pydantic-ai-slim 0.8.0__py3-none-any.whl → 1.0.0b1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pydantic-ai-slim might be problematic. Click here for more details.
- pydantic_ai/__init__.py +28 -2
- pydantic_ai/_agent_graph.py +310 -140
- pydantic_ai/_function_schema.py +5 -5
- pydantic_ai/_griffe.py +2 -1
- pydantic_ai/_otel_messages.py +2 -2
- pydantic_ai/_output.py +31 -35
- pydantic_ai/_parts_manager.py +4 -4
- pydantic_ai/_run_context.py +3 -1
- pydantic_ai/_system_prompt.py +2 -2
- pydantic_ai/_tool_manager.py +3 -22
- pydantic_ai/_utils.py +14 -26
- pydantic_ai/ag_ui.py +7 -8
- pydantic_ai/agent/__init__.py +84 -17
- pydantic_ai/agent/abstract.py +35 -4
- pydantic_ai/agent/wrapper.py +6 -0
- pydantic_ai/builtin_tools.py +2 -2
- pydantic_ai/common_tools/duckduckgo.py +4 -2
- pydantic_ai/durable_exec/temporal/__init__.py +70 -17
- pydantic_ai/durable_exec/temporal/_agent.py +23 -2
- pydantic_ai/durable_exec/temporal/_function_toolset.py +53 -6
- pydantic_ai/durable_exec/temporal/_logfire.py +6 -3
- pydantic_ai/durable_exec/temporal/_mcp_server.py +2 -1
- pydantic_ai/durable_exec/temporal/_model.py +2 -2
- pydantic_ai/durable_exec/temporal/_run_context.py +2 -1
- pydantic_ai/durable_exec/temporal/_toolset.py +2 -1
- pydantic_ai/exceptions.py +45 -2
- pydantic_ai/format_prompt.py +2 -2
- pydantic_ai/mcp.py +2 -2
- pydantic_ai/messages.py +81 -28
- pydantic_ai/models/__init__.py +19 -7
- pydantic_ai/models/anthropic.py +6 -6
- pydantic_ai/models/bedrock.py +63 -57
- pydantic_ai/models/cohere.py +3 -3
- pydantic_ai/models/fallback.py +2 -2
- pydantic_ai/models/function.py +25 -23
- pydantic_ai/models/gemini.py +10 -13
- pydantic_ai/models/google.py +4 -4
- pydantic_ai/models/groq.py +5 -5
- pydantic_ai/models/huggingface.py +5 -5
- pydantic_ai/models/instrumented.py +44 -21
- pydantic_ai/models/mcp_sampling.py +3 -1
- pydantic_ai/models/mistral.py +8 -8
- pydantic_ai/models/openai.py +20 -29
- pydantic_ai/models/test.py +24 -4
- pydantic_ai/output.py +27 -32
- pydantic_ai/profiles/__init__.py +3 -3
- pydantic_ai/profiles/groq.py +1 -1
- pydantic_ai/profiles/openai.py +25 -4
- pydantic_ai/providers/anthropic.py +2 -3
- pydantic_ai/providers/bedrock.py +3 -2
- pydantic_ai/result.py +173 -52
- pydantic_ai/retries.py +10 -29
- pydantic_ai/run.py +12 -5
- pydantic_ai/tools.py +126 -22
- pydantic_ai/toolsets/__init__.py +4 -1
- pydantic_ai/toolsets/_dynamic.py +4 -4
- pydantic_ai/toolsets/abstract.py +18 -2
- pydantic_ai/toolsets/approval_required.py +32 -0
- pydantic_ai/toolsets/combined.py +7 -12
- pydantic_ai/toolsets/{deferred.py → external.py} +11 -5
- pydantic_ai/toolsets/filtered.py +1 -1
- pydantic_ai/toolsets/function.py +13 -4
- pydantic_ai/toolsets/wrapper.py +2 -1
- pydantic_ai/usage.py +7 -5
- {pydantic_ai_slim-0.8.0.dist-info → pydantic_ai_slim-1.0.0b1.dist-info}/METADATA +6 -7
- pydantic_ai_slim-1.0.0b1.dist-info/RECORD +120 -0
- pydantic_ai_slim-0.8.0.dist-info/RECORD +0 -119
- {pydantic_ai_slim-0.8.0.dist-info → pydantic_ai_slim-1.0.0b1.dist-info}/WHEEL +0 -0
- {pydantic_ai_slim-0.8.0.dist-info → pydantic_ai_slim-1.0.0b1.dist-info}/entry_points.txt +0 -0
- {pydantic_ai_slim-0.8.0.dist-info → pydantic_ai_slim-1.0.0b1.dist-info}/licenses/LICENSE +0 -0
pydantic_ai/models/mistral.py
CHANGED
|
@@ -5,7 +5,7 @@ from collections.abc import AsyncIterable, AsyncIterator, Iterable
|
|
|
5
5
|
from contextlib import asynccontextmanager
|
|
6
6
|
from dataclasses import dataclass, field
|
|
7
7
|
from datetime import datetime
|
|
8
|
-
from typing import Any, Literal,
|
|
8
|
+
from typing import Any, Literal, cast
|
|
9
9
|
|
|
10
10
|
import pydantic_core
|
|
11
11
|
from httpx import Timeout
|
|
@@ -79,7 +79,7 @@ try:
|
|
|
79
79
|
from mistralai.models.usermessage import UserMessage as MistralUserMessage
|
|
80
80
|
from mistralai.types.basemodel import Unset as MistralUnset
|
|
81
81
|
from mistralai.utils.eventstreaming import EventStreamAsync as MistralEventStreamAsync
|
|
82
|
-
except ImportError as e:
|
|
82
|
+
except ImportError as e:
|
|
83
83
|
raise ImportError(
|
|
84
84
|
'Please install `mistral` to use the Mistral model, '
|
|
85
85
|
'you can use the `mistral` optional group — `pip install "pydantic-ai-slim[mistral]"`'
|
|
@@ -90,7 +90,7 @@ LatestMistralModelNames = Literal[
|
|
|
90
90
|
]
|
|
91
91
|
"""Latest Mistral models."""
|
|
92
92
|
|
|
93
|
-
MistralModelName =
|
|
93
|
+
MistralModelName = str | LatestMistralModelNames
|
|
94
94
|
"""Possible Mistral model names.
|
|
95
95
|
|
|
96
96
|
Since Mistral supports a variety of date-stamped models, we explicitly list the most popular models but
|
|
@@ -117,7 +117,7 @@ class MistralModel(Model):
|
|
|
117
117
|
"""
|
|
118
118
|
|
|
119
119
|
client: Mistral = field(repr=False)
|
|
120
|
-
json_mode_schema_prompt: str
|
|
120
|
+
json_mode_schema_prompt: str
|
|
121
121
|
|
|
122
122
|
_model_name: MistralModelName = field(repr=False)
|
|
123
123
|
_provider: Provider[Mistral] = field(repr=False)
|
|
@@ -348,11 +348,11 @@ class MistralModel(Model):
|
|
|
348
348
|
parts.append(tool)
|
|
349
349
|
|
|
350
350
|
return ModelResponse(
|
|
351
|
-
parts,
|
|
351
|
+
parts=parts,
|
|
352
352
|
usage=_map_usage(response),
|
|
353
353
|
model_name=response.model,
|
|
354
354
|
timestamp=timestamp,
|
|
355
|
-
|
|
355
|
+
provider_response_id=response.id,
|
|
356
356
|
provider_name=self._provider.name,
|
|
357
357
|
)
|
|
358
358
|
|
|
@@ -515,7 +515,7 @@ class MistralModel(Model):
|
|
|
515
515
|
pass
|
|
516
516
|
elif isinstance(part, ToolCallPart):
|
|
517
517
|
tool_calls.append(self._map_tool_call(part))
|
|
518
|
-
elif isinstance(part,
|
|
518
|
+
elif isinstance(part, BuiltinToolCallPart | BuiltinToolReturnPart): # pragma: no cover
|
|
519
519
|
# This is currently never returned from mistral
|
|
520
520
|
pass
|
|
521
521
|
else:
|
|
@@ -576,7 +576,7 @@ class MistralModel(Model):
|
|
|
576
576
|
return MistralUserMessage(content=content)
|
|
577
577
|
|
|
578
578
|
|
|
579
|
-
MistralToolCallId =
|
|
579
|
+
MistralToolCallId = str | None
|
|
580
580
|
|
|
581
581
|
|
|
582
582
|
@dataclass
|
pydantic_ai/models/openai.py
CHANGED
|
@@ -6,7 +6,7 @@ from collections.abc import AsyncIterable, AsyncIterator, Sequence
|
|
|
6
6
|
from contextlib import asynccontextmanager
|
|
7
7
|
from dataclasses import dataclass, field
|
|
8
8
|
from datetime import datetime
|
|
9
|
-
from typing import Any, Literal,
|
|
9
|
+
from typing import Any, Literal, cast, overload
|
|
10
10
|
|
|
11
11
|
from pydantic import ValidationError
|
|
12
12
|
from typing_extensions import assert_never, deprecated
|
|
@@ -90,7 +90,7 @@ __all__ = (
|
|
|
90
90
|
'OpenAIModelName',
|
|
91
91
|
)
|
|
92
92
|
|
|
93
|
-
OpenAIModelName =
|
|
93
|
+
OpenAIModelName = str | AllModels
|
|
94
94
|
"""
|
|
95
95
|
Possible OpenAI model names.
|
|
96
96
|
|
|
@@ -409,13 +409,6 @@ class OpenAIChatModel(Model):
|
|
|
409
409
|
for setting in unsupported_model_settings:
|
|
410
410
|
model_settings.pop(setting, None)
|
|
411
411
|
|
|
412
|
-
# TODO(Marcelo): Deprecate this in favor of `openai_unsupported_model_settings`.
|
|
413
|
-
sampling_settings = (
|
|
414
|
-
model_settings
|
|
415
|
-
if OpenAIModelProfile.from_profile(self.profile).openai_supports_sampling_settings
|
|
416
|
-
else OpenAIChatModelSettings()
|
|
417
|
-
)
|
|
418
|
-
|
|
419
412
|
try:
|
|
420
413
|
extra_headers = model_settings.get('extra_headers', {})
|
|
421
414
|
extra_headers.setdefault('User-Agent', get_user_agent())
|
|
@@ -437,13 +430,13 @@ class OpenAIChatModel(Model):
|
|
|
437
430
|
web_search_options=web_search_options or NOT_GIVEN,
|
|
438
431
|
service_tier=model_settings.get('openai_service_tier', NOT_GIVEN),
|
|
439
432
|
prediction=model_settings.get('openai_prediction', NOT_GIVEN),
|
|
440
|
-
temperature=
|
|
441
|
-
top_p=
|
|
442
|
-
presence_penalty=
|
|
443
|
-
frequency_penalty=
|
|
444
|
-
logit_bias=
|
|
445
|
-
logprobs=
|
|
446
|
-
top_logprobs=
|
|
433
|
+
temperature=model_settings.get('temperature', NOT_GIVEN),
|
|
434
|
+
top_p=model_settings.get('top_p', NOT_GIVEN),
|
|
435
|
+
presence_penalty=model_settings.get('presence_penalty', NOT_GIVEN),
|
|
436
|
+
frequency_penalty=model_settings.get('frequency_penalty', NOT_GIVEN),
|
|
437
|
+
logit_bias=model_settings.get('logit_bias', NOT_GIVEN),
|
|
438
|
+
logprobs=model_settings.get('openai_logprobs', NOT_GIVEN),
|
|
439
|
+
top_logprobs=model_settings.get('openai_top_logprobs', NOT_GIVEN),
|
|
447
440
|
extra_headers=extra_headers,
|
|
448
441
|
extra_body=model_settings.get('extra_body'),
|
|
449
442
|
)
|
|
@@ -512,12 +505,12 @@ class OpenAIChatModel(Model):
|
|
|
512
505
|
part.tool_call_id = _guard_tool_call_id(part)
|
|
513
506
|
items.append(part)
|
|
514
507
|
return ModelResponse(
|
|
515
|
-
items,
|
|
508
|
+
parts=items,
|
|
516
509
|
usage=_map_usage(response),
|
|
517
510
|
model_name=response.model,
|
|
518
511
|
timestamp=timestamp,
|
|
519
512
|
provider_details=vendor_details,
|
|
520
|
-
|
|
513
|
+
provider_response_id=response.id,
|
|
521
514
|
provider_name=self._provider.name,
|
|
522
515
|
)
|
|
523
516
|
|
|
@@ -582,7 +575,7 @@ class OpenAIChatModel(Model):
|
|
|
582
575
|
elif isinstance(item, ToolCallPart):
|
|
583
576
|
tool_calls.append(self._map_tool_call(item))
|
|
584
577
|
# OpenAI doesn't return built-in tool calls
|
|
585
|
-
elif isinstance(item,
|
|
578
|
+
elif isinstance(item, BuiltinToolCallPart | BuiltinToolReturnPart): # pragma: no cover
|
|
586
579
|
pass
|
|
587
580
|
else:
|
|
588
581
|
assert_never(item)
|
|
@@ -828,10 +821,10 @@ class OpenAIResponsesModel(Model):
|
|
|
828
821
|
elif item.type == 'function_call':
|
|
829
822
|
items.append(ToolCallPart(item.name, item.arguments, tool_call_id=item.call_id))
|
|
830
823
|
return ModelResponse(
|
|
831
|
-
items,
|
|
824
|
+
parts=items,
|
|
832
825
|
usage=_map_usage(response),
|
|
833
826
|
model_name=response.model,
|
|
834
|
-
|
|
827
|
+
provider_response_id=response.id,
|
|
835
828
|
timestamp=timestamp,
|
|
836
829
|
provider_name=self._provider.name,
|
|
837
830
|
)
|
|
@@ -918,11 +911,9 @@ class OpenAIResponsesModel(Model):
|
|
|
918
911
|
text = text or {}
|
|
919
912
|
text['verbosity'] = verbosity
|
|
920
913
|
|
|
921
|
-
|
|
922
|
-
|
|
923
|
-
|
|
924
|
-
else OpenAIResponsesModelSettings()
|
|
925
|
-
)
|
|
914
|
+
unsupported_model_settings = OpenAIModelProfile.from_profile(self.profile).openai_unsupported_model_settings
|
|
915
|
+
for setting in unsupported_model_settings:
|
|
916
|
+
model_settings.pop(setting, None)
|
|
926
917
|
|
|
927
918
|
try:
|
|
928
919
|
extra_headers = model_settings.get('extra_headers', {})
|
|
@@ -936,8 +927,8 @@ class OpenAIResponsesModel(Model):
|
|
|
936
927
|
tool_choice=tool_choice or NOT_GIVEN,
|
|
937
928
|
max_output_tokens=model_settings.get('max_tokens', NOT_GIVEN),
|
|
938
929
|
stream=stream,
|
|
939
|
-
temperature=
|
|
940
|
-
top_p=
|
|
930
|
+
temperature=model_settings.get('temperature', NOT_GIVEN),
|
|
931
|
+
top_p=model_settings.get('top_p', NOT_GIVEN),
|
|
941
932
|
truncation=model_settings.get('openai_truncation', NOT_GIVEN),
|
|
942
933
|
timeout=model_settings.get('timeout', NOT_GIVEN),
|
|
943
934
|
service_tier=model_settings.get('openai_service_tier', NOT_GIVEN),
|
|
@@ -1049,7 +1040,7 @@ class OpenAIResponsesModel(Model):
|
|
|
1049
1040
|
elif isinstance(item, ToolCallPart):
|
|
1050
1041
|
openai_messages.append(self._map_tool_call(item))
|
|
1051
1042
|
# OpenAI doesn't return built-in tool calls
|
|
1052
|
-
elif isinstance(item,
|
|
1043
|
+
elif isinstance(item, BuiltinToolCallPart | BuiltinToolReturnPart):
|
|
1053
1044
|
pass
|
|
1054
1045
|
elif isinstance(item, ThinkingPart):
|
|
1055
1046
|
# NOTE: We don't send ThinkingPart to the providers yet. If you are unsatisfied with this,
|
pydantic_ai/models/test.py
CHANGED
|
@@ -195,7 +195,10 @@ class TestModel(Model):
|
|
|
195
195
|
# if there are tools, the first thing we want to do is call all of them
|
|
196
196
|
if tool_calls and not any(isinstance(m, ModelResponse) for m in messages):
|
|
197
197
|
return ModelResponse(
|
|
198
|
-
parts=[
|
|
198
|
+
parts=[
|
|
199
|
+
ToolCallPart(name, self.gen_tool_args(args), tool_call_id=f'pyd_ai_tool_call_id__{name}')
|
|
200
|
+
for name, args in tool_calls
|
|
201
|
+
],
|
|
199
202
|
model_name=self._model_name,
|
|
200
203
|
)
|
|
201
204
|
|
|
@@ -220,6 +223,7 @@ class TestModel(Model):
|
|
|
220
223
|
output_wrapper.value
|
|
221
224
|
if isinstance(output_wrapper, _WrappedToolOutput) and output_wrapper.value is not None
|
|
222
225
|
else self.gen_tool_args(tool),
|
|
226
|
+
tool_call_id=f'pyd_ai_tool_call_id__{tool.name}',
|
|
223
227
|
)
|
|
224
228
|
for tool in output_tools
|
|
225
229
|
if tool.name in new_retry_names
|
|
@@ -250,11 +254,27 @@ class TestModel(Model):
|
|
|
250
254
|
output_tool = output_tools[self.seed % len(output_tools)]
|
|
251
255
|
if custom_output_args is not None:
|
|
252
256
|
return ModelResponse(
|
|
253
|
-
parts=[
|
|
257
|
+
parts=[
|
|
258
|
+
ToolCallPart(
|
|
259
|
+
output_tool.name,
|
|
260
|
+
custom_output_args,
|
|
261
|
+
tool_call_id=f'pyd_ai_tool_call_id__{output_tool.name}',
|
|
262
|
+
)
|
|
263
|
+
],
|
|
264
|
+
model_name=self._model_name,
|
|
254
265
|
)
|
|
255
266
|
else:
|
|
256
267
|
response_args = self.gen_tool_args(output_tool)
|
|
257
|
-
return ModelResponse(
|
|
268
|
+
return ModelResponse(
|
|
269
|
+
parts=[
|
|
270
|
+
ToolCallPart(
|
|
271
|
+
output_tool.name,
|
|
272
|
+
response_args,
|
|
273
|
+
tool_call_id=f'pyd_ai_tool_call_id__{output_tool.name}',
|
|
274
|
+
)
|
|
275
|
+
],
|
|
276
|
+
model_name=self._model_name,
|
|
277
|
+
)
|
|
258
278
|
|
|
259
279
|
|
|
260
280
|
@dataclass
|
|
@@ -293,7 +313,7 @@ class TestStreamedResponse(StreamedResponse):
|
|
|
293
313
|
yield self._parts_manager.handle_tool_call_part(
|
|
294
314
|
vendor_part_id=i, tool_name=part.tool_name, args=part.args, tool_call_id=part.tool_call_id
|
|
295
315
|
)
|
|
296
|
-
elif isinstance(part,
|
|
316
|
+
elif isinstance(part, BuiltinToolCallPart | BuiltinToolReturnPart): # pragma: no cover
|
|
297
317
|
# NOTE: These parts are not generated by TestModel, but we need to handle them for type checking
|
|
298
318
|
assert False, f'Unexpected part type in TestModel: {type(part).__name__}'
|
|
299
319
|
elif isinstance(part, ThinkingPart): # pragma: no cover
|
pydantic_ai/output.py
CHANGED
|
@@ -1,17 +1,17 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
-
from collections.abc import Awaitable, Sequence
|
|
3
|
+
from collections.abc import Awaitable, Callable, Sequence
|
|
4
4
|
from dataclasses import dataclass
|
|
5
|
-
from typing import Any,
|
|
5
|
+
from typing import Any, Generic, Literal
|
|
6
6
|
|
|
7
7
|
from pydantic import GetCoreSchemaHandler, GetJsonSchemaHandler
|
|
8
8
|
from pydantic.json_schema import JsonSchemaValue
|
|
9
9
|
from pydantic_core import core_schema
|
|
10
|
-
from typing_extensions import TypeAliasType, TypeVar
|
|
10
|
+
from typing_extensions import TypeAliasType, TypeVar, deprecated
|
|
11
11
|
|
|
12
12
|
from . import _utils
|
|
13
13
|
from .messages import ToolCallPart
|
|
14
|
-
from .tools import RunContext, ToolDefinition
|
|
14
|
+
from .tools import DeferredToolRequests, RunContext, ToolDefinition
|
|
15
15
|
|
|
16
16
|
__all__ = (
|
|
17
17
|
# classes
|
|
@@ -42,7 +42,7 @@ StructuredOutputMode = Literal['tool', 'native', 'prompted']
|
|
|
42
42
|
|
|
43
43
|
|
|
44
44
|
OutputTypeOrFunction = TypeAliasType(
|
|
45
|
-
'OutputTypeOrFunction',
|
|
45
|
+
'OutputTypeOrFunction', type[T_co] | Callable[..., Awaitable[T_co] | T_co], type_params=(T_co,)
|
|
46
46
|
)
|
|
47
47
|
"""Definition of an output type or function.
|
|
48
48
|
|
|
@@ -54,10 +54,7 @@ See [output docs](../output.md) for more information.
|
|
|
54
54
|
|
|
55
55
|
TextOutputFunc = TypeAliasType(
|
|
56
56
|
'TextOutputFunc',
|
|
57
|
-
|
|
58
|
-
Callable[[RunContext, str], Union[Awaitable[T_co], T_co]],
|
|
59
|
-
Callable[[str], Union[Awaitable[T_co], T_co]],
|
|
60
|
-
],
|
|
57
|
+
Callable[[RunContext, str], Awaitable[T_co] | T_co] | Callable[[str], Awaitable[T_co] | T_co],
|
|
61
58
|
type_params=(T_co,),
|
|
62
59
|
)
|
|
63
60
|
"""Definition of a function that will be called to process the model's plain text output. The function must take a single string argument.
|
|
@@ -135,10 +132,9 @@ class NativeOutput(Generic[OutputDataT]):
|
|
|
135
132
|
|
|
136
133
|
Example:
|
|
137
134
|
```python {title="native_output.py" requires="tool_output.py"}
|
|
138
|
-
from tool_output import Fruit, Vehicle
|
|
139
|
-
|
|
140
135
|
from pydantic_ai import Agent, NativeOutput
|
|
141
136
|
|
|
137
|
+
from tool_output import Fruit, Vehicle
|
|
142
138
|
|
|
143
139
|
agent = Agent(
|
|
144
140
|
'openai:gpt-4o',
|
|
@@ -184,10 +180,11 @@ class PromptedOutput(Generic[OutputDataT]):
|
|
|
184
180
|
Example:
|
|
185
181
|
```python {title="prompted_output.py" requires="tool_output.py"}
|
|
186
182
|
from pydantic import BaseModel
|
|
187
|
-
from tool_output import Vehicle
|
|
188
183
|
|
|
189
184
|
from pydantic_ai import Agent, PromptedOutput
|
|
190
185
|
|
|
186
|
+
from tool_output import Vehicle
|
|
187
|
+
|
|
191
188
|
|
|
192
189
|
class Device(BaseModel):
|
|
193
190
|
name: str
|
|
@@ -286,18 +283,17 @@ def StructuredDict(
|
|
|
286
283
|
```python {title="structured_dict.py"}
|
|
287
284
|
from pydantic_ai import Agent, StructuredDict
|
|
288
285
|
|
|
289
|
-
|
|
290
286
|
schema = {
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
287
|
+
'type': 'object',
|
|
288
|
+
'properties': {
|
|
289
|
+
'name': {'type': 'string'},
|
|
290
|
+
'age': {'type': 'integer'}
|
|
295
291
|
},
|
|
296
|
-
|
|
292
|
+
'required': ['name', 'age']
|
|
297
293
|
}
|
|
298
294
|
|
|
299
295
|
agent = Agent('openai:gpt-4o', output_type=StructuredDict(schema))
|
|
300
|
-
result = agent.run_sync(
|
|
296
|
+
result = agent.run_sync('Create a person')
|
|
301
297
|
print(result.output)
|
|
302
298
|
#> {'name': 'John Doe', 'age': 30}
|
|
303
299
|
```
|
|
@@ -333,16 +329,13 @@ def StructuredDict(
|
|
|
333
329
|
|
|
334
330
|
_OutputSpecItem = TypeAliasType(
|
|
335
331
|
'_OutputSpecItem',
|
|
336
|
-
|
|
332
|
+
OutputTypeOrFunction[T_co] | ToolOutput[T_co] | NativeOutput[T_co] | PromptedOutput[T_co] | TextOutput[T_co],
|
|
337
333
|
type_params=(T_co,),
|
|
338
334
|
)
|
|
339
335
|
|
|
340
336
|
OutputSpec = TypeAliasType(
|
|
341
337
|
'OutputSpec',
|
|
342
|
-
|
|
343
|
-
_OutputSpecItem[T_co],
|
|
344
|
-
Sequence['OutputSpec[T_co]'],
|
|
345
|
-
],
|
|
338
|
+
_OutputSpecItem[T_co] | Sequence['OutputSpec[T_co]'],
|
|
346
339
|
type_params=(T_co,),
|
|
347
340
|
)
|
|
348
341
|
"""Specification of the agent's output data.
|
|
@@ -359,12 +352,14 @@ See [output docs](../output.md) for more information.
|
|
|
359
352
|
"""
|
|
360
353
|
|
|
361
354
|
|
|
362
|
-
@
|
|
363
|
-
class DeferredToolCalls:
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
355
|
+
@deprecated('`DeferredToolCalls` is deprecated, use `DeferredToolRequests` instead')
|
|
356
|
+
class DeferredToolCalls(DeferredToolRequests): # pragma: no cover
|
|
357
|
+
@property
|
|
358
|
+
@deprecated('`DeferredToolCalls.tool_calls` is deprecated, use `DeferredToolRequests.calls` instead')
|
|
359
|
+
def tool_calls(self) -> list[ToolCallPart]:
|
|
360
|
+
return self.calls
|
|
368
361
|
|
|
369
|
-
|
|
370
|
-
tool_defs
|
|
362
|
+
@property
|
|
363
|
+
@deprecated('`DeferredToolCalls.tool_defs` is deprecated')
|
|
364
|
+
def tool_defs(self) -> dict[str, ToolDefinition]:
|
|
365
|
+
return {}
|
pydantic_ai/profiles/__init__.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
from __future__ import annotations as _annotations
|
|
2
2
|
|
|
3
|
+
from collections.abc import Callable
|
|
3
4
|
from dataclasses import dataclass, fields, replace
|
|
4
5
|
from textwrap import dedent
|
|
5
|
-
from typing import Callable, Union
|
|
6
6
|
|
|
7
7
|
from typing_extensions import Self
|
|
8
8
|
|
|
@@ -18,7 +18,7 @@ __all__ = [
|
|
|
18
18
|
]
|
|
19
19
|
|
|
20
20
|
|
|
21
|
-
@dataclass
|
|
21
|
+
@dataclass(kw_only=True)
|
|
22
22
|
class ModelProfile:
|
|
23
23
|
"""Describes how requests to and responses from specific models or families of models need to be constructed and processed to get the best results, independent of the model and provider classes used."""
|
|
24
24
|
|
|
@@ -75,6 +75,6 @@ class ModelProfile:
|
|
|
75
75
|
return replace(self, **non_default_attrs)
|
|
76
76
|
|
|
77
77
|
|
|
78
|
-
ModelProfileSpec =
|
|
78
|
+
ModelProfileSpec = ModelProfile | Callable[[str], ModelProfile | None]
|
|
79
79
|
|
|
80
80
|
DEFAULT_PROFILE = ModelProfile()
|
pydantic_ai/profiles/groq.py
CHANGED
pydantic_ai/profiles/openai.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations as _annotations
|
|
2
2
|
|
|
3
3
|
import re
|
|
4
|
+
import warnings
|
|
4
5
|
from collections.abc import Sequence
|
|
5
6
|
from dataclasses import dataclass
|
|
6
7
|
from typing import Any, Literal
|
|
@@ -11,7 +12,7 @@ from ._json_schema import JsonSchema, JsonSchemaTransformer
|
|
|
11
12
|
OpenAISystemPromptRole = Literal['system', 'developer', 'user']
|
|
12
13
|
|
|
13
14
|
|
|
14
|
-
@dataclass
|
|
15
|
+
@dataclass(kw_only=True)
|
|
15
16
|
class OpenAIModelProfile(ModelProfile):
|
|
16
17
|
"""Profile for models used with `OpenAIChatModel`.
|
|
17
18
|
|
|
@@ -21,7 +22,6 @@ class OpenAIModelProfile(ModelProfile):
|
|
|
21
22
|
openai_supports_strict_tool_definition: bool = True
|
|
22
23
|
"""This can be set by a provider or user if the OpenAI-"compatible" API doesn't support strict tool definitions."""
|
|
23
24
|
|
|
24
|
-
# TODO(Marcelo): Deprecate this in favor of `openai_unsupported_model_settings`.
|
|
25
25
|
openai_supports_sampling_settings: bool = True
|
|
26
26
|
"""Turn off to don't send sampling settings like `temperature` and `top_p` to models that don't support them, like OpenAI's o-series reasoning models."""
|
|
27
27
|
|
|
@@ -38,6 +38,14 @@ class OpenAIModelProfile(ModelProfile):
|
|
|
38
38
|
openai_system_prompt_role: OpenAISystemPromptRole | None = None
|
|
39
39
|
"""The role to use for the system prompt message. If not provided, defaults to `'system'`."""
|
|
40
40
|
|
|
41
|
+
def __post_init__(self): # pragma: no cover
|
|
42
|
+
if not self.openai_supports_sampling_settings:
|
|
43
|
+
warnings.warn(
|
|
44
|
+
'The `openai_supports_sampling_settings` has no effect, and it will be removed in future versions. '
|
|
45
|
+
'Use `openai_unsupported_model_settings` instead.',
|
|
46
|
+
DeprecationWarning,
|
|
47
|
+
)
|
|
48
|
+
|
|
41
49
|
|
|
42
50
|
def openai_model_profile(model_name: str) -> ModelProfile:
|
|
43
51
|
"""Get the model profile for an OpenAI model."""
|
|
@@ -46,6 +54,19 @@ def openai_model_profile(model_name: str) -> ModelProfile:
|
|
|
46
54
|
# We leave it in here for all models because the `default_structured_output_mode` is `'tool'`, so `native` is only used
|
|
47
55
|
# when the user specifically uses the `NativeOutput` marker, so an error from the API is acceptable.
|
|
48
56
|
|
|
57
|
+
if is_reasoning_model:
|
|
58
|
+
openai_unsupported_model_settings = (
|
|
59
|
+
'temperature',
|
|
60
|
+
'top_p',
|
|
61
|
+
'presence_penalty',
|
|
62
|
+
'frequency_penalty',
|
|
63
|
+
'logit_bias',
|
|
64
|
+
'logprobs',
|
|
65
|
+
'top_logprobs',
|
|
66
|
+
)
|
|
67
|
+
else:
|
|
68
|
+
openai_unsupported_model_settings = ()
|
|
69
|
+
|
|
49
70
|
# The o1-mini model doesn't support the `system` role, so we default to `user`.
|
|
50
71
|
# See https://github.com/pydantic/pydantic-ai/issues/974 for more details.
|
|
51
72
|
openai_system_prompt_role = 'user' if model_name.startswith('o1-mini') else None
|
|
@@ -54,7 +75,7 @@ def openai_model_profile(model_name: str) -> ModelProfile:
|
|
|
54
75
|
json_schema_transformer=OpenAIJsonSchemaTransformer,
|
|
55
76
|
supports_json_schema_output=True,
|
|
56
77
|
supports_json_object_output=True,
|
|
57
|
-
|
|
78
|
+
openai_unsupported_model_settings=openai_unsupported_model_settings,
|
|
58
79
|
openai_system_prompt_role=openai_system_prompt_role,
|
|
59
80
|
)
|
|
60
81
|
|
|
@@ -89,7 +110,7 @@ _STRICT_COMPATIBLE_STRING_FORMATS = [
|
|
|
89
110
|
_sentinel = object()
|
|
90
111
|
|
|
91
112
|
|
|
92
|
-
@dataclass
|
|
113
|
+
@dataclass(init=False)
|
|
93
114
|
class OpenAIJsonSchemaTransformer(JsonSchemaTransformer):
|
|
94
115
|
"""Recursively handle the schema to make it compatible with OpenAI strict mode.
|
|
95
116
|
|
|
@@ -1,10 +1,9 @@
|
|
|
1
1
|
from __future__ import annotations as _annotations
|
|
2
2
|
|
|
3
3
|
import os
|
|
4
|
-
from typing import
|
|
4
|
+
from typing import TypeAlias, overload
|
|
5
5
|
|
|
6
6
|
import httpx
|
|
7
|
-
from typing_extensions import TypeAlias
|
|
8
7
|
|
|
9
8
|
from pydantic_ai.exceptions import UserError
|
|
10
9
|
from pydantic_ai.models import cached_async_http_client
|
|
@@ -21,7 +20,7 @@ except ImportError as _import_error:
|
|
|
21
20
|
) from _import_error
|
|
22
21
|
|
|
23
22
|
|
|
24
|
-
AsyncAnthropicClient: TypeAlias =
|
|
23
|
+
AsyncAnthropicClient: TypeAlias = AsyncAnthropic | AsyncAnthropicBedrock
|
|
25
24
|
|
|
26
25
|
|
|
27
26
|
class AnthropicProvider(Provider[AsyncAnthropicClient]):
|
pydantic_ai/providers/bedrock.py
CHANGED
|
@@ -2,8 +2,9 @@ from __future__ import annotations as _annotations
|
|
|
2
2
|
|
|
3
3
|
import os
|
|
4
4
|
import re
|
|
5
|
+
from collections.abc import Callable
|
|
5
6
|
from dataclasses import dataclass
|
|
6
|
-
from typing import
|
|
7
|
+
from typing import Literal, overload
|
|
7
8
|
|
|
8
9
|
from pydantic_ai.exceptions import UserError
|
|
9
10
|
from pydantic_ai.profiles import ModelProfile
|
|
@@ -27,7 +28,7 @@ except ImportError as _import_error:
|
|
|
27
28
|
) from _import_error
|
|
28
29
|
|
|
29
30
|
|
|
30
|
-
@dataclass
|
|
31
|
+
@dataclass(kw_only=True)
|
|
31
32
|
class BedrockModelProfile(ModelProfile):
|
|
32
33
|
"""Profile for models used with BedrockModel.
|
|
33
34
|
|