pydantic-ai-examples 1.0.11__py3-none-any.whl → 1.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,9 +6,9 @@ from datetime import datetime
6
6
  from zoneinfo import ZoneInfo
7
7
 
8
8
  from pydantic_ai import Agent
9
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
9
10
 
10
- agent = Agent('openai:gpt-4o-mini')
11
- app = agent.to_ag_ui()
11
+ agent = Agent('openai:gpt-5-mini')
12
12
 
13
13
 
14
14
  @agent.tool_plain
@@ -23,3 +23,6 @@ async def current_time(timezone: str = 'UTC') -> str:
23
23
  """
24
24
  tz: ZoneInfo = ZoneInfo(timezone)
25
25
  return datetime.now(tz=tz).isoformat()
26
+
27
+
28
+ app = AGUIApp(agent)
@@ -9,6 +9,7 @@ from pydantic import BaseModel, Field
9
9
 
10
10
  from ag_ui.core import EventType, StateDeltaEvent, StateSnapshotEvent
11
11
  from pydantic_ai import Agent
12
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
12
13
 
13
14
  StepStatus = Literal['pending', 'completed']
14
15
 
@@ -48,7 +49,7 @@ class JSONPatchOp(BaseModel):
48
49
 
49
50
 
50
51
  agent = Agent(
51
- 'openai:gpt-4o-mini',
52
+ 'openai:gpt-5-mini',
52
53
  instructions=dedent(
53
54
  """
54
55
  When planning use tools only, without any other messages.
@@ -116,4 +117,4 @@ async def update_plan_step(
116
117
  )
117
118
 
118
119
 
119
- app = agent.to_ag_ui()
120
+ app = AGUIApp(agent)
@@ -8,9 +8,10 @@ from __future__ import annotations
8
8
  from textwrap import dedent
9
9
 
10
10
  from pydantic_ai import Agent
11
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
11
12
 
12
13
  agent = Agent(
13
- 'openai:gpt-4o-mini',
14
+ 'openai:gpt-5-mini',
14
15
  instructions=dedent(
15
16
  """
16
17
  When planning tasks use tools only, without any other messages.
@@ -23,4 +24,4 @@ agent = Agent(
23
24
  ),
24
25
  )
25
26
 
26
- app = agent.to_ag_ui()
27
+ app = AGUIApp(agent)
@@ -8,7 +8,8 @@ from pydantic import BaseModel
8
8
 
9
9
  from ag_ui.core import CustomEvent, EventType
10
10
  from pydantic_ai import Agent, RunContext
11
- from pydantic_ai.ag_ui import StateDeps
11
+ from pydantic_ai.ui import StateDeps
12
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
12
13
 
13
14
 
14
15
  class DocumentState(BaseModel):
@@ -17,7 +18,7 @@ class DocumentState(BaseModel):
17
18
  document: str = ''
18
19
 
19
20
 
20
- agent = Agent('openai:gpt-4o-mini', deps_type=StateDeps[DocumentState])
21
+ agent = Agent('openai:gpt-5-mini', deps_type=StateDeps[DocumentState])
21
22
 
22
23
 
23
24
  # Tools which return AG-UI events will be sent to the client as part of the
@@ -74,4 +75,4 @@ async def story_instructions(ctx: RunContext[StateDeps[DocumentState]]) -> str:
74
75
  )
75
76
 
76
77
 
77
- app = agent.to_ag_ui(deps=StateDeps(DocumentState()))
78
+ app = AGUIApp(agent, deps=StateDeps(DocumentState()))
@@ -2,17 +2,18 @@
2
2
 
3
3
  from __future__ import annotations
4
4
 
5
- from enum import StrEnum
5
+ from enum import Enum
6
6
  from textwrap import dedent
7
7
 
8
8
  from pydantic import BaseModel, Field
9
9
 
10
10
  from ag_ui.core import EventType, StateSnapshotEvent
11
11
  from pydantic_ai import Agent, RunContext
12
- from pydantic_ai.ag_ui import StateDeps
12
+ from pydantic_ai.ui import StateDeps
13
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
13
14
 
14
15
 
15
- class SkillLevel(StrEnum):
16
+ class SkillLevel(str, Enum):
16
17
  """The level of skill required for the recipe."""
17
18
 
18
19
  BEGINNER = 'Beginner'
@@ -20,7 +21,7 @@ class SkillLevel(StrEnum):
20
21
  ADVANCED = 'Advanced'
21
22
 
22
23
 
23
- class SpecialPreferences(StrEnum):
24
+ class SpecialPreferences(str, Enum):
24
25
  """Special preferences for the recipe."""
25
26
 
26
27
  HIGH_PROTEIN = 'High Protein'
@@ -32,7 +33,7 @@ class SpecialPreferences(StrEnum):
32
33
  VEGAN = 'Vegan'
33
34
 
34
35
 
35
- class CookingTime(StrEnum):
36
+ class CookingTime(str, Enum):
36
37
  """The cooking time of the recipe."""
37
38
 
38
39
  FIVE_MIN = '5 min'
@@ -84,7 +85,7 @@ class RecipeSnapshot(BaseModel):
84
85
  )
85
86
 
86
87
 
87
- agent = Agent('openai:gpt-4o-mini', deps_type=StateDeps[RecipeSnapshot])
88
+ agent = Agent('openai:gpt-5-mini', deps_type=StateDeps[RecipeSnapshot])
88
89
 
89
90
 
90
91
  @agent.tool_plain
@@ -135,4 +136,4 @@ async def recipe_instructions(ctx: RunContext[StateDeps[RecipeSnapshot]]) -> str
135
136
  )
136
137
 
137
138
 
138
- app = agent.to_ag_ui(deps=StateDeps(RecipeSnapshot()))
139
+ app = AGUIApp(agent, deps=StateDeps(RecipeSnapshot()))
@@ -6,6 +6,7 @@ No special handling is required for this feature.
6
6
  from __future__ import annotations
7
7
 
8
8
  from pydantic_ai import Agent
9
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
9
10
 
10
- agent = Agent('openai:gpt-4o-mini')
11
- app = agent.to_ag_ui()
11
+ agent = Agent('openai:gpt-5-mini')
12
+ app = AGUIApp(agent)
@@ -51,7 +51,7 @@ class SupportOutput(BaseModel):
51
51
 
52
52
 
53
53
  support_agent = Agent(
54
- 'openai:gpt-4o',
54
+ 'openai:gpt-5',
55
55
  deps_type=SupportDependencies,
56
56
  output_type=SupportOutput,
57
57
  instructions=(
@@ -25,13 +25,14 @@ from fastapi import Depends, Request
25
25
  from fastapi.responses import FileResponse, Response, StreamingResponse
26
26
  from typing_extensions import LiteralString, ParamSpec, TypedDict
27
27
 
28
- from pydantic_ai import Agent, UnexpectedModelBehavior
29
- from pydantic_ai.messages import (
28
+ from pydantic_ai import (
29
+ Agent,
30
30
  ModelMessage,
31
31
  ModelMessagesTypeAdapter,
32
32
  ModelRequest,
33
33
  ModelResponse,
34
34
  TextPart,
35
+ UnexpectedModelBehavior,
35
36
  UserPromptPart,
36
37
  )
37
38
 
@@ -39,7 +40,7 @@ from pydantic_ai.messages import (
39
40
  logfire.configure(send_to_logfire='if-token-present')
40
41
  logfire.instrument_pydantic_ai()
41
42
 
42
- agent = Agent('openai:gpt-4o')
43
+ agent = Agent('openai:gpt-5')
43
44
  THIS_DIR = Path(__file__).parent
44
45
 
45
46
 
@@ -26,7 +26,7 @@ class AnalystAgentDeps:
26
26
 
27
27
 
28
28
  analyst_agent = Agent(
29
- 'openai:gpt-4o',
29
+ 'openai:gpt-5',
30
30
  deps_type=AnalystAgentDeps,
31
31
  instructions='You are a data analyst and your job is to analyze the data according to the user request.',
32
32
  )
@@ -21,7 +21,7 @@ class TimeRangeDeps:
21
21
 
22
22
 
23
23
  time_range_agent = Agent[TimeRangeDeps, TimeRangeResponse](
24
- 'gpt-4o',
24
+ 'gpt-5',
25
25
  output_type=TimeRangeResponse, # type: ignore # we can't yet annotate something as receiving a TypeForm
26
26
  deps_type=TimeRangeDeps,
27
27
  system_prompt="Convert the user's request into a structured time range.",
@@ -28,8 +28,8 @@ def compare_models():
28
28
  dataset_path, custom_evaluator_types=CUSTOM_EVALUATOR_TYPES
29
29
  )
30
30
  with logfire.span('Comparing different models for time_range_agent'):
31
- with time_range_agent.override(model='openai:gpt-4o'):
32
- dataset.evaluate_sync(infer_time_range, name='openai:gpt-4o')
31
+ with time_range_agent.override(model='openai:gpt-5'):
32
+ dataset.evaluate_sync(infer_time_range, name='openai:gpt-5')
33
33
  with time_range_agent.override(model='openai:o1'):
34
34
  dataset.evaluate_sync(infer_time_range, name='openai:o1')
35
35
 
@@ -11,8 +11,14 @@ import logfire
11
11
  from pydantic import BaseModel, Field
12
12
  from rich.prompt import Prompt
13
13
 
14
- from pydantic_ai import Agent, ModelRetry, RunContext, RunUsage, UsageLimits
15
- from pydantic_ai.messages import ModelMessage
14
+ from pydantic_ai import (
15
+ Agent,
16
+ ModelMessage,
17
+ ModelRetry,
18
+ RunContext,
19
+ RunUsage,
20
+ UsageLimits,
21
+ )
16
22
 
17
23
  # 'if-token-present' means nothing will be sent (and the example will work) if you don't have logfire configured
18
24
  logfire.configure(send_to_logfire='if-token-present')
@@ -43,7 +49,7 @@ class Deps:
43
49
 
44
50
  # This agent is responsible for controlling the flow of the conversation.
45
51
  search_agent = Agent[Deps, FlightDetails | NoFlightFound](
46
- 'openai:gpt-4o',
52
+ 'openai:gpt-5',
47
53
  output_type=FlightDetails | NoFlightFound, # type: ignore
48
54
  retries=4,
49
55
  system_prompt=(
@@ -54,7 +60,7 @@ search_agent = Agent[Deps, FlightDetails | NoFlightFound](
54
60
 
55
61
  # This agent is responsible for extracting flight details from web page text.
56
62
  extraction_agent = Agent(
57
- 'openai:gpt-4o',
63
+ 'openai:gpt-5',
58
64
  output_type=list[FlightDetails],
59
65
  system_prompt='Extract all the flight details from the given text.',
60
66
  )
@@ -106,7 +112,7 @@ class Failed(BaseModel):
106
112
 
107
113
  # This agent is responsible for extracting the user's seat selection
108
114
  seat_preference_agent = Agent[None, SeatPreference | Failed](
109
- 'openai:gpt-4o',
115
+ 'openai:gpt-5',
110
116
  output_type=SeatPreference | Failed,
111
117
  system_prompt=(
112
118
  "Extract the user's seat preference. "
@@ -22,7 +22,7 @@ class MyModel(BaseModel):
22
22
  country: str
23
23
 
24
24
 
25
- model = os.getenv('PYDANTIC_AI_MODEL', 'openai:gpt-4o')
25
+ model = os.getenv('PYDANTIC_AI_MODEL', 'openai:gpt-5')
26
26
  print(f'Using model: {model}')
27
27
  agent = Agent(model, output_type=MyModel)
28
28
 
@@ -13,8 +13,7 @@ from pathlib import Path
13
13
  import logfire
14
14
  from groq import BaseModel
15
15
 
16
- from pydantic_ai import Agent, format_as_xml
17
- from pydantic_ai.messages import ModelMessage
16
+ from pydantic_ai import Agent, ModelMessage, format_as_xml
18
17
  from pydantic_graph import (
19
18
  BaseNode,
20
19
  End,
@@ -27,7 +26,7 @@ from pydantic_graph.persistence.file import FileStatePersistence
27
26
  logfire.configure(send_to_logfire='if-token-present')
28
27
  logfire.instrument_pydantic_ai()
29
28
 
30
- ask_agent = Agent('openai:gpt-4o', output_type=str)
29
+ ask_agent = Agent('openai:gpt-5', output_type=str)
31
30
 
32
31
 
33
32
  @dataclass
@@ -66,7 +65,7 @@ class EvaluationOutput(BaseModel, use_attribute_docstrings=True):
66
65
 
67
66
 
68
67
  evaluate_agent = Agent(
69
- 'openai:gpt-4o',
68
+ 'openai:gpt-5',
70
69
  output_type=EvaluationOutput,
71
70
  system_prompt='Given a question and answer, evaluate if the answer is correct.',
72
71
  )
@@ -30,6 +30,7 @@ import asyncpg
30
30
  import httpx
31
31
  import logfire
32
32
  import pydantic_core
33
+ from anyio import create_task_group
33
34
  from openai import AsyncOpenAI
34
35
  from pydantic import TypeAdapter
35
36
  from typing_extensions import AsyncGenerator
@@ -48,7 +49,7 @@ class Deps:
48
49
  pool: asyncpg.Pool
49
50
 
50
51
 
51
- agent = Agent('openai:gpt-4o', deps_type=Deps)
52
+ agent = Agent('openai:gpt-5', deps_type=Deps)
52
53
 
53
54
 
54
55
  @agent.tool
@@ -114,7 +115,7 @@ async def build_search_db():
114
115
  async with httpx.AsyncClient() as client:
115
116
  response = await client.get(DOCS_JSON)
116
117
  response.raise_for_status()
117
- sections = sessions_ta.validate_json(response.content)
118
+ sections = sections_ta.validate_json(response.content)
118
119
 
119
120
  openai = AsyncOpenAI()
120
121
  logfire.instrument_openai(openai)
@@ -126,9 +127,9 @@ async def build_search_db():
126
127
  await conn.execute(DB_SCHEMA)
127
128
 
128
129
  sem = asyncio.Semaphore(10)
129
- async with asyncio.TaskGroup() as tg:
130
+ async with create_task_group() as tg:
130
131
  for section in sections:
131
- tg.create_task(insert_doc_section(sem, openai, pool, section))
132
+ tg.start_soon(insert_doc_section, sem, openai, pool, section)
132
133
 
133
134
 
134
135
  async def insert_doc_section(
@@ -182,7 +183,7 @@ class DocsSection:
182
183
  return '\n\n'.join((f'path: {self.path}', f'title: {self.title}', self.content))
183
184
 
184
185
 
185
- sessions_ta = TypeAdapter(list[DocsSection])
186
+ sections_ta = TypeAdapter(list[DocsSection])
186
187
 
187
188
 
188
189
  # pyright: reportUnknownMemberType=false
@@ -11,7 +11,7 @@ from .models import Analysis, Profile
11
11
 
12
12
  ### [agent]
13
13
  agent = Agent(
14
- 'openai:gpt-4o',
14
+ 'openai:gpt-5',
15
15
  instructions=dedent(
16
16
  """
17
17
  When a new person joins our public Slack, please put together a brief snapshot so we can be most useful to them.
@@ -92,7 +92,7 @@ class InvalidRequest(BaseModel):
92
92
 
93
93
  Response: TypeAlias = Success | InvalidRequest
94
94
  agent = Agent[Deps, Response](
95
- 'google-gla:gemini-1.5-flash',
95
+ 'google-gla:gemini-2.5-flash',
96
96
  # Type ignore while we wait for PEP-0747, nonetheless unions will work fine everywhere else
97
97
  output_type=Response, # type: ignore
98
98
  deps_type=Deps,
@@ -26,8 +26,8 @@ agent = Agent()
26
26
 
27
27
  # models to try, and the appropriate env var
28
28
  models: list[tuple[KnownModelName, str]] = [
29
- ('google-gla:gemini-2.0-flash', 'GEMINI_API_KEY'),
30
- ('openai:gpt-4o-mini', 'OPENAI_API_KEY'),
29
+ ('google-gla:gemini-2.5-flash', 'GEMINI_API_KEY'),
30
+ ('openai:gpt-5-mini', 'OPENAI_API_KEY'),
31
31
  ('groq:llama-3.3-70b-versatile', 'GROQ_API_KEY'),
32
32
  ]
33
33
 
@@ -32,7 +32,7 @@ class Deps:
32
32
 
33
33
 
34
34
  weather_agent = Agent(
35
- 'openai:gpt-4.1-mini',
35
+ 'openai:gpt-5-mini',
36
36
  # 'Be concise, reply with one sentence.' is enough for some models (like openai) to use
37
37
  # the below tools appropriately, but others like anthropic and gemini require a bit more direction.
38
38
  instructions='Be concise, reply with one sentence.',
@@ -5,7 +5,7 @@ import json
5
5
  from httpx import AsyncClient
6
6
  from pydantic import BaseModel
7
7
 
8
- from pydantic_ai.messages import ToolCallPart, ToolReturnPart
8
+ from pydantic_ai import ToolCallPart, ToolReturnPart
9
9
  from pydantic_ai_examples.weather_agent import Deps, weather_agent
10
10
 
11
11
  try:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pydantic-ai-examples
3
- Version: 1.0.11
3
+ Version: 1.12.0
4
4
  Summary: Examples of how to use Pydantic AI and what it can do.
5
5
  Author-email: Samuel Colvin <samuel@pydantic.dev>, Marcelo Trylesinski <marcelotryle@gmail.com>, David Montague <david@pydantic.dev>, Alex Hall <alex@pydantic.dev>, Douwe Maan <douwe@pydantic.dev>
6
6
  License-Expression: MIT
@@ -34,8 +34,8 @@ Requires-Dist: logfire[asyncpg,fastapi,httpx,sqlite3]>=3.14.1
34
34
  Requires-Dist: mcp[cli]>=1.4.1
35
35
  Requires-Dist: modal>=1.0.4
36
36
  Requires-Dist: pandas>=2.2.3
37
- Requires-Dist: pydantic-ai-slim[ag-ui,anthropic,groq,openai,vertexai]==1.0.11
38
- Requires-Dist: pydantic-evals==1.0.11
37
+ Requires-Dist: pydantic-ai-slim[ag-ui,anthropic,groq,openai,vertexai]==1.12.0
38
+ Requires-Dist: pydantic-evals==1.12.0
39
39
  Requires-Dist: python-multipart>=0.0.17
40
40
  Requires-Dist: rich>=13.9.2
41
41
  Requires-Dist: uvicorn>=0.32.0
@@ -1,50 +1,50 @@
1
1
  pydantic_ai_examples/__main__.py,sha256=i0LEo2JBOZ-gnHED0ou5Bya43gi7KmOyQ_jKN7M5Ces,1647
2
- pydantic_ai_examples/bank_support.py,sha256=TEy19B4iyB49A-ZMv1rOZIE_bOHml5er1Qaz700e2NU,2665
2
+ pydantic_ai_examples/bank_support.py,sha256=O9r6yQraDRPibWLOC1wyZu0n_Nr7Exg4u7wEHh25czk,2664
3
3
  pydantic_ai_examples/chat_app.html,sha256=90XhxrpDAT09mPVTn9edEn8PqAD-tHxWkeeMz9r_okQ,2580
4
- pydantic_ai_examples/chat_app.py,sha256=Aeep1DoXSsY7-STFT0gfDHqT7QpID_r_0sHloVOix5c,7078
4
+ pydantic_ai_examples/chat_app.py,sha256=AX28rI0TR9lTPLDOd0uEkmirvfIZCRyCGr_VdGiOkHM,7053
5
5
  pydantic_ai_examples/chat_app.ts,sha256=2KfZ2rJU2o0iCPjelyqEi5sH6vfemzWaa5Evx_VcAE4,3307
6
- pydantic_ai_examples/data_analyst.py,sha256=vSpfIWpxNgaZqKx2DJD721ZA3QgSjaZkTixy5OHz9xY,3753
7
- pydantic_ai_examples/flight_booking.py,sha256=iwounbq5ej6kwmbot7Ayk3zye-JXKzD70Usqip19pQM,7421
6
+ pydantic_ai_examples/data_analyst.py,sha256=sC6mcgfeWzfj4STB7J_7oAWC7T8Y0NWvlIeQ8XND9zA,3752
7
+ pydantic_ai_examples/flight_booking.py,sha256=x8FbztbAiqNdDACzal1O5M80syjt8UuGm_wqHpybeQM,7415
8
8
  pydantic_ai_examples/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- pydantic_ai_examples/pydantic_model.py,sha256=EQsHBig2bvb0PG_2XDgP9Le5xJ4n8eZJzQDGQYhDykg,775
10
- pydantic_ai_examples/question_graph.py,sha256=XK5M-AshO402VDcwz12P4kU1-mRiZcESdfGZsyZCX_U,5107
11
- pydantic_ai_examples/rag.py,sha256=lWIusQc1_CQ4GrXRJgteXfDpTfl2AZrd4qZcOXPBC5o,7976
9
+ pydantic_ai_examples/pydantic_model.py,sha256=4u_-sdpKSF_lRMLSI-WVYwsyIxgdOpq-8LSCJunoyvA,774
10
+ pydantic_ai_examples/question_graph.py,sha256=ERjlfHxKXswISed6TJtj60SFoTIYe-PyCTZoYR4OJkY,5073
11
+ pydantic_ai_examples/rag.py,sha256=t1um_C3EqX7dhbdopWFqYgHfnKUTyeVWxD3SK7AUdio,8010
12
12
  pydantic_ai_examples/roulette_wheel.py,sha256=2YHKbGzYOkLsd98hO3ntjM6pChR1UpmsRrLD36Qh5f0,1654
13
- pydantic_ai_examples/sql_gen.py,sha256=rRp_C0ZvfLu6rkR5wrVvgah6wd92nh1vT4UYurx5pmU,5159
14
- pydantic_ai_examples/stream_markdown.py,sha256=rdhrR6XkqoeOpfv_xFbRpKDV4drEAd8ZrsFBXVrdvHs,2454
13
+ pydantic_ai_examples/sql_gen.py,sha256=akgJv4TSImw6O4NRgQZh92QITSmDeEyvoGQcU3oUNFQ,5159
14
+ pydantic_ai_examples/stream_markdown.py,sha256=4uEK6dzC9jVcQTRaYBEDzYfYAJPYHZWfLJ-ZMtmI8y4,2453
15
15
  pydantic_ai_examples/stream_whales.py,sha256=Yoa7IuqN_6fowfYSINW39uPCthYu9FKChF-QBmQqWb8,2721
16
- pydantic_ai_examples/weather_agent.py,sha256=E42RbuVDJzxlBw9lF2ARNSNAhL1HWVEmTt5MN70DyDU,3187
17
- pydantic_ai_examples/weather_agent_gradio.py,sha256=sW1IV2B8ehrFrJKLDHv73ojosdpBI2h1S_HF662I6MQ,4728
16
+ pydantic_ai_examples/weather_agent.py,sha256=FZF7pgL2U24m-ymFUw6MnqASVpXOfl49ilrYAtZXlOo,3185
17
+ pydantic_ai_examples/weather_agent_gradio.py,sha256=MCoNp5TgWj628ABoZpTUVJYIeSV_C-ig08WfcssDH7A,4719
18
18
  pydantic_ai_examples/ag_ui/__init__.py,sha256=ZZs2V-5e9RaLl_7hJAq9-0Juk_f0mk2Vr7a4QT2QB-k,1174
19
19
  pydantic_ai_examples/ag_ui/__main__.py,sha256=PMycatJt8Abb-Q8HXRGZoEY6vnOcvRebH7iI9MxLknA,225
20
20
  pydantic_ai_examples/ag_ui/api/__init__.py,sha256=Pe307_ET_ERKBP-8Vs4L1yZRkK3ILPpajwxDpeW8YiI,673
21
- pydantic_ai_examples/ag_ui/api/agentic_chat.py,sha256=Vrz7TVLHRs28gEdVXQ44R8jJtRU7EPrDjgqSUH90yh4,533
22
- pydantic_ai_examples/ag_ui/api/agentic_generative_ui.py,sha256=z2MVonvUKw-9vA4RC8Z8Jz0qYYcmzkxY-1CLotXzDDo,3489
23
- pydantic_ai_examples/ag_ui/api/human_in_the_loop.py,sha256=130SDox5HoYjusPr2ubliI8udhxtNxUS3kD9RPb0zYc,765
24
- pydantic_ai_examples/ag_ui/api/predictive_state_updates.py,sha256=w98JrwWJfu0fIMdgWbcFcmLz8wZT4bMdfWsCbV9k8Co,2124
25
- pydantic_ai_examples/ag_ui/api/shared_state.py,sha256=1ok84aE4H0J5pWRhcoftf26Y9BAKqfV20ppisRfH52c,3799
26
- pydantic_ai_examples/ag_ui/api/tool_based_generative_ui.py,sha256=eT--lWjTzL0S3aIu9C14yeoixLjFXPWqwcdiuIlUAJk,219
21
+ pydantic_ai_examples/ag_ui/api/agentic_chat.py,sha256=QGb7q4AMq5PD1-D-S-71GsMs3wAhH2niUeRryhjL12s,577
22
+ pydantic_ai_examples/ag_ui/api/agentic_generative_ui.py,sha256=RnkSjb8C_J9kXPuB7nFI1knkPF30OkOoSRXoAX2h2Ck,3531
23
+ pydantic_ai_examples/ag_ui/api/human_in_the_loop.py,sha256=Jb_0Sryb4mUOZmr1k9MVTciGUAcC8-tzuyNCaCTWZhc,807
24
+ pydantic_ai_examples/ag_ui/api/predictive_state_updates.py,sha256=PO3SZPCzmWowpEPnqez-oLlMRsPD3MnJArpdwDYThO4,2165
25
+ pydantic_ai_examples/ag_ui/api/shared_state.py,sha256=dr7vCTuZN2tyUrdroD25r69YBPjQFeAPaOt_NbenHyE,3843
26
+ pydantic_ai_examples/ag_ui/api/tool_based_generative_ui.py,sha256=rW0Inzd9_yDqdTE6HmnnF7M-LsR_l4woiwlGbJBHLSM,261
27
27
  pydantic_ai_examples/evals/__init__.py,sha256=4f1v2o4F-gnUVtlkZU-dpwwwbLhqRxMcZv676atjNLg,115
28
- pydantic_ai_examples/evals/agent.py,sha256=KjCsUiL28RCNT6NwoQnQCwJ0xRw3EUGdIrYhlIjmVqI,2042
28
+ pydantic_ai_examples/evals/agent.py,sha256=o_l6I4DF3HXh7fgsmyz7mViq1ckdFV1Hxq_B7KJPLa0,2041
29
29
  pydantic_ai_examples/evals/custom_evaluators.py,sha256=siSpALUMrUGJ1DDrm0Ejniuxhmxhlvee_jubgXjOAeU,2244
30
30
  pydantic_ai_examples/evals/example_01_generate_dataset.py,sha256=R-cV9bBHMA8EMIyveP5Yf2p3_VV-g_NSXtDa_zz0ODs,2368
31
31
  pydantic_ai_examples/evals/example_02_add_custom_evaluators.py,sha256=pFX0bvVeyfbZGGb0LSajRW-g1ZiVID3e3-sEXZVcjv8,977
32
32
  pydantic_ai_examples/evals/example_03_unit_testing.py,sha256=G4Ry7ykJfozaQ9GEXi6cnz0O-6pGBrZIkV4_6RNK194,1207
33
- pydantic_ai_examples/evals/example_04_compare_models.py,sha256=aYCIkbwpD-O4MgAKDik3XlK9Y7xpq9DOFiXRWMes2aE,1201
33
+ pydantic_ai_examples/evals/example_04_compare_models.py,sha256=4oPIeFgbk2vMkN7asN6LjWMYPatMpUFLkKhEzrioqJg,1199
34
34
  pydantic_ai_examples/evals/models.py,sha256=QYe_fNv03fmF4ssgSqutHgGx2YX5NLKhhth8-0XFnWo,1776
35
35
  pydantic_ai_examples/evals/datasets/time_range_v1.yaml,sha256=pSUawuDen4NQt2RqqJNmrVENgksTWxIFcw-Kkao_yo8,4193
36
36
  pydantic_ai_examples/evals/datasets/time_range_v1_schema.json,sha256=xS-wRRSvcoG2FcQZGdL0i332mbjsZh9MOSJAND6VkWU,19932
37
37
  pydantic_ai_examples/evals/datasets/time_range_v2.yaml,sha256=zIffxC5bR2l05MrrECJsTHiagFaz8nIPTH-YrmjJz8I,4326
38
38
  pydantic_ai_examples/evals/datasets/time_range_v2_schema.json,sha256=GDbDtBH1skdbUzK5Wd_0-SNXTmEWHMTYhhshaLsq_1Q,21309
39
39
  pydantic_ai_examples/slack_lead_qualifier/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
- pydantic_ai_examples/slack_lead_qualifier/agent.py,sha256=0OlqkXYps7bbetRVpv3jgBdwU4kJcYSyy1RycQxfyDk,1936
40
+ pydantic_ai_examples/slack_lead_qualifier/agent.py,sha256=kskE4RjlqeqAT51NDt7FoC1OIyQ47DqFcTDkCOvQS9k,1935
41
41
  pydantic_ai_examples/slack_lead_qualifier/app.py,sha256=KALNxIV8hz0lGxFclZHxolqoH4MsiIYga_CmpidzONE,1036
42
42
  pydantic_ai_examples/slack_lead_qualifier/functions.py,sha256=4LsYtPH_SBo_rJ7008DXvKq_SOwiGtweW_DfzJh8R0s,2196
43
43
  pydantic_ai_examples/slack_lead_qualifier/modal.py,sha256=f464AaeyP-n3UIfvEVVc4DZ7FQQtsEX7-kUP3VqoPYo,1635
44
44
  pydantic_ai_examples/slack_lead_qualifier/models.py,sha256=WTp6D2WCASXqrjPVT3vGgTSYATLPBM3_cjq9wvXMRao,1586
45
45
  pydantic_ai_examples/slack_lead_qualifier/slack.py,sha256=VJVfMeUXYClWUJBLHNuaW8PB2sxjNzpTC-O_AJwcxQ4,833
46
46
  pydantic_ai_examples/slack_lead_qualifier/store.py,sha256=04vB4eZWKk_Tx0b9K4QuVI1U24JEyJyBS4X76cui7OI,896
47
- pydantic_ai_examples-1.0.11.dist-info/METADATA,sha256=yEqG9jesCsXxYs1zF2Xn0zEwXqBaLt7y8FnhiTEEf5U,2763
48
- pydantic_ai_examples-1.0.11.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
49
- pydantic_ai_examples-1.0.11.dist-info/licenses/LICENSE,sha256=vA6Jc482lEyBBuGUfD1pYx-cM7jxvLYOxPidZ30t_PQ,1100
50
- pydantic_ai_examples-1.0.11.dist-info/RECORD,,
47
+ pydantic_ai_examples-1.12.0.dist-info/METADATA,sha256=vNTvNoFtwV9hR_ENchwD2xp8RaL6ofm-T-Q98u27mGg,2763
48
+ pydantic_ai_examples-1.12.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
49
+ pydantic_ai_examples-1.12.0.dist-info/licenses/LICENSE,sha256=vA6Jc482lEyBBuGUfD1pYx-cM7jxvLYOxPidZ30t_PQ,1100
50
+ pydantic_ai_examples-1.12.0.dist-info/RECORD,,