pydantic-ai-slim 0.0.6a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pydantic-ai-slim might be problematic. Click here for more details.
- pydantic_ai/__init__.py +8 -0
- pydantic_ai/_griffe.py +128 -0
- pydantic_ai/_pydantic.py +216 -0
- pydantic_ai/_result.py +258 -0
- pydantic_ai/_retriever.py +114 -0
- pydantic_ai/_system_prompt.py +33 -0
- pydantic_ai/_utils.py +247 -0
- pydantic_ai/agent.py +795 -0
- pydantic_ai/dependencies.py +83 -0
- pydantic_ai/exceptions.py +56 -0
- pydantic_ai/messages.py +205 -0
- pydantic_ai/models/__init__.py +300 -0
- pydantic_ai/models/function.py +268 -0
- pydantic_ai/models/gemini.py +720 -0
- pydantic_ai/models/groq.py +400 -0
- pydantic_ai/models/openai.py +379 -0
- pydantic_ai/models/test.py +389 -0
- pydantic_ai/models/vertexai.py +306 -0
- pydantic_ai/py.typed +0 -0
- pydantic_ai/result.py +314 -0
- pydantic_ai_slim-0.0.6a1.dist-info/METADATA +49 -0
- pydantic_ai_slim-0.0.6a1.dist-info/RECORD +23 -0
- pydantic_ai_slim-0.0.6a1.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
from __future__ import annotations as _annotations
|
|
2
|
+
|
|
3
|
+
from collections.abc import AsyncIterator, Iterable, Mapping, Sequence
|
|
4
|
+
from contextlib import asynccontextmanager
|
|
5
|
+
from dataclasses import dataclass, field
|
|
6
|
+
from datetime import datetime, timezone
|
|
7
|
+
from typing import Literal, overload
|
|
8
|
+
|
|
9
|
+
from httpx import AsyncClient as AsyncHTTPClient
|
|
10
|
+
from typing_extensions import assert_never
|
|
11
|
+
|
|
12
|
+
from .. import UnexpectedModelBehavior, _utils, result
|
|
13
|
+
from ..messages import (
|
|
14
|
+
ArgsJson,
|
|
15
|
+
Message,
|
|
16
|
+
ModelAnyResponse,
|
|
17
|
+
ModelStructuredResponse,
|
|
18
|
+
ModelTextResponse,
|
|
19
|
+
RetryPrompt,
|
|
20
|
+
ToolCall,
|
|
21
|
+
ToolReturn,
|
|
22
|
+
)
|
|
23
|
+
from ..result import Cost
|
|
24
|
+
from . import (
|
|
25
|
+
AbstractToolDefinition,
|
|
26
|
+
AgentModel,
|
|
27
|
+
EitherStreamedResponse,
|
|
28
|
+
Model,
|
|
29
|
+
StreamStructuredResponse,
|
|
30
|
+
StreamTextResponse,
|
|
31
|
+
cached_async_http_client,
|
|
32
|
+
check_allow_model_requests,
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
try:
|
|
36
|
+
from groq import NOT_GIVEN, AsyncGroq, AsyncStream
|
|
37
|
+
from groq.types import chat
|
|
38
|
+
from groq.types.chat import ChatCompletion, ChatCompletionChunk
|
|
39
|
+
from groq.types.chat.chat_completion_chunk import ChoiceDeltaToolCall
|
|
40
|
+
except ImportError as e:
|
|
41
|
+
raise ImportError(
|
|
42
|
+
'Please install `groq` to use the Groq model, '
|
|
43
|
+
"you can use the `groq` optional group — `pip install 'pydantic-ai[groq]'`"
|
|
44
|
+
) from e
|
|
45
|
+
|
|
46
|
+
GroqModelName = Literal[
|
|
47
|
+
'llama-3.1-70b-versatile',
|
|
48
|
+
'llama3-groq-70b-8192-tool-use-preview',
|
|
49
|
+
'llama3-groq-8b-8192-tool-use-preview',
|
|
50
|
+
'llama-3.1-70b-specdec',
|
|
51
|
+
'llama-3.1-8b-instant',
|
|
52
|
+
'llama-3.2-1b-preview',
|
|
53
|
+
'llama-3.2-3b-preview',
|
|
54
|
+
'llama-3.2-11b-vision-preview',
|
|
55
|
+
'llama-3.2-90b-vision-preview',
|
|
56
|
+
'llama3-70b-8192',
|
|
57
|
+
'llama3-8b-8192',
|
|
58
|
+
'mixtral-8x7b-32768',
|
|
59
|
+
'gemma2-9b-it',
|
|
60
|
+
'gemma-7b-it',
|
|
61
|
+
]
|
|
62
|
+
"""Named Groq models.
|
|
63
|
+
|
|
64
|
+
See [the Groq docs](https://console.groq.com/docs/models) for a full list.
|
|
65
|
+
"""
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
@dataclass(init=False)
|
|
69
|
+
class GroqModel(Model):
|
|
70
|
+
"""A model that uses the Groq API.
|
|
71
|
+
|
|
72
|
+
Internally, this uses the [Groq Python client](https://github.com/groq/groq-python) to interact with the API.
|
|
73
|
+
|
|
74
|
+
Apart from `__init__`, all methods are private or match those of the base class.
|
|
75
|
+
"""
|
|
76
|
+
|
|
77
|
+
model_name: GroqModelName
|
|
78
|
+
client: AsyncGroq = field(repr=False)
|
|
79
|
+
|
|
80
|
+
def __init__(
|
|
81
|
+
self,
|
|
82
|
+
model_name: GroqModelName,
|
|
83
|
+
*,
|
|
84
|
+
api_key: str | None = None,
|
|
85
|
+
groq_client: AsyncGroq | None = None,
|
|
86
|
+
http_client: AsyncHTTPClient | None = None,
|
|
87
|
+
):
|
|
88
|
+
"""Initialize a Groq model.
|
|
89
|
+
|
|
90
|
+
Args:
|
|
91
|
+
model_name: The name of the Groq model to use. List of model names available
|
|
92
|
+
[here](https://console.groq.com/docs/models).
|
|
93
|
+
api_key: The API key to use for authentication, if not provided, the `GROQ_API_KEY` environment variable
|
|
94
|
+
will be used if available.
|
|
95
|
+
groq_client: An existing
|
|
96
|
+
[`AsyncGroq`](https://github.com/groq/groq-python?tab=readme-ov-file#async-usage)
|
|
97
|
+
client to use, if provided, `api_key` and `http_client` must be `None`.
|
|
98
|
+
http_client: An existing `httpx.AsyncClient` to use for making HTTP requests.
|
|
99
|
+
"""
|
|
100
|
+
self.model_name = model_name
|
|
101
|
+
if groq_client is not None:
|
|
102
|
+
assert http_client is None, 'Cannot provide both `groq_client` and `http_client`'
|
|
103
|
+
assert api_key is None, 'Cannot provide both `groq_client` and `api_key`'
|
|
104
|
+
self.client = groq_client
|
|
105
|
+
elif http_client is not None:
|
|
106
|
+
self.client = AsyncGroq(api_key=api_key, http_client=http_client)
|
|
107
|
+
else:
|
|
108
|
+
self.client = AsyncGroq(api_key=api_key, http_client=cached_async_http_client())
|
|
109
|
+
|
|
110
|
+
async def agent_model(
|
|
111
|
+
self,
|
|
112
|
+
retrievers: Mapping[str, AbstractToolDefinition],
|
|
113
|
+
allow_text_result: bool,
|
|
114
|
+
result_tools: Sequence[AbstractToolDefinition] | None,
|
|
115
|
+
) -> AgentModel:
|
|
116
|
+
check_allow_model_requests()
|
|
117
|
+
tools = [self._map_tool_definition(r) for r in retrievers.values()]
|
|
118
|
+
if result_tools is not None:
|
|
119
|
+
tools += [self._map_tool_definition(r) for r in result_tools]
|
|
120
|
+
return GroqAgentModel(
|
|
121
|
+
self.client,
|
|
122
|
+
self.model_name,
|
|
123
|
+
allow_text_result,
|
|
124
|
+
tools,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
def name(self) -> str:
|
|
128
|
+
return f'groq:{self.model_name}'
|
|
129
|
+
|
|
130
|
+
@staticmethod
|
|
131
|
+
def _map_tool_definition(f: AbstractToolDefinition) -> chat.ChatCompletionToolParam:
|
|
132
|
+
return {
|
|
133
|
+
'type': 'function',
|
|
134
|
+
'function': {
|
|
135
|
+
'name': f.name,
|
|
136
|
+
'description': f.description,
|
|
137
|
+
'parameters': f.json_schema,
|
|
138
|
+
},
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
@dataclass
|
|
143
|
+
class GroqAgentModel(AgentModel):
|
|
144
|
+
"""Implementation of `AgentModel` for Groq models."""
|
|
145
|
+
|
|
146
|
+
client: AsyncGroq
|
|
147
|
+
model_name: str
|
|
148
|
+
allow_text_result: bool
|
|
149
|
+
tools: list[chat.ChatCompletionToolParam]
|
|
150
|
+
|
|
151
|
+
async def request(self, messages: list[Message]) -> tuple[ModelAnyResponse, result.Cost]:
|
|
152
|
+
response = await self._completions_create(messages, False)
|
|
153
|
+
return self._process_response(response), _map_cost(response)
|
|
154
|
+
|
|
155
|
+
@asynccontextmanager
|
|
156
|
+
async def request_stream(self, messages: list[Message]) -> AsyncIterator[EitherStreamedResponse]:
|
|
157
|
+
response = await self._completions_create(messages, True)
|
|
158
|
+
async with response:
|
|
159
|
+
yield await self._process_streamed_response(response)
|
|
160
|
+
|
|
161
|
+
@overload
|
|
162
|
+
async def _completions_create(
|
|
163
|
+
self, messages: list[Message], stream: Literal[True]
|
|
164
|
+
) -> AsyncStream[ChatCompletionChunk]:
|
|
165
|
+
pass
|
|
166
|
+
|
|
167
|
+
@overload
|
|
168
|
+
async def _completions_create(self, messages: list[Message], stream: Literal[False]) -> chat.ChatCompletion:
|
|
169
|
+
pass
|
|
170
|
+
|
|
171
|
+
async def _completions_create(
|
|
172
|
+
self, messages: list[Message], stream: bool
|
|
173
|
+
) -> chat.ChatCompletion | AsyncStream[ChatCompletionChunk]:
|
|
174
|
+
# standalone function to make it easier to override
|
|
175
|
+
if not self.tools:
|
|
176
|
+
tool_choice: Literal['none', 'required', 'auto'] | None = None
|
|
177
|
+
elif not self.allow_text_result:
|
|
178
|
+
tool_choice = 'required'
|
|
179
|
+
else:
|
|
180
|
+
tool_choice = 'auto'
|
|
181
|
+
|
|
182
|
+
groq_messages = [self._map_message(m) for m in messages]
|
|
183
|
+
return await self.client.chat.completions.create(
|
|
184
|
+
model=str(self.model_name),
|
|
185
|
+
messages=groq_messages,
|
|
186
|
+
temperature=0.0,
|
|
187
|
+
n=1,
|
|
188
|
+
parallel_tool_calls=True if self.tools else NOT_GIVEN,
|
|
189
|
+
tools=self.tools or NOT_GIVEN,
|
|
190
|
+
tool_choice=tool_choice or NOT_GIVEN,
|
|
191
|
+
stream=stream,
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
@staticmethod
|
|
195
|
+
def _process_response(response: chat.ChatCompletion) -> ModelAnyResponse:
|
|
196
|
+
"""Process a non-streamed response, and prepare a message to return."""
|
|
197
|
+
timestamp = datetime.fromtimestamp(response.created, tz=timezone.utc)
|
|
198
|
+
choice = response.choices[0]
|
|
199
|
+
if choice.message.tool_calls is not None:
|
|
200
|
+
return ModelStructuredResponse(
|
|
201
|
+
[ToolCall.from_json(c.function.name, c.function.arguments, c.id) for c in choice.message.tool_calls],
|
|
202
|
+
timestamp=timestamp,
|
|
203
|
+
)
|
|
204
|
+
else:
|
|
205
|
+
assert choice.message.content is not None, choice
|
|
206
|
+
return ModelTextResponse(choice.message.content, timestamp=timestamp)
|
|
207
|
+
|
|
208
|
+
@staticmethod
|
|
209
|
+
async def _process_streamed_response(response: AsyncStream[ChatCompletionChunk]) -> EitherStreamedResponse:
|
|
210
|
+
"""Process a streamed response, and prepare a streaming response to return."""
|
|
211
|
+
try:
|
|
212
|
+
first_chunk = await response.__anext__()
|
|
213
|
+
except StopAsyncIteration as e: # pragma: no cover
|
|
214
|
+
raise UnexpectedModelBehavior('Streamed response ended without content or tool calls') from e
|
|
215
|
+
timestamp = datetime.fromtimestamp(first_chunk.created, tz=timezone.utc)
|
|
216
|
+
delta = first_chunk.choices[0].delta
|
|
217
|
+
start_cost = _map_cost(first_chunk)
|
|
218
|
+
|
|
219
|
+
# the first chunk may only contain `role`, so we iterate until we get either `tool_calls` or `content`
|
|
220
|
+
while delta.tool_calls is None and delta.content is None:
|
|
221
|
+
try:
|
|
222
|
+
next_chunk = await response.__anext__()
|
|
223
|
+
except StopAsyncIteration as e:
|
|
224
|
+
raise UnexpectedModelBehavior('Streamed response ended without content or tool calls') from e
|
|
225
|
+
delta = next_chunk.choices[0].delta
|
|
226
|
+
start_cost += _map_cost(next_chunk)
|
|
227
|
+
|
|
228
|
+
if delta.content is not None:
|
|
229
|
+
return GroqStreamTextResponse(delta.content, response, timestamp, start_cost)
|
|
230
|
+
else:
|
|
231
|
+
assert delta.tool_calls is not None, f'Expected delta with tool_calls, got {delta}'
|
|
232
|
+
return GroqStreamStructuredResponse(
|
|
233
|
+
response,
|
|
234
|
+
{c.index: c for c in delta.tool_calls},
|
|
235
|
+
timestamp,
|
|
236
|
+
start_cost,
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
@staticmethod
|
|
240
|
+
def _map_message(message: Message) -> chat.ChatCompletionMessageParam:
|
|
241
|
+
"""Just maps a `pydantic_ai.Message` to a `groq.types.ChatCompletionMessageParam`."""
|
|
242
|
+
if message.role == 'system':
|
|
243
|
+
# SystemPrompt ->
|
|
244
|
+
return chat.ChatCompletionSystemMessageParam(role='system', content=message.content)
|
|
245
|
+
elif message.role == 'user':
|
|
246
|
+
# UserPrompt ->
|
|
247
|
+
return chat.ChatCompletionUserMessageParam(role='user', content=message.content)
|
|
248
|
+
elif message.role == 'tool-return':
|
|
249
|
+
# ToolReturn ->
|
|
250
|
+
return chat.ChatCompletionToolMessageParam(
|
|
251
|
+
role='tool',
|
|
252
|
+
tool_call_id=_guard_tool_id(message),
|
|
253
|
+
content=message.model_response_str(),
|
|
254
|
+
)
|
|
255
|
+
elif message.role == 'retry-prompt':
|
|
256
|
+
# RetryPrompt ->
|
|
257
|
+
if message.tool_name is None:
|
|
258
|
+
return chat.ChatCompletionUserMessageParam(role='user', content=message.model_response())
|
|
259
|
+
else:
|
|
260
|
+
return chat.ChatCompletionToolMessageParam(
|
|
261
|
+
role='tool',
|
|
262
|
+
tool_call_id=_guard_tool_id(message),
|
|
263
|
+
content=message.model_response(),
|
|
264
|
+
)
|
|
265
|
+
elif message.role == 'model-text-response':
|
|
266
|
+
# ModelTextResponse ->
|
|
267
|
+
return chat.ChatCompletionAssistantMessageParam(role='assistant', content=message.content)
|
|
268
|
+
elif message.role == 'model-structured-response':
|
|
269
|
+
assert (
|
|
270
|
+
message.role == 'model-structured-response'
|
|
271
|
+
), f'Expected role to be "llm-tool-calls", got {message.role}'
|
|
272
|
+
# ModelStructuredResponse ->
|
|
273
|
+
return chat.ChatCompletionAssistantMessageParam(
|
|
274
|
+
role='assistant',
|
|
275
|
+
tool_calls=[_map_tool_call(t) for t in message.calls],
|
|
276
|
+
)
|
|
277
|
+
else:
|
|
278
|
+
assert_never(message)
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
@dataclass
|
|
282
|
+
class GroqStreamTextResponse(StreamTextResponse):
|
|
283
|
+
"""Implementation of `StreamTextResponse` for Groq models."""
|
|
284
|
+
|
|
285
|
+
_first: str | None
|
|
286
|
+
_response: AsyncStream[ChatCompletionChunk]
|
|
287
|
+
_timestamp: datetime
|
|
288
|
+
_cost: result.Cost
|
|
289
|
+
_buffer: list[str] = field(default_factory=list, init=False)
|
|
290
|
+
|
|
291
|
+
async def __anext__(self) -> None:
|
|
292
|
+
if self._first is not None:
|
|
293
|
+
self._buffer.append(self._first)
|
|
294
|
+
self._first = None
|
|
295
|
+
return None
|
|
296
|
+
|
|
297
|
+
chunk = await self._response.__anext__()
|
|
298
|
+
self._cost = _map_cost(chunk)
|
|
299
|
+
|
|
300
|
+
try:
|
|
301
|
+
choice = chunk.choices[0]
|
|
302
|
+
except IndexError:
|
|
303
|
+
raise StopAsyncIteration()
|
|
304
|
+
|
|
305
|
+
# we don't raise StopAsyncIteration on the last chunk because usage comes after this
|
|
306
|
+
if choice.finish_reason is None:
|
|
307
|
+
assert choice.delta.content is not None, f'Expected delta with content, invalid chunk: {chunk!r}'
|
|
308
|
+
if choice.delta.content is not None:
|
|
309
|
+
self._buffer.append(choice.delta.content)
|
|
310
|
+
|
|
311
|
+
def get(self, *, final: bool = False) -> Iterable[str]:
|
|
312
|
+
yield from self._buffer
|
|
313
|
+
self._buffer.clear()
|
|
314
|
+
|
|
315
|
+
def cost(self) -> Cost:
|
|
316
|
+
return self._cost
|
|
317
|
+
|
|
318
|
+
def timestamp(self) -> datetime:
|
|
319
|
+
return self._timestamp
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
@dataclass
|
|
323
|
+
class GroqStreamStructuredResponse(StreamStructuredResponse):
|
|
324
|
+
"""Implementation of `StreamStructuredResponse` for Groq models."""
|
|
325
|
+
|
|
326
|
+
_response: AsyncStream[ChatCompletionChunk]
|
|
327
|
+
_delta_tool_calls: dict[int, ChoiceDeltaToolCall]
|
|
328
|
+
_timestamp: datetime
|
|
329
|
+
_cost: result.Cost
|
|
330
|
+
|
|
331
|
+
async def __anext__(self) -> None:
|
|
332
|
+
chunk = await self._response.__anext__()
|
|
333
|
+
self._cost = _map_cost(chunk)
|
|
334
|
+
|
|
335
|
+
try:
|
|
336
|
+
choice = chunk.choices[0]
|
|
337
|
+
except IndexError:
|
|
338
|
+
raise StopAsyncIteration()
|
|
339
|
+
|
|
340
|
+
if choice.finish_reason is not None:
|
|
341
|
+
raise StopAsyncIteration()
|
|
342
|
+
|
|
343
|
+
assert choice.delta.content is None, f'Expected tool calls, got content instead, invalid chunk: {chunk!r}'
|
|
344
|
+
|
|
345
|
+
for new in choice.delta.tool_calls or []:
|
|
346
|
+
if current := self._delta_tool_calls.get(new.index):
|
|
347
|
+
if current.function is None:
|
|
348
|
+
current.function = new.function
|
|
349
|
+
elif new.function is not None:
|
|
350
|
+
current.function.name = _utils.add_optional(current.function.name, new.function.name)
|
|
351
|
+
current.function.arguments = _utils.add_optional(current.function.arguments, new.function.arguments)
|
|
352
|
+
else:
|
|
353
|
+
self._delta_tool_calls[new.index] = new
|
|
354
|
+
|
|
355
|
+
def get(self, *, final: bool = False) -> ModelStructuredResponse:
|
|
356
|
+
calls: list[ToolCall] = []
|
|
357
|
+
for c in self._delta_tool_calls.values():
|
|
358
|
+
if f := c.function:
|
|
359
|
+
if f.name is not None and f.arguments is not None:
|
|
360
|
+
calls.append(ToolCall.from_json(f.name, f.arguments, c.id))
|
|
361
|
+
|
|
362
|
+
return ModelStructuredResponse(calls, timestamp=self._timestamp)
|
|
363
|
+
|
|
364
|
+
def cost(self) -> Cost:
|
|
365
|
+
return self._cost
|
|
366
|
+
|
|
367
|
+
def timestamp(self) -> datetime:
|
|
368
|
+
return self._timestamp
|
|
369
|
+
|
|
370
|
+
|
|
371
|
+
def _guard_tool_id(t: ToolCall | ToolReturn | RetryPrompt) -> str:
|
|
372
|
+
"""Type guard that checks a `tool_id` is not None both for static typing and runtime."""
|
|
373
|
+
assert t.tool_id is not None, f'Groq requires `tool_id` to be set: {t}'
|
|
374
|
+
return t.tool_id
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
def _map_tool_call(t: ToolCall) -> chat.ChatCompletionMessageToolCallParam:
|
|
378
|
+
assert isinstance(t.args, ArgsJson), f'Expected ArgsJson, got {t.args}'
|
|
379
|
+
return chat.ChatCompletionMessageToolCallParam(
|
|
380
|
+
id=_guard_tool_id(t),
|
|
381
|
+
type='function',
|
|
382
|
+
function={'name': t.tool_name, 'arguments': t.args.args_json},
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
def _map_cost(completion: ChatCompletionChunk | ChatCompletion) -> result.Cost:
|
|
387
|
+
usage = None
|
|
388
|
+
if isinstance(completion, ChatCompletion):
|
|
389
|
+
usage = completion.usage
|
|
390
|
+
elif completion.x_groq is not None:
|
|
391
|
+
usage = completion.x_groq.usage
|
|
392
|
+
|
|
393
|
+
if usage is None:
|
|
394
|
+
return result.Cost()
|
|
395
|
+
|
|
396
|
+
return result.Cost(
|
|
397
|
+
request_tokens=usage.prompt_tokens,
|
|
398
|
+
response_tokens=usage.completion_tokens,
|
|
399
|
+
total_tokens=usage.total_tokens,
|
|
400
|
+
)
|