
|
289
|
-
'o3-pro-2025-06-10',
|
|
290
211
|
'openai:chatgpt-4o-latest',
|
|
291
212
|
'openai:codex-mini-latest',
|
|
292
213
|
'openai:gpt-3.5-turbo',
|
pydantic_ai/models/anthropic.py
CHANGED
|
@@ -54,7 +54,7 @@ _FINISH_REASON_MAP: dict[BetaStopReason, FinishReason] = {
|
|
|
54
54
|
|
|
55
55
|
|
|
56
56
|
try:
|
|
57
|
-
from anthropic import NOT_GIVEN, APIStatusError, AsyncStream
|
|
57
|
+
from anthropic import NOT_GIVEN, APIStatusError, AsyncStream, omit as OMIT
|
|
58
58
|
from anthropic.types.beta import (
|
|
59
59
|
BetaBase64PDFBlockParam,
|
|
60
60
|
BetaBase64PDFSourceParam,
|
|
@@ -265,6 +265,10 @@ class AnthropicModel(Model):
|
|
|
265
265
|
else:
|
|
266
266
|
if not model_request_parameters.allow_text_output:
|
|
267
267
|
tool_choice = {'type': 'any'}
|
|
268
|
+
if (thinking := model_settings.get('anthropic_thinking')) and thinking.get('type') == 'enabled':
|
|
269
|
+
raise UserError(
|
|
270
|
+
'Anthropic does not support thinking and output tools at the same time. Use `output_type=PromptedOutput(...)` instead.'
|
|
271
|
+
)
|
|
268
272
|
else:
|
|
269
273
|
tool_choice = {'type': 'auto'}
|
|
270
274
|
|
|
@@ -281,18 +285,18 @@ class AnthropicModel(Model):
|
|
|
281
285
|
|
|
282
286
|
return await self.client.beta.messages.create(
|
|
283
287
|
max_tokens=model_settings.get('max_tokens', 4096),
|
|
284
|
-
system=system_prompt or
|
|
288
|
+
system=system_prompt or OMIT,
|
|
285
289
|
messages=anthropic_messages,
|
|
286
290
|
model=self._model_name,
|
|
287
|
-
tools=tools or
|
|
288
|
-
tool_choice=tool_choice or
|
|
291
|
+
tools=tools or OMIT,
|
|
292
|
+
tool_choice=tool_choice or OMIT,
|
|
289
293
|
stream=stream,
|
|
290
|
-
thinking=model_settings.get('anthropic_thinking',
|
|
291
|
-
stop_sequences=model_settings.get('stop_sequences',
|
|
292
|
-
temperature=model_settings.get('temperature',
|
|
293
|
-
top_p=model_settings.get('top_p',
|
|
294
|
+
thinking=model_settings.get('anthropic_thinking', OMIT),
|
|
295
|
+
stop_sequences=model_settings.get('stop_sequences', OMIT),
|
|
296
|
+
temperature=model_settings.get('temperature', OMIT),
|
|
297
|
+
top_p=model_settings.get('top_p', OMIT),
|
|
294
298
|
timeout=model_settings.get('timeout', NOT_GIVEN),
|
|
295
|
-
metadata=model_settings.get('anthropic_metadata',
|
|
299
|
+
metadata=model_settings.get('anthropic_metadata', OMIT),
|
|
296
300
|
extra_headers=extra_headers,
|
|
297
301
|
extra_body=model_settings.get('extra_body'),
|
|
298
302
|
)
|
|
@@ -759,6 +763,8 @@ def _map_server_tool_use_block(item: BetaServerToolUseBlock, provider_name: str)
|
|
|
759
763
|
args=cast(dict[str, Any], item.input) or None,
|
|
760
764
|
tool_call_id=item.id,
|
|
761
765
|
)
|
|
766
|
+
elif item.name in ('web_fetch', 'bash_code_execution', 'text_editor_code_execution'): # pragma: no cover
|
|
767
|
+
raise NotImplementedError(f'Anthropic built-in tool {item.name!r} is not currently supported.')
|
|
762
768
|
else:
|
|
763
769
|
assert_never(item.name)
|
|
764
770
|
|
pydantic_ai/models/google.py
CHANGED
|
@@ -51,6 +51,7 @@ from . import (
|
|
|
51
51
|
try:
|
|
52
52
|
from google.genai import Client
|
|
53
53
|
from google.genai.types import (
|
|
54
|
+
BlobDict,
|
|
54
55
|
CodeExecutionResult,
|
|
55
56
|
CodeExecutionResultDict,
|
|
56
57
|
ContentDict,
|
|
@@ -58,6 +59,7 @@ try:
|
|
|
58
59
|
CountTokensConfigDict,
|
|
59
60
|
ExecutableCode,
|
|
60
61
|
ExecutableCodeDict,
|
|
62
|
+
FileDataDict,
|
|
61
63
|
FinishReason as GoogleFinishReason,
|
|
62
64
|
FunctionCallDict,
|
|
63
65
|
FunctionCallingConfigDict,
|
|
@@ -79,6 +81,7 @@ try:
|
|
|
79
81
|
ToolDict,
|
|
80
82
|
ToolListUnionDict,
|
|
81
83
|
UrlContextDict,
|
|
84
|
+
VideoMetadataDict,
|
|
82
85
|
)
|
|
83
86
|
|
|
84
87
|
from ..providers.google import GoogleProvider
|
|
@@ -525,17 +528,17 @@ class GoogleModel(Model):
|
|
|
525
528
|
if isinstance(item, str):
|
|
526
529
|
content.append({'text': item})
|
|
527
530
|
elif isinstance(item, BinaryContent):
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
inline_data_dict = {'inline_data': {'data': base64_encoded, 'mime_type': item.media_type}}
|
|
531
|
+
inline_data_dict: BlobDict = {'data': item.data, 'mime_type': item.media_type}
|
|
532
|
+
part_dict: PartDict = {'inline_data': inline_data_dict}
|
|
531
533
|
if item.vendor_metadata:
|
|
532
|
-
|
|
533
|
-
content.append(
|
|
534
|
+
part_dict['video_metadata'] = cast(VideoMetadataDict, item.vendor_metadata)
|
|
535
|
+
content.append(part_dict)
|
|
534
536
|
elif isinstance(item, VideoUrl) and item.is_youtube:
|
|
535
|
-
file_data_dict = {'
|
|
537
|
+
file_data_dict: FileDataDict = {'file_uri': item.url, 'mime_type': item.media_type}
|
|
538
|
+
part_dict: PartDict = {'file_data': file_data_dict}
|
|
536
539
|
if item.vendor_metadata: # pragma: no branch
|
|
537
|
-
|
|
538
|
-
content.append(
|
|
540
|
+
part_dict['video_metadata'] = cast(VideoMetadataDict, item.vendor_metadata)
|
|
541
|
+
content.append(part_dict)
|
|
539
542
|
elif isinstance(item, FileUrl):
|
|
540
543
|
if item.force_download or (
|
|
541
544
|
# google-gla does not support passing file urls directly, except for youtube videos
|
|
@@ -543,13 +546,15 @@ class GoogleModel(Model):
|
|
|
543
546
|
self.system == 'google-gla'
|
|
544
547
|
and not item.url.startswith(r'https://generativelanguage.googleapis.com/v1beta/files')
|
|
545
548
|
):
|
|
546
|
-
downloaded_item = await download_item(item, data_format='
|
|
547
|
-
inline_data = {
|
|
548
|
-
|
|
549
|
+
downloaded_item = await download_item(item, data_format='bytes')
|
|
550
|
+
inline_data: BlobDict = {
|
|
551
|
+
'data': downloaded_item['data'],
|
|
552
|
+
'mime_type': downloaded_item['data_type'],
|
|
553
|
+
}
|
|
554
|
+
content.append({'inline_data': inline_data})
|
|
549
555
|
else:
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
) # pragma: lax no cover
|
|
556
|
+
file_data_dict: FileDataDict = {'file_uri': item.url, 'mime_type': item.media_type}
|
|
557
|
+
content.append({'file_data': file_data_dict}) # pragma: lax no cover
|
|
553
558
|
else:
|
|
554
559
|
assert_never(item)
|
|
555
560
|
return content
|
|
@@ -578,7 +583,9 @@ class GeminiStreamedResponse(StreamedResponse):
|
|
|
578
583
|
async for chunk in self._response:
|
|
579
584
|
self._usage = _metadata_as_usage(chunk)
|
|
580
585
|
|
|
581
|
-
|
|
586
|
+
if not chunk.candidates:
|
|
587
|
+
continue # pragma: no cover
|
|
588
|
+
|
|
582
589
|
candidate = chunk.candidates[0]
|
|
583
590
|
|
|
584
591
|
if chunk.response_id: # pragma: no branch
|
|
@@ -610,7 +617,10 @@ class GeminiStreamedResponse(StreamedResponse):
|
|
|
610
617
|
else: # pragma: no cover
|
|
611
618
|
raise UnexpectedModelBehavior('Content field missing from streaming Gemini response', str(chunk))
|
|
612
619
|
|
|
613
|
-
parts = candidate.content.parts
|
|
620
|
+
parts = candidate.content.parts
|
|
621
|
+
if not parts:
|
|
622
|
+
continue # pragma: no cover
|
|
623
|
+
|
|
614
624
|
for part in parts:
|
|
615
625
|
if part.thought_signature:
|
|
616
626
|
signature = base64.b64encode(part.thought_signature).decode('utf-8')
|
|
@@ -822,7 +832,7 @@ def _metadata_as_usage(response: GenerateContentResponse) -> usage.RequestUsage:
|
|
|
822
832
|
if not metadata_details:
|
|
823
833
|
continue
|
|
824
834
|
for detail in metadata_details:
|
|
825
|
-
if not detail.modality or not detail.token_count:
|
|
835
|
+
if not detail.modality or not detail.token_count:
|
|
826
836
|
continue
|
|
827
837
|
details[f'{detail.modality.lower()}_{prefix}_tokens'] = detail.token_count
|
|
828
838
|
if detail.modality != 'AUDIO':
|
|
@@ -9,6 +9,7 @@ from dataclasses import dataclass, field
|
|
|
9
9
|
from typing import Any, Literal, cast
|
|
10
10
|
from urllib.parse import urlparse
|
|
11
11
|
|
|
12
|
+
from genai_prices.types import PriceCalculation
|
|
12
13
|
from opentelemetry._events import (
|
|
13
14
|
Event, # pyright: ignore[reportPrivateImportUsage]
|
|
14
15
|
EventLogger, # pyright: ignore[reportPrivateImportUsage]
|
|
@@ -169,6 +170,11 @@ class InstrumentationSettings:
|
|
|
169
170
|
self.tokens_histogram = self.meter.create_histogram(
|
|
170
171
|
**tokens_histogram_kwargs, # pyright: ignore
|
|
171
172
|
)
|
|
173
|
+
self.cost_histogram = self.meter.create_histogram(
|
|
174
|
+
'operation.cost',
|
|
175
|
+
unit='{USD}',
|
|
176
|
+
description='Monetary cost',
|
|
177
|
+
)
|
|
172
178
|
|
|
173
179
|
def messages_to_otel_events(self, messages: list[ModelMessage]) -> list[Event]:
|
|
174
180
|
"""Convert a list of model messages to OpenTelemetry events.
|
|
@@ -302,6 +308,21 @@ class InstrumentationSettings:
|
|
|
302
308
|
}
|
|
303
309
|
)
|
|
304
310
|
|
|
311
|
+
def record_metrics(
|
|
312
|
+
self,
|
|
313
|
+
response: ModelResponse,
|
|
314
|
+
price_calculation: PriceCalculation | None,
|
|
315
|
+
attributes: dict[str, AttributeValue],
|
|
316
|
+
):
|
|
317
|
+
for typ in ['input', 'output']:
|
|
318
|
+
if not (tokens := getattr(response.usage, f'{typ}_tokens', 0)): # pragma: no cover
|
|
319
|
+
continue
|
|
320
|
+
token_attributes = {**attributes, 'gen_ai.token.type': typ}
|
|
321
|
+
self.tokens_histogram.record(tokens, token_attributes)
|
|
322
|
+
if price_calculation:
|
|
323
|
+
cost = float(getattr(price_calculation, f'{typ}_price'))
|
|
324
|
+
self.cost_histogram.record(cost, token_attributes)
|
|
325
|
+
|
|
305
326
|
|
|
306
327
|
GEN_AI_SYSTEM_ATTRIBUTE = 'gen_ai.system'
|
|
307
328
|
GEN_AI_REQUEST_MODEL_ATTRIBUTE = 'gen_ai.request.model'
|
|
@@ -395,6 +416,7 @@ class InstrumentedModel(WrapperModel):
|
|
|
395
416
|
system = cast(str, attributes[GEN_AI_SYSTEM_ATTRIBUTE])
|
|
396
417
|
|
|
397
418
|
response_model = response.model_name or request_model
|
|
419
|
+
price_calculation = None
|
|
398
420
|
|
|
399
421
|
def _record_metrics():
|
|
400
422
|
metric_attributes = {
|
|
@@ -403,16 +425,7 @@ class InstrumentedModel(WrapperModel):
|
|
|
403
425
|
'gen_ai.request.model': request_model,
|
|
404
426
|
'gen_ai.response.model': response_model,
|
|
405
427
|
}
|
|
406
|
-
|
|
407
|
-
self.instrumentation_settings.tokens_histogram.record(
|
|
408
|
-
response.usage.input_tokens,
|
|
409
|
-
{**metric_attributes, 'gen_ai.token.type': 'input'},
|
|
410
|
-
)
|
|
411
|
-
if response.usage.output_tokens: # pragma: no branch
|
|
412
|
-
self.instrumentation_settings.tokens_histogram.record(
|
|
413
|
-
response.usage.output_tokens,
|
|
414
|
-
{**metric_attributes, 'gen_ai.token.type': 'output'},
|
|
415
|
-
)
|
|
428
|
+
self.instrumentation_settings.record_metrics(response, price_calculation, metric_attributes)
|
|
416
429
|
|
|
417
430
|
nonlocal record_metrics
|
|
418
431
|
record_metrics = _record_metrics
|
|
@@ -427,7 +440,7 @@ class InstrumentedModel(WrapperModel):
|
|
|
427
440
|
'gen_ai.response.model': response_model,
|
|
428
441
|
}
|
|
429
442
|
try:
|
|
430
|
-
|
|
443
|
+
price_calculation = response.cost()
|
|
431
444
|
except LookupError:
|
|
432
445
|
# The cost of this provider/model is unknown, which is common.
|
|
433
446
|
pass
|
|
@@ -435,6 +448,9 @@ class InstrumentedModel(WrapperModel):
|
|
|
435
448
|
warnings.warn(
|
|
436
449
|
f'Failed to get cost from response: {type(e).__name__}: {e}', CostCalculationFailedWarning
|
|
437
450
|
)
|
|
451
|
+
else:
|
|
452
|
+
attributes_to_set['operation.cost'] = float(price_calculation.total_price)
|
|
453
|
+
|
|
438
454
|
if response.provider_response_id is not None:
|
|
439
455
|
attributes_to_set['gen_ai.response.id'] = response.provider_response_id
|
|
440
456
|
if response.finish_reason is not None:
|
pydantic_ai/models/openai.py
CHANGED
|
@@ -526,16 +526,20 @@ class OpenAIChatModel(Model):
|
|
|
526
526
|
|
|
527
527
|
choice = response.choices[0]
|
|
528
528
|
items: list[ModelResponsePart] = []
|
|
529
|
+
|
|
529
530
|
# The `reasoning_content` field is only present in DeepSeek models.
|
|
530
531
|
# https://api-docs.deepseek.com/guides/reasoning_model
|
|
531
532
|
if reasoning_content := getattr(choice.message, 'reasoning_content', None):
|
|
532
533
|
items.append(ThinkingPart(id='reasoning_content', content=reasoning_content, provider_name=self.system))
|
|
533
534
|
|
|
534
|
-
#
|
|
535
|
-
# - https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks
|
|
536
|
-
# NOTE: We don't currently handle OpenRouter/gpt-oss `reasoning`:
|
|
535
|
+
# The `reasoning` field is only present in gpt-oss via Ollama and OpenRouter.
|
|
537
536
|
# - https://cookbook.openai.com/articles/gpt-oss/handle-raw-cot#chat-completions-api
|
|
538
537
|
# - https://openrouter.ai/docs/use-cases/reasoning-tokens#basic-usage-with-reasoning-tokens
|
|
538
|
+
if reasoning := getattr(choice.message, 'reasoning', None):
|
|
539
|
+
items.append(ThinkingPart(id='reasoning', content=reasoning, provider_name=self.system))
|
|
540
|
+
|
|
541
|
+
# NOTE: We don't currently handle OpenRouter `reasoning_details`:
|
|
542
|
+
# - https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks
|
|
539
543
|
# If you need this, please file an issue.
|
|
540
544
|
|
|
541
545
|
vendor_details: dict[str, Any] = {}
|
|
@@ -753,12 +757,16 @@ class OpenAIChatModel(Model):
|
|
|
753
757
|
if isinstance(item, str):
|
|
754
758
|
content.append(ChatCompletionContentPartTextParam(text=item, type='text'))
|
|
755
759
|
elif isinstance(item, ImageUrl):
|
|
756
|
-
image_url =
|
|
760
|
+
image_url: ImageURL = {'url': item.url}
|
|
761
|
+
if metadata := item.vendor_metadata:
|
|
762
|
+
image_url['detail'] = metadata.get('detail', 'auto')
|
|
757
763
|
content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
|
|
758
764
|
elif isinstance(item, BinaryContent):
|
|
759
765
|
base64_encoded = base64.b64encode(item.data).decode('utf-8')
|
|
760
766
|
if item.is_image:
|
|
761
|
-
image_url =
|
|
767
|
+
image_url: ImageURL = {'url': f'data:{item.media_type};base64,{base64_encoded}'}
|
|
768
|
+
if metadata := item.vendor_metadata:
|
|
769
|
+
image_url['detail'] = metadata.get('detail', 'auto')
|
|
762
770
|
content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
|
|
763
771
|
elif item.is_audio:
|
|
764
772
|
assert item.format in ('wav', 'mp3')
|
|
@@ -1383,11 +1391,17 @@ class OpenAIResponsesModel(Model):
|
|
|
1383
1391
|
elif isinstance(item, BinaryContent):
|
|
1384
1392
|
base64_encoded = base64.b64encode(item.data).decode('utf-8')
|
|
1385
1393
|
if item.is_image:
|
|
1394
|
+
detail: Literal['auto', 'low', 'high'] = 'auto'
|
|
1395
|
+
if metadata := item.vendor_metadata:
|
|
1396
|
+
detail = cast(
|
|
1397
|
+
Literal['auto', 'low', 'high'],
|
|
1398
|
+
metadata.get('detail', 'auto'),
|
|
1399
|
+
)
|
|
1386
1400
|
content.append(
|
|
1387
1401
|
responses.ResponseInputImageParam(
|
|
1388
1402
|
image_url=f'data:{item.media_type};base64,{base64_encoded}',
|
|
1389
1403
|
type='input_image',
|
|
1390
|
-
detail=
|
|
1404
|
+
detail=detail,
|
|
1391
1405
|
)
|
|
1392
1406
|
)
|
|
1393
1407
|
elif item.is_document:
|
|
@@ -1406,8 +1420,15 @@ class OpenAIResponsesModel(Model):
|
|
|
1406
1420
|
else: # pragma: no cover
|
|
1407
1421
|
raise RuntimeError(f'Unsupported binary content type: {item.media_type}')
|
|
1408
1422
|
elif isinstance(item, ImageUrl):
|
|
1423
|
+
detail: Literal['auto', 'low', 'high'] = 'auto'
|
|
1424
|
+
if metadata := item.vendor_metadata:
|
|
1425
|
+
detail = cast(Literal['auto', 'low', 'high'], metadata.get('detail', 'auto'))
|
|
1409
1426
|
content.append(
|
|
1410
|
-
responses.ResponseInputImageParam(
|
|
1427
|
+
responses.ResponseInputImageParam(
|
|
1428
|
+
image_url=item.url,
|
|
1429
|
+
type='input_image',
|
|
1430
|
+
detail=detail,
|
|
1431
|
+
)
|
|
1411
1432
|
)
|
|
1412
1433
|
elif isinstance(item, AudioUrl): # pragma: no cover
|
|
1413
1434
|
downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
|
|
@@ -1492,6 +1513,17 @@ class OpenAIStreamedResponse(StreamedResponse):
|
|
|
1492
1513
|
provider_name=self.provider_name,
|
|
1493
1514
|
)
|
|
1494
1515
|
|
|
1516
|
+
# The `reasoning` field is only present in gpt-oss via Ollama and OpenRouter.
|
|
1517
|
+
# - https://cookbook.openai.com/articles/gpt-oss/handle-raw-cot#chat-completions-api
|
|
1518
|
+
# - https://openrouter.ai/docs/use-cases/reasoning-tokens#basic-usage-with-reasoning-tokens
|
|
1519
|
+
if reasoning := getattr(choice.delta, 'reasoning', None): # pragma: no cover
|
|
1520
|
+
yield self._parts_manager.handle_thinking_delta(
|
|
1521
|
+
vendor_part_id='reasoning',
|
|
1522
|
+
id='reasoning',
|
|
1523
|
+
content=reasoning,
|
|
1524
|
+
provider_name=self.provider_name,
|
|
1525
|
+
)
|
|
1526
|
+
|
|
1495
1527
|
for dtc in choice.delta.tool_calls or []:
|
|
1496
1528
|
maybe_event = self._parts_manager.handle_tool_call_delta(
|
|
1497
1529
|
vendor_part_id=dtc.index,
|
pydantic_ai/output.py
CHANGED
|
@@ -11,7 +11,7 @@ from typing_extensions import TypeAliasType, TypeVar, deprecated
|
|
|
11
11
|
|
|
12
12
|
from . import _utils
|
|
13
13
|
from .messages import ToolCallPart
|
|
14
|
-
from .tools import DeferredToolRequests, RunContext, ToolDefinition
|
|
14
|
+
from .tools import DeferredToolRequests, ObjectJsonSchema, RunContext, ToolDefinition
|
|
15
15
|
|
|
16
16
|
__all__ = (
|
|
17
17
|
# classes
|
|
@@ -20,6 +20,7 @@ __all__ = (
|
|
|
20
20
|
'PromptedOutput',
|
|
21
21
|
'TextOutput',
|
|
22
22
|
'StructuredDict',
|
|
23
|
+
'OutputObjectDefinition',
|
|
23
24
|
# types
|
|
24
25
|
'OutputDataT',
|
|
25
26
|
'OutputMode',
|
|
@@ -242,6 +243,16 @@ class PromptedOutput(Generic[OutputDataT]):
|
|
|
242
243
|
self.template = template
|
|
243
244
|
|
|
244
245
|
|
|
246
|
+
@dataclass
|
|
247
|
+
class OutputObjectDefinition:
|
|
248
|
+
"""Definition of an output object used for structured output generation."""
|
|
249
|
+
|
|
250
|
+
json_schema: ObjectJsonSchema
|
|
251
|
+
name: str | None = None
|
|
252
|
+
description: str | None = None
|
|
253
|
+
strict: bool | None = None
|
|
254
|
+
|
|
255
|
+
|
|
245
256
|
@dataclass
|
|
246
257
|
class TextOutput(Generic[OutputDataT]):
|
|
247
258
|
"""Marker class to use text output for an output function taking a string argument.
|
pydantic_ai/profiles/harmony.py
CHANGED
|
@@ -10,4 +10,6 @@ def harmony_model_profile(model_name: str) -> ModelProfile | None:
|
|
|
10
10
|
See <https://cookbook.openai.com/articles/openai-harmony> for more details.
|
|
11
11
|
"""
|
|
12
12
|
profile = openai_model_profile(model_name)
|
|
13
|
-
return OpenAIModelProfile(
|
|
13
|
+
return OpenAIModelProfile(
|
|
14
|
+
openai_supports_tool_choice_required=False, ignore_streamed_leading_whitespace=True
|
|
15
|
+
).update(profile)
|
pydantic_ai/providers/ollama.py
CHANGED
|
@@ -11,6 +11,7 @@ from pydantic_ai.profiles import ModelProfile
|
|
|
11
11
|
from pydantic_ai.profiles.cohere import cohere_model_profile
|
|
12
12
|
from pydantic_ai.profiles.deepseek import deepseek_model_profile
|
|
13
13
|
from pydantic_ai.profiles.google import google_model_profile
|
|
14
|
+
from pydantic_ai.profiles.harmony import harmony_model_profile
|
|
14
15
|
from pydantic_ai.profiles.meta import meta_model_profile
|
|
15
16
|
from pydantic_ai.profiles.mistral import mistral_model_profile
|
|
16
17
|
from pydantic_ai.profiles.openai import OpenAIJsonSchemaTransformer, OpenAIModelProfile
|
|
@@ -50,6 +51,7 @@ class OllamaProvider(Provider[AsyncOpenAI]):
|
|
|
50
51
|
'deepseek': deepseek_model_profile,
|
|
51
52
|
'mistral': mistral_model_profile,
|
|
52
53
|
'command': cohere_model_profile,
|
|
54
|
+
'gpt-oss': harmony_model_profile,
|
|
53
55
|
}
|
|
54
56
|
|
|
55
57
|
profile = None
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: pydantic-ai-slim
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.11
|
|
4
4
|
Summary: Agent Framework / shim to use Pydantic with LLMs, slim package
|
|
5
5
|
Project-URL: Homepage, https://github.com/pydantic/pydantic-ai/tree/main/pydantic_ai_slim
|
|
6
6
|
Project-URL: Source, https://github.com/pydantic/pydantic-ai/tree/main/pydantic_ai_slim
|
|
@@ -29,11 +29,11 @@ Classifier: Topic :: Internet
|
|
|
29
29
|
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
30
30
|
Requires-Python: >=3.10
|
|
31
31
|
Requires-Dist: exceptiongroup; python_version < '3.11'
|
|
32
|
-
Requires-Dist: genai-prices>=0.0.
|
|
32
|
+
Requires-Dist: genai-prices>=0.0.28
|
|
33
33
|
Requires-Dist: griffe>=1.3.2
|
|
34
34
|
Requires-Dist: httpx>=0.27
|
|
35
35
|
Requires-Dist: opentelemetry-api>=1.28.0
|
|
36
|
-
Requires-Dist: pydantic-graph==1.0.
|
|
36
|
+
Requires-Dist: pydantic-graph==1.0.11
|
|
37
37
|
Requires-Dist: pydantic>=2.10
|
|
38
38
|
Requires-Dist: typing-inspection>=0.4.0
|
|
39
39
|
Provides-Extra: a2a
|
|
@@ -42,7 +42,7 @@ Provides-Extra: ag-ui
|
|
|
42
42
|
Requires-Dist: ag-ui-protocol>=0.1.8; extra == 'ag-ui'
|
|
43
43
|
Requires-Dist: starlette>=0.45.3; extra == 'ag-ui'
|
|
44
44
|
Provides-Extra: anthropic
|
|
45
|
-
Requires-Dist: anthropic>=0.
|
|
45
|
+
Requires-Dist: anthropic>=0.69.0; extra == 'anthropic'
|
|
46
46
|
Provides-Extra: bedrock
|
|
47
47
|
Requires-Dist: boto3>=1.39.0; extra == 'bedrock'
|
|
48
48
|
Provides-Extra: cli
|
|
@@ -57,7 +57,7 @@ Requires-Dist: dbos>=1.14.0; extra == 'dbos'
|
|
|
57
57
|
Provides-Extra: duckduckgo
|
|
58
58
|
Requires-Dist: ddgs>=9.0.0; extra == 'duckduckgo'
|
|
59
59
|
Provides-Extra: evals
|
|
60
|
-
Requires-Dist: pydantic-evals==1.0.
|
|
60
|
+
Requires-Dist: pydantic-evals==1.0.11; extra == 'evals'
|
|
61
61
|
Provides-Extra: google
|
|
62
62
|
Requires-Dist: google-genai>=1.31.0; extra == 'google'
|
|
63
63
|
Provides-Extra: groq
|
|
@@ -77,7 +77,7 @@ Requires-Dist: tenacity>=8.2.3; extra == 'retries'
|
|
|
77
77
|
Provides-Extra: tavily
|
|
78
78
|
Requires-Dist: tavily-python>=0.5.0; extra == 'tavily'
|
|
79
79
|
Provides-Extra: temporal
|
|
80
|
-
Requires-Dist: temporalio==1.
|
|
80
|
+
Requires-Dist: temporalio==1.18.0; extra == 'temporal'
|
|
81
81
|
Provides-Extra: vertexai
|
|
82
82
|
Requires-Dist: google-auth>=2.36.0; extra == 'vertexai'
|
|
83
83
|
Requires-Dist: requests>=2.32.2; extra == 'vertexai'
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
pydantic_ai/__init__.py,sha256=CfqGPSjKlDl5iw1L48HbELsDuzxIzBFnFnovI_GcFWA,2083
|
|
2
2
|
pydantic_ai/__main__.py,sha256=Q_zJU15DUA01YtlJ2mnaLCoId2YmgmreVEERGuQT-Y0,132
|
|
3
3
|
pydantic_ai/_a2a.py,sha256=2Hopcyl6o6U91eVkd7iAbEPYA5f0hJb8A5_fwMC0UfM,12168
|
|
4
|
-
pydantic_ai/_agent_graph.py,sha256=
|
|
4
|
+
pydantic_ai/_agent_graph.py,sha256=c5rdUxBcCau2UgumvR_4TBXvpAMeg5wjvOi0sk3YSmo,53217
|
|
5
5
|
pydantic_ai/_cli.py,sha256=n1MX7p-UKH6ZWPNwiGPZTVcXYhXG8OiJIuNMeYX5k2M,14053
|
|
6
|
-
pydantic_ai/_function_schema.py,sha256=
|
|
6
|
+
pydantic_ai/_function_schema.py,sha256=UnDGh7Wh5z70pEaRujXF_hKsSibQdN2ywI6lZGz3LUo,11663
|
|
7
7
|
pydantic_ai/_griffe.py,sha256=BphvTL00FHxsSY56GM-bNyCOdwrpL0T3LbDQITWUK_Q,5280
|
|
8
8
|
pydantic_ai/_mcp.py,sha256=PuvwnlLjv7YYOa9AZJCrklevBug99zGMhwJCBGG7BHQ,5626
|
|
9
9
|
pydantic_ai/_otel_messages.py,sha256=SsMpbyI1fIISOck_wQcZJPIOei8lOmvwARkdPSCx8y8,1650
|
|
10
|
-
pydantic_ai/_output.py,sha256=
|
|
10
|
+
pydantic_ai/_output.py,sha256=e6KBPnzOcYj13XmMaWOH6Xm1vxVG97U1ljuwuVRQaY8,38153
|
|
11
11
|
pydantic_ai/_parts_manager.py,sha256=QRfZTk21tCO6jEu8hF0qZLEsyUzvu0C6-qkiFhnbqxI,21443
|
|
12
12
|
pydantic_ai/_run_context.py,sha256=142KI0Sy5uMox4VMBkkIgkBl4uCwZvI9HcXJKdnsWBU,2108
|
|
13
13
|
pydantic_ai/_system_prompt.py,sha256=WdDW_DTGHujcFFaK-J7J6mA4ZDJZ0IOKpyizJA-1Y5Q,1142
|
|
@@ -18,10 +18,10 @@ pydantic_ai/ag_ui.py,sha256=X3b4P_IraypCE3r-L2ETIo8G951A1MDdP4P5TQ8Fces,32067
|
|
|
18
18
|
pydantic_ai/builtin_tools.py,sha256=DUzhHNUtWJPhaPQ7iV4E1jNImBO0DqpSLtA_HuHLaKw,3623
|
|
19
19
|
pydantic_ai/direct.py,sha256=zMsz6poVgEq7t7L_8FWM6hmKdqTzjyQYL5xzQt_59Us,14951
|
|
20
20
|
pydantic_ai/exceptions.py,sha256=zsXZMKf2BJuVsfuHl1fWTkogLU37bd4yq7D6BKHAzVs,4968
|
|
21
|
-
pydantic_ai/format_prompt.py,sha256=
|
|
22
|
-
pydantic_ai/mcp.py,sha256=
|
|
23
|
-
pydantic_ai/messages.py,sha256
|
|
24
|
-
pydantic_ai/output.py,sha256=
|
|
21
|
+
pydantic_ai/format_prompt.py,sha256=qQ9zv6PJR9D4FTII6gD3_bSOHYymhRYVIxhPMscxeLI,9528
|
|
22
|
+
pydantic_ai/mcp.py,sha256=VBqPgW-Mr3QQ1gt-sY3IWeP6_XApl5NfCrJs4OL8WEI,34802
|
|
23
|
+
pydantic_ai/messages.py,sha256=-t5sbnQVEGeo0e-mTxNdV8wLNtFQvSlHgcpKyza05Uk,57635
|
|
24
|
+
pydantic_ai/output.py,sha256=esyNK-56j_r7dUiPyzsvWtPppX2N9fbboNq-1x5CQaQ,12337
|
|
25
25
|
pydantic_ai/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
26
26
|
pydantic_ai/result.py,sha256=eoQ6VJPvXVNReRhErOytK3-2tiy9FV6LIwywyh7DSzo,26247
|
|
27
27
|
pydantic_ai/retries.py,sha256=QM4oDA9DG-Y2qP06fbCp8Dqq8ups40Rr4HYjAOlbNyM,14650
|
|
@@ -29,7 +29,7 @@ pydantic_ai/run.py,sha256=wHlWl4CXIHLcgo2R8PlsU3Pjn0vuMLFfP8D6Fbany-Y,15097
|
|
|
29
29
|
pydantic_ai/settings.py,sha256=0mr6KudxKKjTG8e3nsv_8vDLxNhu_1-WvefCOzCGSYM,3565
|
|
30
30
|
pydantic_ai/tools.py,sha256=dCecmJtRkF1ioqFYbfT00XGGqzGB4PPO9n6IrHCQtnc,20343
|
|
31
31
|
pydantic_ai/usage.py,sha256=KuDwSvWCzV5O9fPeEy5lUg2OhPq2eZFEFk2vYCA_DwA,14060
|
|
32
|
-
pydantic_ai/agent/__init__.py,sha256=
|
|
32
|
+
pydantic_ai/agent/__init__.py,sha256=Ceckz-CDtBsFo7pMm4LRKKTVOQkPZF-DIwGBbZCxSdQ,62684
|
|
33
33
|
pydantic_ai/agent/abstract.py,sha256=fL2nD5XgLHfmva6t-foBENpLHV_WYTUWLGBKU-l8stM,44622
|
|
34
34
|
pydantic_ai/agent/wrapper.py,sha256=lx0NcM8MX_MoNm0oiPFDH2Cod78N5ONcerKcpJQeJes,9425
|
|
35
35
|
pydantic_ai/common_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -52,20 +52,20 @@ pydantic_ai/durable_exec/temporal/_toolset.py,sha256=bnMbmR8JmBjBeWGaAMtgWP9Kb93
|
|
|
52
52
|
pydantic_ai/ext/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
53
53
|
pydantic_ai/ext/aci.py,sha256=sUllKDNO-LOMurbFgxwRHuzNlBkSa3aVBqXfEm-A_vo,2545
|
|
54
54
|
pydantic_ai/ext/langchain.py,sha256=iLVEZv1kcLkdIHo3us2yfdi0kVqyJ6qTaCt9BoLWm4k,2335
|
|
55
|
-
pydantic_ai/models/__init__.py,sha256=
|
|
56
|
-
pydantic_ai/models/anthropic.py,sha256=
|
|
55
|
+
pydantic_ai/models/__init__.py,sha256=ooszfzxleH1MMY47N7P8CVVO7Saf4TtgNm7HVuni4mQ,34038
|
|
56
|
+
pydantic_ai/models/anthropic.py,sha256=GWrx7xa6FcgmjhDyTFH27kQPwOi2Nf8eykv0lC7sdVA,37050
|
|
57
57
|
pydantic_ai/models/bedrock.py,sha256=wHo65QNEsfsb1UaUv_TpvJ0WrgFoKoegB6I3eDVnORI,33393
|
|
58
58
|
pydantic_ai/models/cohere.py,sha256=uQLynz-zWciZBHuvkm8HxJyTOee1bs3pSka-x-56a98,13668
|
|
59
59
|
pydantic_ai/models/fallback.py,sha256=XJ74wRxVT4dF0uewHH3is9I-zcLBK8KFIhpK3BB6mRw,5526
|
|
60
60
|
pydantic_ai/models/function.py,sha256=aTaRMul7-pm__uxqoJLa2e3_73eXeq6sRVLdj1BXX88,15518
|
|
61
61
|
pydantic_ai/models/gemini.py,sha256=DYEaOnwGmo9FUGVkRRrydGuQwYhnO-Cq5grTurLWgb4,39376
|
|
62
|
-
pydantic_ai/models/google.py,sha256=
|
|
62
|
+
pydantic_ai/models/google.py,sha256=uVGqhjDntgoE1ALQ6DbafarjKiXKdtreR24Xi6pVeyI,39368
|
|
63
63
|
pydantic_ai/models/groq.py,sha256=lQIQHuFhvzoHFubXIcA3B4DohW7DnpGrPcrN6j9yuck,29118
|
|
64
64
|
pydantic_ai/models/huggingface.py,sha256=f1tZObCJkcbiUCwNoPyuiaRaGYuj0GBFmbA8yFd-tHY,21176
|
|
65
|
-
pydantic_ai/models/instrumented.py,sha256=
|
|
65
|
+
pydantic_ai/models/instrumented.py,sha256=4GXBNLjzs7s9kjcN_d4S3Wn3IgotNhIpCntAqF1Rrts,21863
|
|
66
66
|
pydantic_ai/models/mcp_sampling.py,sha256=qnLCO3CB5bNQ86SpWRA-CSSOVcCCLPwjHtcNFvW9wHs,3461
|
|
67
67
|
pydantic_ai/models/mistral.py,sha256=ru8EHwFS0xZBN6s1tlssUdjxjQyjB9L_8kFH7qq5U_g,33654
|
|
68
|
-
pydantic_ai/models/openai.py,sha256=
|
|
68
|
+
pydantic_ai/models/openai.py,sha256=cKPe53DhB2ci_JkJleI-n-WemAuBJr_UNUMIKlzO6w4,89579
|
|
69
69
|
pydantic_ai/models/test.py,sha256=1kBwi7pSUt9_K1U-hokOilplxJWPQ3KRKH_s8bYmt_s,19969
|
|
70
70
|
pydantic_ai/models/wrapper.py,sha256=9MeHW7mXPsEK03IKL0rtjeX6QgXyZROOOzLh72GiX2k,2148
|
|
71
71
|
pydantic_ai/profiles/__init__.py,sha256=V6uGAVJuIaYRuZOQjkdIyFfDKD5py18RC98njnHOFug,3293
|
|
@@ -77,7 +77,7 @@ pydantic_ai/profiles/deepseek.py,sha256=JDwfkr-0YovlB3jEKk7dNFvepxNf_YuLgLkGCtyX
|
|
|
77
77
|
pydantic_ai/profiles/google.py,sha256=cd5zwtx0MU1Xwm8c-oqi2_OJ2-PMJ8Vy23mxvSJF7ik,4856
|
|
78
78
|
pydantic_ai/profiles/grok.py,sha256=nBOxOCYCK9aiLmz2Q-esqYhotNbbBC1boAoOYIk1tVw,211
|
|
79
79
|
pydantic_ai/profiles/groq.py,sha256=jD_vG6M5q_uwLmJgkPavWWhGCqo3HvT_4UYfwzC1BMU,682
|
|
80
|
-
pydantic_ai/profiles/harmony.py,sha256=
|
|
80
|
+
pydantic_ai/profiles/harmony.py,sha256=HKOQ1QUBd9jLLabO9jMCq97d3pgAzd3Y7c_jiwPFS2s,555
|
|
81
81
|
pydantic_ai/profiles/meta.py,sha256=JdZcpdRWx8PY1pU9Z2i_TYtA0Cpbg23xyFrV7eXnooY,309
|
|
82
82
|
pydantic_ai/profiles/mistral.py,sha256=ll01PmcK3szwlTfbaJLQmfd0TADN8lqjov9HpPJzCMQ,217
|
|
83
83
|
pydantic_ai/profiles/moonshotai.py,sha256=e1RJnbEvazE6aJAqfmYLYGNtwNwg52XQDRDkcLrv3fU,272
|
|
@@ -103,7 +103,7 @@ pydantic_ai/providers/huggingface.py,sha256=_Bvi2qdbOB8E9mhiJX3fVoUDZWPCTduCFASZ
|
|
|
103
103
|
pydantic_ai/providers/litellm.py,sha256=3hTCjHWRG_1c4S9JSNm0BDBDi4q6BVVZ3OLSXhTndNM,5079
|
|
104
104
|
pydantic_ai/providers/mistral.py,sha256=pHcWHb2Wf9ZcqQl_Lp84ZvepO0Hmyb1CiqCTbur9S-s,3083
|
|
105
105
|
pydantic_ai/providers/moonshotai.py,sha256=LwasmxCZCPkq1pb1uDtZTEb_nE55bAtX3QXgLmuNlHE,3260
|
|
106
|
-
pydantic_ai/providers/ollama.py,sha256=
|
|
106
|
+
pydantic_ai/providers/ollama.py,sha256=wSwB2eh2F5oUwHhdvvN3tZkzc1I8siojKl5NI27M6AI,4742
|
|
107
107
|
pydantic_ai/providers/openai.py,sha256=SKRsYRUW_zu24iKAM7KJ-6j8GQDIjjxll4AWY1uB3Vs,3410
|
|
108
108
|
pydantic_ai/providers/openrouter.py,sha256=PXGgHPtlQQHKFaSnmiswWZ3dTvmT9PAg-NvfRYGjrPw,4154
|
|
109
109
|
pydantic_ai/providers/together.py,sha256=Dln_NgCul1XVOQtNaYvqWrNjOWj9XzA8n4NwNMKkbLk,3450
|
|
@@ -120,8 +120,8 @@ pydantic_ai/toolsets/prefixed.py,sha256=0KwcDkW8OM36ZUsOLVP5h-Nj2tPq78L3_E2c-1Fb
|
|
|
120
120
|
pydantic_ai/toolsets/prepared.py,sha256=Zjfz6S8In6PBVxoKFN9sKPN984zO6t0awB7Lnq5KODw,1431
|
|
121
121
|
pydantic_ai/toolsets/renamed.py,sha256=JuLHpi-hYPiSPlaTpN8WiXLiGsywYK0axi2lW2Qs75k,1637
|
|
122
122
|
pydantic_ai/toolsets/wrapper.py,sha256=KRzF1p8dncHbva8CE6Ud-IC5E_aygIHlwH5atXK55k4,1673
|
|
123
|
-
pydantic_ai_slim-1.0.
|
|
124
|
-
pydantic_ai_slim-1.0.
|
|
125
|
-
pydantic_ai_slim-1.0.
|
|
126
|
-
pydantic_ai_slim-1.0.
|
|
127
|
-
pydantic_ai_slim-1.0.
|
|
123
|
+
pydantic_ai_slim-1.0.11.dist-info/METADATA,sha256=DTxapfIdQXo-SYga_J5A8841fU5NK-7eDfwF4BQhLsU,4631
|
|
124
|
+
pydantic_ai_slim-1.0.11.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
125
|
+
pydantic_ai_slim-1.0.11.dist-info/entry_points.txt,sha256=kbKxe2VtDCYS06hsI7P3uZGxcVC08-FPt1rxeiMpIps,50
|
|
126
|
+
pydantic_ai_slim-1.0.11.dist-info/licenses/LICENSE,sha256=vA6Jc482lEyBBuGUfD1pYx-cM7jxvLYOxPidZ30t_PQ,1100
|
|
127
|
+
pydantic_ai_slim-1.0.11.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|