pydantic-ai-slim 0.6.1__py3-none-any.whl → 0.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pydantic-ai-slim might be problematic. Click here for more details.
- pydantic_ai/__init__.py +5 -0
- pydantic_ai/_a2a.py +6 -4
- pydantic_ai/_agent_graph.py +32 -32
- pydantic_ai/_cli.py +3 -3
- pydantic_ai/_output.py +8 -0
- pydantic_ai/_tool_manager.py +3 -0
- pydantic_ai/_utils.py +7 -1
- pydantic_ai/ag_ui.py +25 -14
- pydantic_ai/{agent.py → agent/__init__.py} +217 -1026
- pydantic_ai/agent/abstract.py +942 -0
- pydantic_ai/agent/wrapper.py +227 -0
- pydantic_ai/builtin_tools.py +105 -0
- pydantic_ai/direct.py +9 -9
- pydantic_ai/durable_exec/__init__.py +0 -0
- pydantic_ai/durable_exec/temporal/__init__.py +83 -0
- pydantic_ai/durable_exec/temporal/_agent.py +699 -0
- pydantic_ai/durable_exec/temporal/_function_toolset.py +92 -0
- pydantic_ai/durable_exec/temporal/_logfire.py +48 -0
- pydantic_ai/durable_exec/temporal/_mcp_server.py +145 -0
- pydantic_ai/durable_exec/temporal/_model.py +168 -0
- pydantic_ai/durable_exec/temporal/_run_context.py +50 -0
- pydantic_ai/durable_exec/temporal/_toolset.py +77 -0
- pydantic_ai/ext/aci.py +10 -9
- pydantic_ai/ext/langchain.py +4 -2
- pydantic_ai/mcp.py +203 -75
- pydantic_ai/messages.py +75 -13
- pydantic_ai/models/__init__.py +66 -8
- pydantic_ai/models/anthropic.py +135 -18
- pydantic_ai/models/bedrock.py +16 -5
- pydantic_ai/models/cohere.py +11 -4
- pydantic_ai/models/fallback.py +4 -2
- pydantic_ai/models/function.py +18 -4
- pydantic_ai/models/gemini.py +20 -9
- pydantic_ai/models/google.py +53 -15
- pydantic_ai/models/groq.py +47 -11
- pydantic_ai/models/huggingface.py +26 -11
- pydantic_ai/models/instrumented.py +3 -1
- pydantic_ai/models/mcp_sampling.py +3 -1
- pydantic_ai/models/mistral.py +27 -17
- pydantic_ai/models/openai.py +97 -33
- pydantic_ai/models/test.py +12 -0
- pydantic_ai/models/wrapper.py +6 -2
- pydantic_ai/profiles/groq.py +23 -0
- pydantic_ai/profiles/openai.py +1 -1
- pydantic_ai/providers/google.py +7 -7
- pydantic_ai/providers/groq.py +2 -0
- pydantic_ai/result.py +21 -55
- pydantic_ai/run.py +357 -0
- pydantic_ai/tools.py +0 -1
- pydantic_ai/toolsets/__init__.py +2 -0
- pydantic_ai/toolsets/_dynamic.py +87 -0
- pydantic_ai/toolsets/abstract.py +23 -3
- pydantic_ai/toolsets/combined.py +19 -4
- pydantic_ai/toolsets/deferred.py +10 -2
- pydantic_ai/toolsets/function.py +23 -8
- pydantic_ai/toolsets/prefixed.py +4 -0
- pydantic_ai/toolsets/wrapper.py +14 -1
- {pydantic_ai_slim-0.6.1.dist-info → pydantic_ai_slim-0.7.0.dist-info}/METADATA +7 -5
- pydantic_ai_slim-0.7.0.dist-info/RECORD +115 -0
- pydantic_ai_slim-0.6.1.dist-info/RECORD +0 -100
- {pydantic_ai_slim-0.6.1.dist-info → pydantic_ai_slim-0.7.0.dist-info}/WHEEL +0 -0
- {pydantic_ai_slim-0.6.1.dist-info → pydantic_ai_slim-0.7.0.dist-info}/entry_points.txt +0 -0
- {pydantic_ai_slim-0.6.1.dist-info → pydantic_ai_slim-0.7.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,942 @@
|
|
|
1
|
+
from __future__ import annotations as _annotations
|
|
2
|
+
|
|
3
|
+
import inspect
|
|
4
|
+
from abc import ABC, abstractmethod
|
|
5
|
+
from collections.abc import AsyncIterable, AsyncIterator, Awaitable, Iterator, Mapping, Sequence
|
|
6
|
+
from contextlib import AbstractAsyncContextManager, asynccontextmanager, contextmanager
|
|
7
|
+
from types import FrameType
|
|
8
|
+
from typing import TYPE_CHECKING, Any, Callable, Generic, Union, cast, overload
|
|
9
|
+
|
|
10
|
+
from typing_extensions import Self, TypeAlias, TypeIs, TypeVar
|
|
11
|
+
|
|
12
|
+
from pydantic_graph import End
|
|
13
|
+
from pydantic_graph._utils import get_event_loop
|
|
14
|
+
|
|
15
|
+
from .. import (
|
|
16
|
+
_agent_graph,
|
|
17
|
+
_utils,
|
|
18
|
+
exceptions,
|
|
19
|
+
messages as _messages,
|
|
20
|
+
models,
|
|
21
|
+
result,
|
|
22
|
+
usage as _usage,
|
|
23
|
+
)
|
|
24
|
+
from ..output import OutputDataT, OutputSpec
|
|
25
|
+
from ..result import AgentStream, FinalResult, StreamedRunResult
|
|
26
|
+
from ..run import AgentRun, AgentRunResult
|
|
27
|
+
from ..settings import ModelSettings
|
|
28
|
+
from ..tools import (
|
|
29
|
+
AgentDepsT,
|
|
30
|
+
RunContext,
|
|
31
|
+
Tool,
|
|
32
|
+
ToolFuncEither,
|
|
33
|
+
)
|
|
34
|
+
from ..toolsets import AbstractToolset
|
|
35
|
+
from ..usage import Usage, UsageLimits
|
|
36
|
+
|
|
37
|
+
# Re-exporting like this improves auto-import behavior in PyCharm
|
|
38
|
+
capture_run_messages = _agent_graph.capture_run_messages
|
|
39
|
+
EndStrategy = _agent_graph.EndStrategy
|
|
40
|
+
CallToolsNode = _agent_graph.CallToolsNode
|
|
41
|
+
ModelRequestNode = _agent_graph.ModelRequestNode
|
|
42
|
+
UserPromptNode = _agent_graph.UserPromptNode
|
|
43
|
+
|
|
44
|
+
if TYPE_CHECKING:
|
|
45
|
+
from fasta2a.applications import FastA2A
|
|
46
|
+
from fasta2a.broker import Broker
|
|
47
|
+
from fasta2a.schema import AgentProvider, Skill
|
|
48
|
+
from fasta2a.storage import Storage
|
|
49
|
+
from starlette.middleware import Middleware
|
|
50
|
+
from starlette.routing import BaseRoute, Route
|
|
51
|
+
from starlette.types import ExceptionHandler, Lifespan
|
|
52
|
+
|
|
53
|
+
from ..ag_ui import AGUIApp
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
T = TypeVar('T')
|
|
57
|
+
S = TypeVar('S')
|
|
58
|
+
NoneType = type(None)
|
|
59
|
+
RunOutputDataT = TypeVar('RunOutputDataT')
|
|
60
|
+
"""Type variable for the result data of a run where `output_type` was customized on the run call."""
|
|
61
|
+
|
|
62
|
+
EventStreamHandler: TypeAlias = Callable[
|
|
63
|
+
[
|
|
64
|
+
RunContext[AgentDepsT],
|
|
65
|
+
AsyncIterable[Union[_messages.AgentStreamEvent, _messages.HandleResponseEvent]],
|
|
66
|
+
],
|
|
67
|
+
Awaitable[None],
|
|
68
|
+
]
|
|
69
|
+
"""A function that receives agent [`RunContext`][pydantic_ai.tools.RunContext] and an async iterable of events from the model's streaming response and the agent's execution of tools."""
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class AbstractAgent(Generic[AgentDepsT, OutputDataT], ABC):
|
|
73
|
+
"""Abstract superclass for [`Agent`][pydantic_ai.agent.Agent], [`WrapperAgent`][pydantic_ai.agent.WrapperAgent], and your own custom agent implementations."""
|
|
74
|
+
|
|
75
|
+
@property
|
|
76
|
+
@abstractmethod
|
|
77
|
+
def model(self) -> models.Model | models.KnownModelName | str | None:
|
|
78
|
+
"""The default model configured for this agent."""
|
|
79
|
+
raise NotImplementedError
|
|
80
|
+
|
|
81
|
+
@property
|
|
82
|
+
@abstractmethod
|
|
83
|
+
def name(self) -> str | None:
|
|
84
|
+
"""The name of the agent, used for logging.
|
|
85
|
+
|
|
86
|
+
If `None`, we try to infer the agent name from the call frame when the agent is first run.
|
|
87
|
+
"""
|
|
88
|
+
raise NotImplementedError
|
|
89
|
+
|
|
90
|
+
@name.setter
|
|
91
|
+
@abstractmethod
|
|
92
|
+
def name(self, value: str | None) -> None:
|
|
93
|
+
"""Set the name of the agent, used for logging."""
|
|
94
|
+
raise NotImplementedError
|
|
95
|
+
|
|
96
|
+
@property
|
|
97
|
+
@abstractmethod
|
|
98
|
+
def deps_type(self) -> type:
|
|
99
|
+
"""The type of dependencies used by the agent."""
|
|
100
|
+
raise NotImplementedError
|
|
101
|
+
|
|
102
|
+
@property
|
|
103
|
+
@abstractmethod
|
|
104
|
+
def output_type(self) -> OutputSpec[OutputDataT]:
|
|
105
|
+
"""The type of data output by agent runs, used to validate the data returned by the model, defaults to `str`."""
|
|
106
|
+
raise NotImplementedError
|
|
107
|
+
|
|
108
|
+
@property
|
|
109
|
+
@abstractmethod
|
|
110
|
+
def event_stream_handler(self) -> EventStreamHandler[AgentDepsT] | None:
|
|
111
|
+
"""Optional handler for events from the model's streaming response and the agent's execution of tools."""
|
|
112
|
+
raise NotImplementedError
|
|
113
|
+
|
|
114
|
+
@property
|
|
115
|
+
@abstractmethod
|
|
116
|
+
def toolsets(self) -> Sequence[AbstractToolset[AgentDepsT]]:
|
|
117
|
+
"""All toolsets registered on the agent.
|
|
118
|
+
|
|
119
|
+
Output tools are not included.
|
|
120
|
+
"""
|
|
121
|
+
raise NotImplementedError
|
|
122
|
+
|
|
123
|
+
@overload
|
|
124
|
+
async def run(
|
|
125
|
+
self,
|
|
126
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
127
|
+
*,
|
|
128
|
+
output_type: None = None,
|
|
129
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
130
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
131
|
+
deps: AgentDepsT = None,
|
|
132
|
+
model_settings: ModelSettings | None = None,
|
|
133
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
134
|
+
usage: _usage.Usage | None = None,
|
|
135
|
+
infer_name: bool = True,
|
|
136
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
137
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
138
|
+
) -> AgentRunResult[OutputDataT]: ...
|
|
139
|
+
|
|
140
|
+
@overload
|
|
141
|
+
async def run(
|
|
142
|
+
self,
|
|
143
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
144
|
+
*,
|
|
145
|
+
output_type: OutputSpec[RunOutputDataT],
|
|
146
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
147
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
148
|
+
deps: AgentDepsT = None,
|
|
149
|
+
model_settings: ModelSettings | None = None,
|
|
150
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
151
|
+
usage: _usage.Usage | None = None,
|
|
152
|
+
infer_name: bool = True,
|
|
153
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
154
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
155
|
+
) -> AgentRunResult[RunOutputDataT]: ...
|
|
156
|
+
|
|
157
|
+
async def run(
|
|
158
|
+
self,
|
|
159
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
160
|
+
*,
|
|
161
|
+
output_type: OutputSpec[RunOutputDataT] | None = None,
|
|
162
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
163
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
164
|
+
deps: AgentDepsT = None,
|
|
165
|
+
model_settings: ModelSettings | None = None,
|
|
166
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
167
|
+
usage: _usage.Usage | None = None,
|
|
168
|
+
infer_name: bool = True,
|
|
169
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
170
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
171
|
+
) -> AgentRunResult[Any]:
|
|
172
|
+
"""Run the agent with a user prompt in async mode.
|
|
173
|
+
|
|
174
|
+
This method builds an internal agent graph (using system prompts, tools and output schemas) and then
|
|
175
|
+
runs the graph to completion. The result of the run is returned.
|
|
176
|
+
|
|
177
|
+
Example:
|
|
178
|
+
```python
|
|
179
|
+
from pydantic_ai import Agent
|
|
180
|
+
|
|
181
|
+
agent = Agent('openai:gpt-4o')
|
|
182
|
+
|
|
183
|
+
async def main():
|
|
184
|
+
agent_run = await agent.run('What is the capital of France?')
|
|
185
|
+
print(agent_run.output)
|
|
186
|
+
#> The capital of France is Paris.
|
|
187
|
+
```
|
|
188
|
+
|
|
189
|
+
Args:
|
|
190
|
+
user_prompt: User input to start/continue the conversation.
|
|
191
|
+
output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no
|
|
192
|
+
output validators since output validators would expect an argument that matches the agent's output type.
|
|
193
|
+
message_history: History of the conversation so far.
|
|
194
|
+
model: Optional model to use for this run, required if `model` was not set when creating the agent.
|
|
195
|
+
deps: Optional dependencies to use for this run.
|
|
196
|
+
model_settings: Optional settings to use for this model's request.
|
|
197
|
+
usage_limits: Optional limits on model request count or token usage.
|
|
198
|
+
usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.
|
|
199
|
+
infer_name: Whether to try to infer the agent name from the call frame if it's not set.
|
|
200
|
+
toolsets: Optional additional toolsets for this run.
|
|
201
|
+
event_stream_handler: Optional handler for events from the model's streaming response and the agent's execution of tools to use for this run.
|
|
202
|
+
|
|
203
|
+
Returns:
|
|
204
|
+
The result of the run.
|
|
205
|
+
"""
|
|
206
|
+
if infer_name and self.name is None:
|
|
207
|
+
self._infer_name(inspect.currentframe())
|
|
208
|
+
|
|
209
|
+
event_stream_handler = event_stream_handler or self.event_stream_handler
|
|
210
|
+
|
|
211
|
+
async with self.iter(
|
|
212
|
+
user_prompt=user_prompt,
|
|
213
|
+
output_type=output_type,
|
|
214
|
+
message_history=message_history,
|
|
215
|
+
model=model,
|
|
216
|
+
deps=deps,
|
|
217
|
+
model_settings=model_settings,
|
|
218
|
+
usage_limits=usage_limits,
|
|
219
|
+
usage=usage,
|
|
220
|
+
toolsets=toolsets,
|
|
221
|
+
) as agent_run:
|
|
222
|
+
async for node in agent_run:
|
|
223
|
+
if event_stream_handler is not None and (
|
|
224
|
+
self.is_model_request_node(node) or self.is_call_tools_node(node)
|
|
225
|
+
):
|
|
226
|
+
async with node.stream(agent_run.ctx) as stream:
|
|
227
|
+
await event_stream_handler(_agent_graph.build_run_context(agent_run.ctx), stream)
|
|
228
|
+
|
|
229
|
+
assert agent_run.result is not None, 'The graph run did not finish properly'
|
|
230
|
+
return agent_run.result
|
|
231
|
+
|
|
232
|
+
@overload
|
|
233
|
+
def run_sync(
|
|
234
|
+
self,
|
|
235
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
236
|
+
*,
|
|
237
|
+
output_type: None = None,
|
|
238
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
239
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
240
|
+
deps: AgentDepsT = None,
|
|
241
|
+
model_settings: ModelSettings | None = None,
|
|
242
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
243
|
+
usage: _usage.Usage | None = None,
|
|
244
|
+
infer_name: bool = True,
|
|
245
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
246
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
247
|
+
) -> AgentRunResult[OutputDataT]: ...
|
|
248
|
+
|
|
249
|
+
@overload
|
|
250
|
+
def run_sync(
|
|
251
|
+
self,
|
|
252
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
253
|
+
*,
|
|
254
|
+
output_type: OutputSpec[RunOutputDataT],
|
|
255
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
256
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
257
|
+
deps: AgentDepsT = None,
|
|
258
|
+
model_settings: ModelSettings | None = None,
|
|
259
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
260
|
+
usage: _usage.Usage | None = None,
|
|
261
|
+
infer_name: bool = True,
|
|
262
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
263
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
264
|
+
) -> AgentRunResult[RunOutputDataT]: ...
|
|
265
|
+
|
|
266
|
+
def run_sync(
|
|
267
|
+
self,
|
|
268
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
269
|
+
*,
|
|
270
|
+
output_type: OutputSpec[RunOutputDataT] | None = None,
|
|
271
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
272
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
273
|
+
deps: AgentDepsT = None,
|
|
274
|
+
model_settings: ModelSettings | None = None,
|
|
275
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
276
|
+
usage: _usage.Usage | None = None,
|
|
277
|
+
infer_name: bool = True,
|
|
278
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
279
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
280
|
+
) -> AgentRunResult[Any]:
|
|
281
|
+
"""Synchronously run the agent with a user prompt.
|
|
282
|
+
|
|
283
|
+
This is a convenience method that wraps [`self.run`][pydantic_ai.agent.AbstractAgent.run] with `loop.run_until_complete(...)`.
|
|
284
|
+
You therefore can't use this method inside async code or if there's an active event loop.
|
|
285
|
+
|
|
286
|
+
Example:
|
|
287
|
+
```python
|
|
288
|
+
from pydantic_ai import Agent
|
|
289
|
+
|
|
290
|
+
agent = Agent('openai:gpt-4o')
|
|
291
|
+
|
|
292
|
+
result_sync = agent.run_sync('What is the capital of Italy?')
|
|
293
|
+
print(result_sync.output)
|
|
294
|
+
#> The capital of Italy is Rome.
|
|
295
|
+
```
|
|
296
|
+
|
|
297
|
+
Args:
|
|
298
|
+
user_prompt: User input to start/continue the conversation.
|
|
299
|
+
output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no
|
|
300
|
+
output validators since output validators would expect an argument that matches the agent's output type.
|
|
301
|
+
message_history: History of the conversation so far.
|
|
302
|
+
model: Optional model to use for this run, required if `model` was not set when creating the agent.
|
|
303
|
+
deps: Optional dependencies to use for this run.
|
|
304
|
+
model_settings: Optional settings to use for this model's request.
|
|
305
|
+
usage_limits: Optional limits on model request count or token usage.
|
|
306
|
+
usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.
|
|
307
|
+
infer_name: Whether to try to infer the agent name from the call frame if it's not set.
|
|
308
|
+
toolsets: Optional additional toolsets for this run.
|
|
309
|
+
event_stream_handler: Optional handler for events from the model's streaming response and the agent's execution of tools to use for this run.
|
|
310
|
+
|
|
311
|
+
Returns:
|
|
312
|
+
The result of the run.
|
|
313
|
+
"""
|
|
314
|
+
if infer_name and self.name is None:
|
|
315
|
+
self._infer_name(inspect.currentframe())
|
|
316
|
+
|
|
317
|
+
return get_event_loop().run_until_complete(
|
|
318
|
+
self.run(
|
|
319
|
+
user_prompt,
|
|
320
|
+
output_type=output_type,
|
|
321
|
+
message_history=message_history,
|
|
322
|
+
model=model,
|
|
323
|
+
deps=deps,
|
|
324
|
+
model_settings=model_settings,
|
|
325
|
+
usage_limits=usage_limits,
|
|
326
|
+
usage=usage,
|
|
327
|
+
infer_name=False,
|
|
328
|
+
toolsets=toolsets,
|
|
329
|
+
event_stream_handler=event_stream_handler,
|
|
330
|
+
)
|
|
331
|
+
)
|
|
332
|
+
|
|
333
|
+
@overload
|
|
334
|
+
def run_stream(
|
|
335
|
+
self,
|
|
336
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
337
|
+
*,
|
|
338
|
+
output_type: None = None,
|
|
339
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
340
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
341
|
+
deps: AgentDepsT = None,
|
|
342
|
+
model_settings: ModelSettings | None = None,
|
|
343
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
344
|
+
usage: _usage.Usage | None = None,
|
|
345
|
+
infer_name: bool = True,
|
|
346
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
347
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
348
|
+
) -> AbstractAsyncContextManager[result.StreamedRunResult[AgentDepsT, OutputDataT]]: ...
|
|
349
|
+
|
|
350
|
+
@overload
|
|
351
|
+
def run_stream(
|
|
352
|
+
self,
|
|
353
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
354
|
+
*,
|
|
355
|
+
output_type: OutputSpec[RunOutputDataT],
|
|
356
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
357
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
358
|
+
deps: AgentDepsT = None,
|
|
359
|
+
model_settings: ModelSettings | None = None,
|
|
360
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
361
|
+
usage: _usage.Usage | None = None,
|
|
362
|
+
infer_name: bool = True,
|
|
363
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
364
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
365
|
+
) -> AbstractAsyncContextManager[result.StreamedRunResult[AgentDepsT, RunOutputDataT]]: ...
|
|
366
|
+
|
|
367
|
+
@asynccontextmanager
|
|
368
|
+
async def run_stream( # noqa C901
|
|
369
|
+
self,
|
|
370
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
371
|
+
*,
|
|
372
|
+
output_type: OutputSpec[RunOutputDataT] | None = None,
|
|
373
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
374
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
375
|
+
deps: AgentDepsT = None,
|
|
376
|
+
model_settings: ModelSettings | None = None,
|
|
377
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
378
|
+
usage: _usage.Usage | None = None,
|
|
379
|
+
infer_name: bool = True,
|
|
380
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
381
|
+
event_stream_handler: EventStreamHandler[AgentDepsT] | None = None,
|
|
382
|
+
) -> AsyncIterator[result.StreamedRunResult[AgentDepsT, Any]]:
|
|
383
|
+
"""Run the agent with a user prompt in async streaming mode.
|
|
384
|
+
|
|
385
|
+
This method builds an internal agent graph (using system prompts, tools and output schemas) and then
|
|
386
|
+
runs the graph until the model produces output matching the `output_type`, for example text or structured data.
|
|
387
|
+
At this point, a streaming run result object is yielded from which you can stream the output as it comes in,
|
|
388
|
+
and -- once this output has completed streaming -- get the complete output, message history, and usage.
|
|
389
|
+
|
|
390
|
+
As this method will consider the first output matching the `output_type` to be the final output,
|
|
391
|
+
it will stop running the agent graph and will not execute any tool calls made by the model after this "final" output.
|
|
392
|
+
If you want to always run the agent graph to completion and stream events and output at the same time,
|
|
393
|
+
use [`agent.run()`][pydantic_ai.agent.AbstractAgent.run] with an `event_stream_handler` or [`agent.iter()`][pydantic_ai.agent.AbstractAgent.iter] instead.
|
|
394
|
+
|
|
395
|
+
Example:
|
|
396
|
+
```python
|
|
397
|
+
from pydantic_ai import Agent
|
|
398
|
+
|
|
399
|
+
agent = Agent('openai:gpt-4o')
|
|
400
|
+
|
|
401
|
+
async def main():
|
|
402
|
+
async with agent.run_stream('What is the capital of the UK?') as response:
|
|
403
|
+
print(await response.get_output())
|
|
404
|
+
#> The capital of the UK is London.
|
|
405
|
+
```
|
|
406
|
+
|
|
407
|
+
Args:
|
|
408
|
+
user_prompt: User input to start/continue the conversation.
|
|
409
|
+
output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no
|
|
410
|
+
output validators since output validators would expect an argument that matches the agent's output type.
|
|
411
|
+
message_history: History of the conversation so far.
|
|
412
|
+
model: Optional model to use for this run, required if `model` was not set when creating the agent.
|
|
413
|
+
deps: Optional dependencies to use for this run.
|
|
414
|
+
model_settings: Optional settings to use for this model's request.
|
|
415
|
+
usage_limits: Optional limits on model request count or token usage.
|
|
416
|
+
usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.
|
|
417
|
+
infer_name: Whether to try to infer the agent name from the call frame if it's not set.
|
|
418
|
+
toolsets: Optional additional toolsets for this run.
|
|
419
|
+
event_stream_handler: Optional handler for events from the model's streaming response and the agent's execution of tools to use for this run.
|
|
420
|
+
It will receive all the events up until the final result is found, which you can then read or stream from inside the context manager.
|
|
421
|
+
Note that it does _not_ receive any events after the final result is found.
|
|
422
|
+
|
|
423
|
+
Returns:
|
|
424
|
+
The result of the run.
|
|
425
|
+
"""
|
|
426
|
+
if infer_name and self.name is None:
|
|
427
|
+
# f_back because `asynccontextmanager` adds one frame
|
|
428
|
+
if frame := inspect.currentframe(): # pragma: no branch
|
|
429
|
+
self._infer_name(frame.f_back)
|
|
430
|
+
|
|
431
|
+
event_stream_handler = event_stream_handler or self.event_stream_handler
|
|
432
|
+
|
|
433
|
+
yielded = False
|
|
434
|
+
async with self.iter(
|
|
435
|
+
user_prompt,
|
|
436
|
+
output_type=output_type,
|
|
437
|
+
message_history=message_history,
|
|
438
|
+
model=model,
|
|
439
|
+
deps=deps,
|
|
440
|
+
model_settings=model_settings,
|
|
441
|
+
usage_limits=usage_limits,
|
|
442
|
+
usage=usage,
|
|
443
|
+
infer_name=False,
|
|
444
|
+
toolsets=toolsets,
|
|
445
|
+
) as agent_run:
|
|
446
|
+
first_node = agent_run.next_node # start with the first node
|
|
447
|
+
assert isinstance(first_node, _agent_graph.UserPromptNode) # the first node should be a user prompt node
|
|
448
|
+
node = first_node
|
|
449
|
+
while True:
|
|
450
|
+
if self.is_model_request_node(node):
|
|
451
|
+
graph_ctx = agent_run.ctx
|
|
452
|
+
async with node.stream(graph_ctx) as stream:
|
|
453
|
+
final_result_event = None
|
|
454
|
+
|
|
455
|
+
async def stream_to_final(stream: AgentStream) -> AsyncIterator[_messages.AgentStreamEvent]:
|
|
456
|
+
nonlocal final_result_event
|
|
457
|
+
async for event in stream:
|
|
458
|
+
yield event
|
|
459
|
+
if isinstance(event, _messages.FinalResultEvent):
|
|
460
|
+
final_result_event = event
|
|
461
|
+
break
|
|
462
|
+
|
|
463
|
+
if event_stream_handler is not None:
|
|
464
|
+
await event_stream_handler(
|
|
465
|
+
_agent_graph.build_run_context(graph_ctx), stream_to_final(stream)
|
|
466
|
+
)
|
|
467
|
+
else:
|
|
468
|
+
async for _ in stream_to_final(stream):
|
|
469
|
+
pass
|
|
470
|
+
|
|
471
|
+
if final_result_event is not None:
|
|
472
|
+
final_result = FinalResult(
|
|
473
|
+
stream, final_result_event.tool_name, final_result_event.tool_call_id
|
|
474
|
+
)
|
|
475
|
+
if yielded:
|
|
476
|
+
raise exceptions.AgentRunError('Agent run produced final results') # pragma: no cover
|
|
477
|
+
yielded = True
|
|
478
|
+
|
|
479
|
+
messages = graph_ctx.state.message_history.copy()
|
|
480
|
+
|
|
481
|
+
async def on_complete() -> None:
|
|
482
|
+
"""Called when the stream has completed.
|
|
483
|
+
|
|
484
|
+
The model response will have been added to messages by now
|
|
485
|
+
by `StreamedRunResult._marked_completed`.
|
|
486
|
+
"""
|
|
487
|
+
last_message = messages[-1]
|
|
488
|
+
assert isinstance(last_message, _messages.ModelResponse)
|
|
489
|
+
tool_calls = [
|
|
490
|
+
part for part in last_message.parts if isinstance(part, _messages.ToolCallPart)
|
|
491
|
+
]
|
|
492
|
+
|
|
493
|
+
parts: list[_messages.ModelRequestPart] = []
|
|
494
|
+
async for _event in _agent_graph.process_function_tools(
|
|
495
|
+
graph_ctx.deps.tool_manager,
|
|
496
|
+
tool_calls,
|
|
497
|
+
final_result,
|
|
498
|
+
graph_ctx,
|
|
499
|
+
parts,
|
|
500
|
+
):
|
|
501
|
+
pass
|
|
502
|
+
if parts:
|
|
503
|
+
messages.append(_messages.ModelRequest(parts))
|
|
504
|
+
|
|
505
|
+
yield StreamedRunResult(
|
|
506
|
+
messages,
|
|
507
|
+
graph_ctx.deps.new_message_index,
|
|
508
|
+
stream,
|
|
509
|
+
on_complete,
|
|
510
|
+
)
|
|
511
|
+
break
|
|
512
|
+
elif self.is_call_tools_node(node) and event_stream_handler is not None:
|
|
513
|
+
async with node.stream(agent_run.ctx) as stream:
|
|
514
|
+
await event_stream_handler(_agent_graph.build_run_context(agent_run.ctx), stream)
|
|
515
|
+
|
|
516
|
+
next_node = await agent_run.next(node)
|
|
517
|
+
if not isinstance(next_node, _agent_graph.AgentNode):
|
|
518
|
+
raise exceptions.AgentRunError( # pragma: no cover
|
|
519
|
+
'Should have produced a StreamedRunResult before getting here'
|
|
520
|
+
)
|
|
521
|
+
node = cast(_agent_graph.AgentNode[Any, Any], next_node)
|
|
522
|
+
|
|
523
|
+
if not yielded:
|
|
524
|
+
raise exceptions.AgentRunError('Agent run finished without producing a final result') # pragma: no cover
|
|
525
|
+
|
|
526
|
+
@overload
|
|
527
|
+
def iter(
|
|
528
|
+
self,
|
|
529
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
530
|
+
*,
|
|
531
|
+
output_type: None = None,
|
|
532
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
533
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
534
|
+
deps: AgentDepsT = None,
|
|
535
|
+
model_settings: ModelSettings | None = None,
|
|
536
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
537
|
+
usage: _usage.Usage | None = None,
|
|
538
|
+
infer_name: bool = True,
|
|
539
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
540
|
+
) -> AbstractAsyncContextManager[AgentRun[AgentDepsT, OutputDataT]]: ...
|
|
541
|
+
|
|
542
|
+
@overload
|
|
543
|
+
def iter(
|
|
544
|
+
self,
|
|
545
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
546
|
+
*,
|
|
547
|
+
output_type: OutputSpec[RunOutputDataT],
|
|
548
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
549
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
550
|
+
deps: AgentDepsT = None,
|
|
551
|
+
model_settings: ModelSettings | None = None,
|
|
552
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
553
|
+
usage: _usage.Usage | None = None,
|
|
554
|
+
infer_name: bool = True,
|
|
555
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
556
|
+
) -> AbstractAsyncContextManager[AgentRun[AgentDepsT, RunOutputDataT]]: ...
|
|
557
|
+
|
|
558
|
+
@asynccontextmanager
|
|
559
|
+
@abstractmethod
|
|
560
|
+
async def iter(
|
|
561
|
+
self,
|
|
562
|
+
user_prompt: str | Sequence[_messages.UserContent] | None = None,
|
|
563
|
+
*,
|
|
564
|
+
output_type: OutputSpec[RunOutputDataT] | None = None,
|
|
565
|
+
message_history: list[_messages.ModelMessage] | None = None,
|
|
566
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
567
|
+
deps: AgentDepsT = None,
|
|
568
|
+
model_settings: ModelSettings | None = None,
|
|
569
|
+
usage_limits: _usage.UsageLimits | None = None,
|
|
570
|
+
usage: _usage.Usage | None = None,
|
|
571
|
+
infer_name: bool = True,
|
|
572
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
573
|
+
) -> AsyncIterator[AgentRun[AgentDepsT, Any]]:
|
|
574
|
+
"""A contextmanager which can be used to iterate over the agent graph's nodes as they are executed.
|
|
575
|
+
|
|
576
|
+
This method builds an internal agent graph (using system prompts, tools and output schemas) and then returns an
|
|
577
|
+
`AgentRun` object. The `AgentRun` can be used to async-iterate over the nodes of the graph as they are
|
|
578
|
+
executed. This is the API to use if you want to consume the outputs coming from each LLM model response, or the
|
|
579
|
+
stream of events coming from the execution of tools.
|
|
580
|
+
|
|
581
|
+
The `AgentRun` also provides methods to access the full message history, new messages, and usage statistics,
|
|
582
|
+
and the final result of the run once it has completed.
|
|
583
|
+
|
|
584
|
+
For more details, see the documentation of `AgentRun`.
|
|
585
|
+
|
|
586
|
+
Example:
|
|
587
|
+
```python
|
|
588
|
+
from pydantic_ai import Agent
|
|
589
|
+
|
|
590
|
+
agent = Agent('openai:gpt-4o')
|
|
591
|
+
|
|
592
|
+
async def main():
|
|
593
|
+
nodes = []
|
|
594
|
+
async with agent.iter('What is the capital of France?') as agent_run:
|
|
595
|
+
async for node in agent_run:
|
|
596
|
+
nodes.append(node)
|
|
597
|
+
print(nodes)
|
|
598
|
+
'''
|
|
599
|
+
[
|
|
600
|
+
UserPromptNode(
|
|
601
|
+
user_prompt='What is the capital of France?',
|
|
602
|
+
instructions=None,
|
|
603
|
+
instructions_functions=[],
|
|
604
|
+
system_prompts=(),
|
|
605
|
+
system_prompt_functions=[],
|
|
606
|
+
system_prompt_dynamic_functions={},
|
|
607
|
+
),
|
|
608
|
+
ModelRequestNode(
|
|
609
|
+
request=ModelRequest(
|
|
610
|
+
parts=[
|
|
611
|
+
UserPromptPart(
|
|
612
|
+
content='What is the capital of France?',
|
|
613
|
+
timestamp=datetime.datetime(...),
|
|
614
|
+
)
|
|
615
|
+
]
|
|
616
|
+
)
|
|
617
|
+
),
|
|
618
|
+
CallToolsNode(
|
|
619
|
+
model_response=ModelResponse(
|
|
620
|
+
parts=[TextPart(content='The capital of France is Paris.')],
|
|
621
|
+
usage=Usage(
|
|
622
|
+
requests=1, request_tokens=56, response_tokens=7, total_tokens=63
|
|
623
|
+
),
|
|
624
|
+
model_name='gpt-4o',
|
|
625
|
+
timestamp=datetime.datetime(...),
|
|
626
|
+
)
|
|
627
|
+
),
|
|
628
|
+
End(data=FinalResult(output='The capital of France is Paris.')),
|
|
629
|
+
]
|
|
630
|
+
'''
|
|
631
|
+
print(agent_run.result.output)
|
|
632
|
+
#> The capital of France is Paris.
|
|
633
|
+
```
|
|
634
|
+
|
|
635
|
+
Args:
|
|
636
|
+
user_prompt: User input to start/continue the conversation.
|
|
637
|
+
output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no
|
|
638
|
+
output validators since output validators would expect an argument that matches the agent's output type.
|
|
639
|
+
message_history: History of the conversation so far.
|
|
640
|
+
model: Optional model to use for this run, required if `model` was not set when creating the agent.
|
|
641
|
+
deps: Optional dependencies to use for this run.
|
|
642
|
+
model_settings: Optional settings to use for this model's request.
|
|
643
|
+
usage_limits: Optional limits on model request count or token usage.
|
|
644
|
+
usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.
|
|
645
|
+
infer_name: Whether to try to infer the agent name from the call frame if it's not set.
|
|
646
|
+
toolsets: Optional additional toolsets for this run.
|
|
647
|
+
|
|
648
|
+
Returns:
|
|
649
|
+
The result of the run.
|
|
650
|
+
"""
|
|
651
|
+
raise NotImplementedError
|
|
652
|
+
yield
|
|
653
|
+
|
|
654
|
+
@contextmanager
|
|
655
|
+
@abstractmethod
|
|
656
|
+
def override(
|
|
657
|
+
self,
|
|
658
|
+
*,
|
|
659
|
+
deps: AgentDepsT | _utils.Unset = _utils.UNSET,
|
|
660
|
+
model: models.Model | models.KnownModelName | str | _utils.Unset = _utils.UNSET,
|
|
661
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | _utils.Unset = _utils.UNSET,
|
|
662
|
+
tools: Sequence[Tool[AgentDepsT] | ToolFuncEither[AgentDepsT, ...]] | _utils.Unset = _utils.UNSET,
|
|
663
|
+
) -> Iterator[None]:
|
|
664
|
+
"""Context manager to temporarily override agent dependencies, model, toolsets, or tools.
|
|
665
|
+
|
|
666
|
+
This is particularly useful when testing.
|
|
667
|
+
You can find an example of this [here](../testing.md#overriding-model-via-pytest-fixtures).
|
|
668
|
+
|
|
669
|
+
Args:
|
|
670
|
+
deps: The dependencies to use instead of the dependencies passed to the agent run.
|
|
671
|
+
model: The model to use instead of the model passed to the agent run.
|
|
672
|
+
toolsets: The toolsets to use instead of the toolsets passed to the agent constructor and agent run.
|
|
673
|
+
tools: The tools to use instead of the tools registered with the agent.
|
|
674
|
+
"""
|
|
675
|
+
raise NotImplementedError
|
|
676
|
+
yield
|
|
677
|
+
|
|
678
|
+
def _infer_name(self, function_frame: FrameType | None) -> None:
|
|
679
|
+
"""Infer the agent name from the call frame.
|
|
680
|
+
|
|
681
|
+
Usage should be `self._infer_name(inspect.currentframe())`.
|
|
682
|
+
"""
|
|
683
|
+
assert self.name is None, 'Name already set'
|
|
684
|
+
if function_frame is not None: # pragma: no branch
|
|
685
|
+
if parent_frame := function_frame.f_back: # pragma: no branch
|
|
686
|
+
for name, item in parent_frame.f_locals.items():
|
|
687
|
+
if item is self:
|
|
688
|
+
self.name = name
|
|
689
|
+
return
|
|
690
|
+
if parent_frame.f_locals != parent_frame.f_globals: # pragma: no branch
|
|
691
|
+
# if we couldn't find the agent in locals and globals are a different dict, try globals
|
|
692
|
+
for name, item in parent_frame.f_globals.items():
|
|
693
|
+
if item is self:
|
|
694
|
+
self.name = name
|
|
695
|
+
return
|
|
696
|
+
|
|
697
|
+
@staticmethod
|
|
698
|
+
def is_model_request_node(
|
|
699
|
+
node: _agent_graph.AgentNode[T, S] | End[result.FinalResult[S]],
|
|
700
|
+
) -> TypeIs[_agent_graph.ModelRequestNode[T, S]]:
|
|
701
|
+
"""Check if the node is a `ModelRequestNode`, narrowing the type if it is.
|
|
702
|
+
|
|
703
|
+
This method preserves the generic parameters while narrowing the type, unlike a direct call to `isinstance`.
|
|
704
|
+
"""
|
|
705
|
+
return isinstance(node, _agent_graph.ModelRequestNode)
|
|
706
|
+
|
|
707
|
+
@staticmethod
|
|
708
|
+
def is_call_tools_node(
|
|
709
|
+
node: _agent_graph.AgentNode[T, S] | End[result.FinalResult[S]],
|
|
710
|
+
) -> TypeIs[_agent_graph.CallToolsNode[T, S]]:
|
|
711
|
+
"""Check if the node is a `CallToolsNode`, narrowing the type if it is.
|
|
712
|
+
|
|
713
|
+
This method preserves the generic parameters while narrowing the type, unlike a direct call to `isinstance`.
|
|
714
|
+
"""
|
|
715
|
+
return isinstance(node, _agent_graph.CallToolsNode)
|
|
716
|
+
|
|
717
|
+
@staticmethod
|
|
718
|
+
def is_user_prompt_node(
|
|
719
|
+
node: _agent_graph.AgentNode[T, S] | End[result.FinalResult[S]],
|
|
720
|
+
) -> TypeIs[_agent_graph.UserPromptNode[T, S]]:
|
|
721
|
+
"""Check if the node is a `UserPromptNode`, narrowing the type if it is.
|
|
722
|
+
|
|
723
|
+
This method preserves the generic parameters while narrowing the type, unlike a direct call to `isinstance`.
|
|
724
|
+
"""
|
|
725
|
+
return isinstance(node, _agent_graph.UserPromptNode)
|
|
726
|
+
|
|
727
|
+
@staticmethod
|
|
728
|
+
def is_end_node(
|
|
729
|
+
node: _agent_graph.AgentNode[T, S] | End[result.FinalResult[S]],
|
|
730
|
+
) -> TypeIs[End[result.FinalResult[S]]]:
|
|
731
|
+
"""Check if the node is a `End`, narrowing the type if it is.
|
|
732
|
+
|
|
733
|
+
This method preserves the generic parameters while narrowing the type, unlike a direct call to `isinstance`.
|
|
734
|
+
"""
|
|
735
|
+
return isinstance(node, End)
|
|
736
|
+
|
|
737
|
+
@abstractmethod
|
|
738
|
+
async def __aenter__(self) -> AbstractAgent[AgentDepsT, OutputDataT]:
|
|
739
|
+
raise NotImplementedError
|
|
740
|
+
|
|
741
|
+
@abstractmethod
|
|
742
|
+
async def __aexit__(self, *args: Any) -> bool | None:
|
|
743
|
+
raise NotImplementedError
|
|
744
|
+
|
|
745
|
+
def to_ag_ui(
|
|
746
|
+
self,
|
|
747
|
+
*,
|
|
748
|
+
# Agent.iter parameters
|
|
749
|
+
output_type: OutputSpec[OutputDataT] | None = None,
|
|
750
|
+
model: models.Model | models.KnownModelName | str | None = None,
|
|
751
|
+
deps: AgentDepsT = None,
|
|
752
|
+
model_settings: ModelSettings | None = None,
|
|
753
|
+
usage_limits: UsageLimits | None = None,
|
|
754
|
+
usage: Usage | None = None,
|
|
755
|
+
infer_name: bool = True,
|
|
756
|
+
toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None,
|
|
757
|
+
# Starlette
|
|
758
|
+
debug: bool = False,
|
|
759
|
+
routes: Sequence[BaseRoute] | None = None,
|
|
760
|
+
middleware: Sequence[Middleware] | None = None,
|
|
761
|
+
exception_handlers: Mapping[Any, ExceptionHandler] | None = None,
|
|
762
|
+
on_startup: Sequence[Callable[[], Any]] | None = None,
|
|
763
|
+
on_shutdown: Sequence[Callable[[], Any]] | None = None,
|
|
764
|
+
lifespan: Lifespan[AGUIApp[AgentDepsT, OutputDataT]] | None = None,
|
|
765
|
+
) -> AGUIApp[AgentDepsT, OutputDataT]:
|
|
766
|
+
"""Returns an ASGI application that handles every AG-UI request by running the agent.
|
|
767
|
+
|
|
768
|
+
Note that the `deps` will be the same for each request, with the exception of the AG-UI state that's
|
|
769
|
+
injected into the `state` field of a `deps` object that implements the [`StateHandler`][pydantic_ai.ag_ui.StateHandler] protocol.
|
|
770
|
+
To provide different `deps` for each request (e.g. based on the authenticated user),
|
|
771
|
+
use [`pydantic_ai.ag_ui.run_ag_ui`][pydantic_ai.ag_ui.run_ag_ui] or
|
|
772
|
+
[`pydantic_ai.ag_ui.handle_ag_ui_request`][pydantic_ai.ag_ui.handle_ag_ui_request] instead.
|
|
773
|
+
|
|
774
|
+
Example:
|
|
775
|
+
```python
|
|
776
|
+
from pydantic_ai import Agent
|
|
777
|
+
|
|
778
|
+
agent = Agent('openai:gpt-4o')
|
|
779
|
+
app = agent.to_ag_ui()
|
|
780
|
+
```
|
|
781
|
+
|
|
782
|
+
The `app` is an ASGI application that can be used with any ASGI server.
|
|
783
|
+
|
|
784
|
+
To run the application, you can use the following command:
|
|
785
|
+
|
|
786
|
+
```bash
|
|
787
|
+
uvicorn app:app --host 0.0.0.0 --port 8000
|
|
788
|
+
```
|
|
789
|
+
|
|
790
|
+
See [AG-UI docs](../ag-ui.md) for more information.
|
|
791
|
+
|
|
792
|
+
Args:
|
|
793
|
+
output_type: Custom output type to use for this run, `output_type` may only be used if the agent has
|
|
794
|
+
no output validators since output validators would expect an argument that matches the agent's
|
|
795
|
+
output type.
|
|
796
|
+
model: Optional model to use for this run, required if `model` was not set when creating the agent.
|
|
797
|
+
deps: Optional dependencies to use for this run.
|
|
798
|
+
model_settings: Optional settings to use for this model's request.
|
|
799
|
+
usage_limits: Optional limits on model request count or token usage.
|
|
800
|
+
usage: Optional usage to start with, useful for resuming a conversation or agents used in tools.
|
|
801
|
+
infer_name: Whether to try to infer the agent name from the call frame if it's not set.
|
|
802
|
+
toolsets: Optional additional toolsets for this run.
|
|
803
|
+
|
|
804
|
+
debug: Boolean indicating if debug tracebacks should be returned on errors.
|
|
805
|
+
routes: A list of routes to serve incoming HTTP and WebSocket requests.
|
|
806
|
+
middleware: A list of middleware to run for every request. A starlette application will always
|
|
807
|
+
automatically include two middleware classes. `ServerErrorMiddleware` is added as the very
|
|
808
|
+
outermost middleware, to handle any uncaught errors occurring anywhere in the entire stack.
|
|
809
|
+
`ExceptionMiddleware` is added as the very innermost middleware, to deal with handled
|
|
810
|
+
exception cases occurring in the routing or endpoints.
|
|
811
|
+
exception_handlers: A mapping of either integer status codes, or exception class types onto
|
|
812
|
+
callables which handle the exceptions. Exception handler callables should be of the form
|
|
813
|
+
`handler(request, exc) -> response` and may be either standard functions, or async functions.
|
|
814
|
+
on_startup: A list of callables to run on application startup. Startup handler callables do not
|
|
815
|
+
take any arguments, and may be either standard functions, or async functions.
|
|
816
|
+
on_shutdown: A list of callables to run on application shutdown. Shutdown handler callables do
|
|
817
|
+
not take any arguments, and may be either standard functions, or async functions.
|
|
818
|
+
lifespan: A lifespan context function, which can be used to perform startup and shutdown tasks.
|
|
819
|
+
This is a newer style that replaces the `on_startup` and `on_shutdown` handlers. Use one or
|
|
820
|
+
the other, not both.
|
|
821
|
+
|
|
822
|
+
Returns:
|
|
823
|
+
An ASGI application for running Pydantic AI agents with AG-UI protocol support.
|
|
824
|
+
"""
|
|
825
|
+
from ..ag_ui import AGUIApp
|
|
826
|
+
|
|
827
|
+
return AGUIApp(
|
|
828
|
+
agent=self,
|
|
829
|
+
# Agent.iter parameters
|
|
830
|
+
output_type=output_type,
|
|
831
|
+
model=model,
|
|
832
|
+
deps=deps,
|
|
833
|
+
model_settings=model_settings,
|
|
834
|
+
usage_limits=usage_limits,
|
|
835
|
+
usage=usage,
|
|
836
|
+
infer_name=infer_name,
|
|
837
|
+
toolsets=toolsets,
|
|
838
|
+
# Starlette
|
|
839
|
+
debug=debug,
|
|
840
|
+
routes=routes,
|
|
841
|
+
middleware=middleware,
|
|
842
|
+
exception_handlers=exception_handlers,
|
|
843
|
+
on_startup=on_startup,
|
|
844
|
+
on_shutdown=on_shutdown,
|
|
845
|
+
lifespan=lifespan,
|
|
846
|
+
)
|
|
847
|
+
|
|
848
|
+
def to_a2a(
|
|
849
|
+
self,
|
|
850
|
+
*,
|
|
851
|
+
storage: Storage | None = None,
|
|
852
|
+
broker: Broker | None = None,
|
|
853
|
+
# Agent card
|
|
854
|
+
name: str | None = None,
|
|
855
|
+
url: str = 'http://localhost:8000',
|
|
856
|
+
version: str = '1.0.0',
|
|
857
|
+
description: str | None = None,
|
|
858
|
+
provider: AgentProvider | None = None,
|
|
859
|
+
skills: list[Skill] | None = None,
|
|
860
|
+
# Starlette
|
|
861
|
+
debug: bool = False,
|
|
862
|
+
routes: Sequence[Route] | None = None,
|
|
863
|
+
middleware: Sequence[Middleware] | None = None,
|
|
864
|
+
exception_handlers: dict[Any, ExceptionHandler] | None = None,
|
|
865
|
+
lifespan: Lifespan[FastA2A] | None = None,
|
|
866
|
+
) -> FastA2A:
|
|
867
|
+
"""Convert the agent to a FastA2A application.
|
|
868
|
+
|
|
869
|
+
Example:
|
|
870
|
+
```python
|
|
871
|
+
from pydantic_ai import Agent
|
|
872
|
+
|
|
873
|
+
agent = Agent('openai:gpt-4o')
|
|
874
|
+
app = agent.to_a2a()
|
|
875
|
+
```
|
|
876
|
+
|
|
877
|
+
The `app` is an ASGI application that can be used with any ASGI server.
|
|
878
|
+
|
|
879
|
+
To run the application, you can use the following command:
|
|
880
|
+
|
|
881
|
+
```bash
|
|
882
|
+
uvicorn app:app --host 0.0.0.0 --port 8000
|
|
883
|
+
```
|
|
884
|
+
"""
|
|
885
|
+
from .._a2a import agent_to_a2a
|
|
886
|
+
|
|
887
|
+
return agent_to_a2a(
|
|
888
|
+
self,
|
|
889
|
+
storage=storage,
|
|
890
|
+
broker=broker,
|
|
891
|
+
name=name,
|
|
892
|
+
url=url,
|
|
893
|
+
version=version,
|
|
894
|
+
description=description,
|
|
895
|
+
provider=provider,
|
|
896
|
+
skills=skills,
|
|
897
|
+
debug=debug,
|
|
898
|
+
routes=routes,
|
|
899
|
+
middleware=middleware,
|
|
900
|
+
exception_handlers=exception_handlers,
|
|
901
|
+
lifespan=lifespan,
|
|
902
|
+
)
|
|
903
|
+
|
|
904
|
+
async def to_cli(self: Self, deps: AgentDepsT = None, prog_name: str = 'pydantic-ai') -> None:
|
|
905
|
+
"""Run the agent in a CLI chat interface.
|
|
906
|
+
|
|
907
|
+
Args:
|
|
908
|
+
deps: The dependencies to pass to the agent.
|
|
909
|
+
prog_name: The name of the program to use for the CLI. Defaults to 'pydantic-ai'.
|
|
910
|
+
|
|
911
|
+
Example:
|
|
912
|
+
```python {title="agent_to_cli.py" test="skip"}
|
|
913
|
+
from pydantic_ai import Agent
|
|
914
|
+
|
|
915
|
+
agent = Agent('openai:gpt-4o', instructions='You always respond in Italian.')
|
|
916
|
+
|
|
917
|
+
async def main():
|
|
918
|
+
await agent.to_cli()
|
|
919
|
+
```
|
|
920
|
+
"""
|
|
921
|
+
from rich.console import Console
|
|
922
|
+
|
|
923
|
+
from pydantic_ai._cli import run_chat
|
|
924
|
+
|
|
925
|
+
await run_chat(stream=True, agent=self, deps=deps, console=Console(), code_theme='monokai', prog_name=prog_name)
|
|
926
|
+
|
|
927
|
+
def to_cli_sync(self: Self, deps: AgentDepsT = None, prog_name: str = 'pydantic-ai') -> None:
|
|
928
|
+
"""Run the agent in a CLI chat interface with the non-async interface.
|
|
929
|
+
|
|
930
|
+
Args:
|
|
931
|
+
deps: The dependencies to pass to the agent.
|
|
932
|
+
prog_name: The name of the program to use for the CLI. Defaults to 'pydantic-ai'.
|
|
933
|
+
|
|
934
|
+
```python {title="agent_to_cli_sync.py" test="skip"}
|
|
935
|
+
from pydantic_ai import Agent
|
|
936
|
+
|
|
937
|
+
agent = Agent('openai:gpt-4o', instructions='You always respond in Italian.')
|
|
938
|
+
agent.to_cli_sync()
|
|
939
|
+
agent.to_cli_sync(prog_name='assistant')
|
|
940
|
+
```
|
|
941
|
+
"""
|
|
942
|
+
return get_event_loop().run_until_complete(self.to_cli(deps=deps, prog_name=prog_name))
|