pydantic-ai-examples 0.3.4__py3-none-any.whl → 0.3.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
File without changes
@@ -0,0 +1,47 @@
1
+ from textwrap import dedent
2
+ from types import NoneType
3
+
4
+ import logfire
5
+
6
+ ### [imports]
7
+ from pydantic_ai import Agent, NativeOutput
8
+ from pydantic_ai.common_tools.duckduckgo import duckduckgo_search_tool ### [/imports]
9
+
10
+ from .models import Analysis, Profile
11
+
12
+ ### [agent]
13
+ agent = Agent(
14
+ 'openai:gpt-4o',
15
+ instructions=dedent(
16
+ """
17
+ When a new person joins our public Slack, please put together a brief snapshot so we can be most useful to them.
18
+
19
+ **What to include**
20
+
21
+ 1. **Who they are:** Any details about their professional role or projects (e.g. LinkedIn, GitHub, company bio).
22
+ 2. **Where they work:** Name of the organisation and its domain.
23
+ 3. **How we can help:** On a scale of 1–5, estimate how likely they are to benefit from **Pydantic Logfire**
24
+ (our paid observability tool) based on factors such as company size, product maturity, or AI usage.
25
+ *1 = probably not relevant, 5 = very strong fit.*
26
+
27
+ **Our products (for context only)**
28
+ • **Pydantic Validation** – Python data-validation (open source)
29
+ • **Pydantic AI** – Python agent framework (open source)
30
+ • **Pydantic Logfire** – Observability for traces, logs & metrics with first-class AI support (commercial)
31
+
32
+ **How to research**
33
+
34
+ • Use the provided DuckDuckGo search tool to research the person and the organization they work for, based on the email domain or what you find on e.g. LinkedIn and GitHub.
35
+ • If you can't find enough to form a reasonable view, return **None**.
36
+ """
37
+ ),
38
+ tools=[duckduckgo_search_tool()],
39
+ output_type=NativeOutput([Analysis, NoneType]),
40
+ ) ### [/agent]
41
+
42
+
43
+ ### [analyze_profile]
44
+ @logfire.instrument('Analyze profile')
45
+ async def analyze_profile(profile: Profile) -> Analysis | None:
46
+ result = await agent.run(profile.as_prompt())
47
+ return result.output ### [/analyze_profile]
@@ -0,0 +1,36 @@
1
+ from typing import Any
2
+
3
+ import logfire
4
+ from fastapi import FastAPI, HTTPException, status
5
+ from logfire.propagate import get_context
6
+
7
+ from .models import Profile
8
+
9
+
10
+ ### [process_slack_member]
11
+ def process_slack_member(profile: Profile):
12
+ from .modal import process_slack_member as _process_slack_member
13
+
14
+ _process_slack_member.spawn(
15
+ profile.model_dump(), logfire_ctx=get_context()
16
+ ) ### [/process_slack_member]
17
+
18
+
19
+ ### [app]
20
+ app = FastAPI()
21
+ logfire.instrument_fastapi(app, capture_headers=True)
22
+
23
+
24
+ @app.post('/')
25
+ async def process_webhook(payload: dict[str, Any]) -> dict[str, Any]:
26
+ if payload['type'] == 'url_verification':
27
+ return {'challenge': payload['challenge']}
28
+ elif (
29
+ payload['type'] == 'event_callback' and payload['event']['type'] == 'team_join'
30
+ ):
31
+ profile = Profile.model_validate(payload['event']['user']['profile'])
32
+
33
+ process_slack_member(profile)
34
+ return {'status': 'OK'}
35
+
36
+ raise HTTPException(status_code=status.HTTP_422_UNPROCESSABLE_ENTITY) ### [/app]
@@ -0,0 +1,85 @@
1
+ import logfire
2
+
3
+ ### [imports]
4
+ from .agent import analyze_profile
5
+ from .models import Profile
6
+
7
+ ### [imports-daily_summary]
8
+ from .slack import send_slack_message
9
+ from .store import AnalysisStore ### [/imports,/imports-daily_summary]
10
+
11
+ ### [constant-new_lead_channel]
12
+ NEW_LEAD_CHANNEL = '#new-slack-leads'
13
+ ### [/constant-new_lead_channel]
14
+ ### [constant-daily_summary_channel]
15
+ DAILY_SUMMARY_CHANNEL = '#daily-slack-leads-summary'
16
+ ### [/constant-daily_summary_channel]
17
+
18
+
19
+ ### [process_slack_member]
20
+ @logfire.instrument('Process Slack member')
21
+ async def process_slack_member(profile: Profile):
22
+ analysis = await analyze_profile(profile)
23
+ logfire.info('Analysis', analysis=analysis)
24
+
25
+ if analysis is None:
26
+ return
27
+
28
+ await AnalysisStore().add(analysis)
29
+
30
+ await send_slack_message(
31
+ NEW_LEAD_CHANNEL,
32
+ [
33
+ {
34
+ 'type': 'header',
35
+ 'text': {
36
+ 'type': 'plain_text',
37
+ 'text': f'New Slack member with score {analysis.relevance}/5',
38
+ },
39
+ },
40
+ {
41
+ 'type': 'divider',
42
+ },
43
+ *analysis.as_slack_blocks(),
44
+ ],
45
+ ) ### [/process_slack_member]
46
+
47
+
48
+ ### [send_daily_summary]
49
+ @logfire.instrument('Send daily summary')
50
+ async def send_daily_summary():
51
+ analyses = await AnalysisStore().list()
52
+ logfire.info('Analyses', analyses=analyses)
53
+
54
+ if len(analyses) == 0:
55
+ return
56
+
57
+ sorted_analyses = sorted(analyses, key=lambda x: x.relevance, reverse=True)
58
+ top_analyses = sorted_analyses[:5]
59
+
60
+ blocks = [
61
+ {
62
+ 'type': 'header',
63
+ 'text': {
64
+ 'type': 'plain_text',
65
+ 'text': f'Top {len(top_analyses)} new Slack members from the last 24 hours',
66
+ },
67
+ },
68
+ ]
69
+
70
+ for analysis in top_analyses:
71
+ blocks.extend(
72
+ [
73
+ {
74
+ 'type': 'divider',
75
+ },
76
+ *analysis.as_slack_blocks(include_relevance=True),
77
+ ]
78
+ )
79
+
80
+ await send_slack_message(
81
+ DAILY_SUMMARY_CHANNEL,
82
+ blocks,
83
+ )
84
+
85
+ await AnalysisStore().clear() ### [/send_daily_summary]
@@ -0,0 +1,66 @@
1
+ from typing import Any
2
+
3
+ ### [setup_modal]
4
+ import modal
5
+
6
+ image = modal.Image.debian_slim(python_version='3.13').pip_install(
7
+ 'pydantic',
8
+ 'pydantic_ai_slim[openai,duckduckgo]',
9
+ 'logfire[httpx,fastapi]',
10
+ 'fastapi[standard]',
11
+ 'httpx',
12
+ )
13
+ app = modal.App(
14
+ name='slack-lead-qualifier',
15
+ image=image,
16
+ secrets=[
17
+ modal.Secret.from_name('logfire'),
18
+ modal.Secret.from_name('openai'),
19
+ modal.Secret.from_name('slack'),
20
+ ],
21
+ ) ### [/setup_modal]
22
+
23
+
24
+ ### [setup_logfire]
25
+ def setup_logfire():
26
+ import logfire
27
+
28
+ logfire.configure(service_name=app.name)
29
+ logfire.instrument_pydantic_ai()
30
+ logfire.instrument_httpx(capture_all=True) ### [/setup_logfire]
31
+
32
+
33
+ ### [web_app]
34
+ @app.function(min_containers=1)
35
+ @modal.asgi_app() # type: ignore
36
+ def web_app():
37
+ setup_logfire()
38
+
39
+ from .app import app as _app
40
+
41
+ return _app ### [/web_app]
42
+
43
+
44
+ ### [process_slack_member]
45
+ @app.function()
46
+ async def process_slack_member(profile_raw: dict[str, Any], logfire_ctx: Any):
47
+ setup_logfire()
48
+
49
+ from logfire.propagate import attach_context
50
+
51
+ from .functions import process_slack_member as _process_slack_member
52
+ from .models import Profile
53
+
54
+ with attach_context(logfire_ctx):
55
+ profile = Profile.model_validate(profile_raw)
56
+ await _process_slack_member(profile) ### [/process_slack_member]
57
+
58
+
59
+ ### [send_daily_summary]
60
+ @app.function(schedule=modal.Cron('0 8 * * *')) # Every day at 8am UTC
61
+ async def send_daily_summary():
62
+ setup_logfire()
63
+
64
+ from .functions import send_daily_summary as _send_daily_summary
65
+
66
+ await _send_daily_summary() ### [/send_daily_summary]
@@ -0,0 +1,46 @@
1
+ from typing import Annotated, Any
2
+
3
+ from annotated_types import Ge, Le
4
+ from pydantic import BaseModel
5
+
6
+ ### [import-format_as_xml]
7
+ from pydantic_ai import format_as_xml ### [/import-format_as_xml]
8
+
9
+
10
+ ### [profile,profile-intro]
11
+ class Profile(BaseModel): ### [/profile-intro]
12
+ first_name: str | None = None
13
+ last_name: str | None = None
14
+ display_name: str | None = None
15
+ email: str ### [/profile]
16
+
17
+ ### [profile-as_prompt]
18
+ def as_prompt(self) -> str:
19
+ return format_as_xml(self, root_tag='profile') ### [/profile-as_prompt]
20
+
21
+
22
+ ### [analysis,analysis-intro]
23
+ class Analysis(BaseModel): ### [/analysis-intro]
24
+ profile: Profile
25
+ organization_name: str
26
+ organization_domain: str
27
+ job_title: str
28
+ relevance: Annotated[int, Ge(1), Le(5)]
29
+ """Estimated fit for Pydantic Logfire: 1 = low, 5 = high"""
30
+ summary: str
31
+ """One-sentence welcome note summarising who they are and how we might help""" ### [/analysis]
32
+
33
+ ### [analysis-as_slack_blocks]
34
+ def as_slack_blocks(self, include_relevance: bool = False) -> list[dict[str, Any]]:
35
+ profile = self.profile
36
+ relevance = f'({self.relevance}/5)' if include_relevance else ''
37
+ return [
38
+ {
39
+ 'type': 'markdown',
40
+ 'text': f'[{profile.display_name}](mailto:{profile.email}), {self.job_title} at [**{self.organization_name}**](https://{self.organization_domain}) {relevance}',
41
+ },
42
+ {
43
+ 'type': 'markdown',
44
+ 'text': self.summary,
45
+ },
46
+ ] ### [/analysis-as_slack_blocks]
@@ -0,0 +1,30 @@
1
+ import os
2
+ from typing import Any
3
+
4
+ import httpx
5
+ import logfire
6
+
7
+ ### [send_slack_message]
8
+ API_KEY = os.getenv('SLACK_API_KEY')
9
+ assert API_KEY, 'SLACK_API_KEY is not set'
10
+
11
+
12
+ @logfire.instrument('Send Slack message')
13
+ async def send_slack_message(channel: str, blocks: list[dict[str, Any]]):
14
+ client = httpx.AsyncClient()
15
+ response = await client.post(
16
+ 'https://slack.com/api/chat.postMessage',
17
+ json={
18
+ 'channel': channel,
19
+ 'blocks': blocks,
20
+ },
21
+ headers={
22
+ 'Authorization': f'Bearer {API_KEY}',
23
+ },
24
+ timeout=5,
25
+ )
26
+ response.raise_for_status()
27
+ result = response.json()
28
+ if not result.get('ok', False):
29
+ error = result.get('error', 'Unknown error')
30
+ raise Exception(f'Failed to send to Slack: {error}') ### [/send_slack_message]
@@ -0,0 +1,31 @@
1
+ import logfire
2
+
3
+ ### [import-modal]
4
+ import modal ### [/import-modal]
5
+
6
+ from .models import Analysis
7
+
8
+
9
+ ### [analysis_store]
10
+ class AnalysisStore:
11
+ @classmethod
12
+ @logfire.instrument('Add analysis to store')
13
+ async def add(cls, analysis: Analysis):
14
+ await cls._get_store().put.aio(analysis.profile.email, analysis.model_dump())
15
+
16
+ @classmethod
17
+ @logfire.instrument('List analyses from store')
18
+ async def list(cls) -> list[Analysis]:
19
+ return [
20
+ Analysis.model_validate(analysis)
21
+ async for analysis in cls._get_store().values.aio()
22
+ ]
23
+
24
+ @classmethod
25
+ @logfire.instrument('Clear analyses from store')
26
+ async def clear(cls):
27
+ await cls._get_store().clear.aio()
28
+
29
+ @classmethod
30
+ def _get_store(cls) -> modal.Dict:
31
+ return modal.Dict.from_name('analyses', create_if_missing=True) # type: ignore ### [/analysis_store]
@@ -12,16 +12,14 @@ Run with:
12
12
  from __future__ import annotations as _annotations
13
13
 
14
14
  import asyncio
15
- import os
16
- import urllib.parse
17
15
  from dataclasses import dataclass
18
16
  from typing import Any
19
17
 
20
18
  import logfire
21
- from devtools import debug
22
19
  from httpx import AsyncClient
20
+ from pydantic import BaseModel
23
21
 
24
- from pydantic_ai import Agent, ModelRetry, RunContext
22
+ from pydantic_ai import Agent, RunContext
25
23
 
26
24
  # 'if-token-present' means nothing will be sent (and the example will work) if you don't have logfire configured
27
25
  logfire.configure(send_to_logfire='if-token-present')
@@ -31,51 +29,38 @@ logfire.instrument_pydantic_ai()
31
29
  @dataclass
32
30
  class Deps:
33
31
  client: AsyncClient
34
- weather_api_key: str | None
35
- geo_api_key: str | None
36
32
 
37
33
 
38
34
  weather_agent = Agent(
39
- 'openai:gpt-4o',
35
+ 'openai:gpt-4.1-mini',
40
36
  # 'Be concise, reply with one sentence.' is enough for some models (like openai) to use
41
37
  # the below tools appropriately, but others like anthropic and gemini require a bit more direction.
42
- instructions=(
43
- 'Be concise, reply with one sentence.'
44
- 'Use the `get_lat_lng` tool to get the latitude and longitude of the locations, '
45
- 'then use the `get_weather` tool to get the weather.'
46
- ),
38
+ instructions='Be concise, reply with one sentence.',
47
39
  deps_type=Deps,
48
40
  retries=2,
49
41
  )
50
42
 
51
43
 
44
+ class LatLng(BaseModel):
45
+ lat: float
46
+ lng: float
47
+
48
+
52
49
  @weather_agent.tool
53
- async def get_lat_lng(
54
- ctx: RunContext[Deps], location_description: str
55
- ) -> dict[str, float]:
50
+ async def get_lat_lng(ctx: RunContext[Deps], location_description: str) -> LatLng:
56
51
  """Get the latitude and longitude of a location.
57
52
 
58
53
  Args:
59
54
  ctx: The context.
60
55
  location_description: A description of a location.
61
56
  """
62
- if ctx.deps.geo_api_key is None:
63
- # if no API key is provided, return a dummy response (London)
64
- return {'lat': 51.1, 'lng': -0.1}
65
-
66
- params = {'access_token': ctx.deps.geo_api_key}
67
- loc = urllib.parse.quote(location_description)
57
+ # NOTE: the response here will be random, and is not related to the location description.
68
58
  r = await ctx.deps.client.get(
69
- f'https://api.mapbox.com/geocoding/v5/mapbox.places/{loc}.json', params=params
59
+ 'https://demo-endpoints.pydantic.workers.dev/latlng',
60
+ params={'location': location_description},
70
61
  )
71
62
  r.raise_for_status()
72
- data = r.json()
73
-
74
- if features := data['features']:
75
- lat, lng = features[0]['center']
76
- return {'lat': lat, 'lng': lng}
77
- else:
78
- raise ModelRetry('Could not find the location')
63
+ return LatLng.model_validate_json(r.content)
79
64
 
80
65
 
81
66
  @weather_agent.tool
@@ -87,70 +72,32 @@ async def get_weather(ctx: RunContext[Deps], lat: float, lng: float) -> dict[str
87
72
  lat: Latitude of the location.
88
73
  lng: Longitude of the location.
89
74
  """
90
- if ctx.deps.weather_api_key is None:
91
- # if no API key is provided, return a dummy response
92
- return {'temperature': '21 °C', 'description': 'Sunny'}
93
-
94
- params = {
95
- 'apikey': ctx.deps.weather_api_key,
96
- 'location': f'{lat},{lng}',
97
- 'units': 'metric',
98
- }
99
- with logfire.span('calling weather API', params=params) as span:
100
- r = await ctx.deps.client.get(
101
- 'https://api.tomorrow.io/v4/weather/realtime', params=params
102
- )
103
- r.raise_for_status()
104
- data = r.json()
105
- span.set_attribute('response', data)
106
-
107
- values = data['data']['values']
108
- # https://docs.tomorrow.io/reference/data-layers-weather-codes
109
- code_lookup = {
110
- 1000: 'Clear, Sunny',
111
- 1100: 'Mostly Clear',
112
- 1101: 'Partly Cloudy',
113
- 1102: 'Mostly Cloudy',
114
- 1001: 'Cloudy',
115
- 2000: 'Fog',
116
- 2100: 'Light Fog',
117
- 4000: 'Drizzle',
118
- 4001: 'Rain',
119
- 4200: 'Light Rain',
120
- 4201: 'Heavy Rain',
121
- 5000: 'Snow',
122
- 5001: 'Flurries',
123
- 5100: 'Light Snow',
124
- 5101: 'Heavy Snow',
125
- 6000: 'Freezing Drizzle',
126
- 6001: 'Freezing Rain',
127
- 6200: 'Light Freezing Rain',
128
- 6201: 'Heavy Freezing Rain',
129
- 7000: 'Ice Pellets',
130
- 7101: 'Heavy Ice Pellets',
131
- 7102: 'Light Ice Pellets',
132
- 8000: 'Thunderstorm',
133
- }
75
+ # NOTE: the responses here will be random, and are not related to the lat and lng.
76
+ temp_response, descr_response = await asyncio.gather(
77
+ ctx.deps.client.get(
78
+ 'https://demo-endpoints.pydantic.workers.dev/number',
79
+ params={'min': 10, 'max': 30},
80
+ ),
81
+ ctx.deps.client.get(
82
+ 'https://demo-endpoints.pydantic.workers.dev/weather',
83
+ params={'lat': lat, 'lng': lng},
84
+ ),
85
+ )
86
+ temp_response.raise_for_status()
87
+ descr_response.raise_for_status()
134
88
  return {
135
- 'temperature': f'{values["temperatureApparent"]:0.0f}°C',
136
- 'description': code_lookup.get(values['weatherCode'], 'Unknown'),
89
+ 'temperature': f'{temp_response.text} °C',
90
+ 'description': descr_response.text,
137
91
  }
138
92
 
139
93
 
140
94
  async def main():
141
95
  async with AsyncClient() as client:
142
96
  logfire.instrument_httpx(client, capture_all=True)
143
- # create a free API key at https://www.tomorrow.io/weather-api/
144
- weather_api_key = os.getenv('WEATHER_API_KEY')
145
- # create a free API key at https://www.mapbox.com/
146
- geo_api_key = os.getenv('GEO_API_KEY')
147
- deps = Deps(
148
- client=client, weather_api_key=weather_api_key, geo_api_key=geo_api_key
149
- )
97
+ deps = Deps(client=client)
150
98
  result = await weather_agent.run(
151
99
  'What is the weather like in London and in Wiltshire?', deps=deps
152
100
  )
153
- debug(result)
154
101
  print('Response:', result.output)
155
102
 
156
103
 
@@ -1,7 +1,6 @@
1
1
  from __future__ import annotations as _annotations
2
2
 
3
3
  import json
4
- import os
5
4
 
6
5
  from httpx import AsyncClient
7
6
 
@@ -18,10 +17,7 @@ except ImportError as e:
18
17
  TOOL_TO_DISPLAY_NAME = {'get_lat_lng': 'Geocoding API', 'get_weather': 'Weather API'}
19
18
 
20
19
  client = AsyncClient()
21
- weather_api_key = os.getenv('WEATHER_API_KEY')
22
- # create a free API key at https://geocode.maps.co/
23
- geo_api_key = os.getenv('GEO_API_KEY')
24
- deps = Deps(client=client, weather_api_key=weather_api_key, geo_api_key=geo_api_key)
20
+ deps = Deps(client=client)
25
21
 
26
22
 
27
23
  async def stream_from_agent(prompt: str, chatbot: list[dict], past_messages: list):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pydantic-ai-examples
3
- Version: 0.3.4
3
+ Version: 0.3.6
4
4
  Summary: Examples of how to use PydanticAI and what it can do.
5
5
  Author-email: Samuel Colvin <samuel@pydantic.dev>
6
6
  License-Expression: MIT
@@ -31,8 +31,9 @@ Requires-Dist: fastapi>=0.115.4
31
31
  Requires-Dist: gradio>=5.9.0; python_version > '3.9'
32
32
  Requires-Dist: logfire[asyncpg,fastapi,httpx,sqlite3]>=2.6
33
33
  Requires-Dist: mcp[cli]>=1.4.1; python_version >= '3.10'
34
- Requires-Dist: pydantic-ai-slim[anthropic,groq,openai,vertexai]==0.3.4
35
- Requires-Dist: pydantic-evals==0.3.4
34
+ Requires-Dist: modal>=1.0.4
35
+ Requires-Dist: pydantic-ai-slim[anthropic,groq,openai,vertexai]==0.3.6
36
+ Requires-Dist: pydantic-evals==0.3.6
36
37
  Requires-Dist: python-multipart>=0.0.17
37
38
  Requires-Dist: rich>=13.9.2
38
39
  Requires-Dist: uvicorn>=0.32.0
@@ -11,8 +11,8 @@ pydantic_ai_examples/roulette_wheel.py,sha256=WUPklPKsnmJy-NoPY20mC-AI0820T-YMAY
11
11
  pydantic_ai_examples/sql_gen.py,sha256=x-vRRDe93DRW83RWgirXkQdthMFwSGcHm0VIoBgvdaE,5200
12
12
  pydantic_ai_examples/stream_markdown.py,sha256=4YcUIXI29gwV5rgUb-u7uaf6el7FxfsY9Rcoo1t2_EA,2447
13
13
  pydantic_ai_examples/stream_whales.py,sha256=WqadBOTe15B_QW8Z6TaWkK2G7Abl5llBbTGjtaI2D1s,3229
14
- pydantic_ai_examples/weather_agent.py,sha256=ALacJXoGhCHiGEWMsT-fvshKY2Z9pDjcZxcbVbGcrek,4931
15
- pydantic_ai_examples/weather_agent_gradio.py,sha256=k3ORCcOMt_rp7WZuzChyRq_vFGFtKaiqTBxmjm8NGF4,4727
14
+ pydantic_ai_examples/weather_agent.py,sha256=MA1SDkHuUyh2hC-lZdWUSsBVVLALSajgKduIb5Wer1Q,3186
15
+ pydantic_ai_examples/weather_agent_gradio.py,sha256=WVoRqD74jEvGyUs5VHmsRIGduLMu2sP7GHvc3E79T6A,4521
16
16
  pydantic_ai_examples/evals/__init__.py,sha256=4f1v2o4F-gnUVtlkZU-dpwwwbLhqRxMcZv676atjNLg,115
17
17
  pydantic_ai_examples/evals/agent.py,sha256=KjCsUiL28RCNT6NwoQnQCwJ0xRw3EUGdIrYhlIjmVqI,2042
18
18
  pydantic_ai_examples/evals/custom_evaluators.py,sha256=Uz37_wbT4uA6s9fl46nTsH3NQKyS1KamMPPP860stww,2245
@@ -25,7 +25,15 @@ pydantic_ai_examples/evals/datasets/time_range_v1.yaml,sha256=pSUawuDen4NQt2RqqJ
25
25
  pydantic_ai_examples/evals/datasets/time_range_v1_schema.json,sha256=xS-wRRSvcoG2FcQZGdL0i332mbjsZh9MOSJAND6VkWU,19932
26
26
  pydantic_ai_examples/evals/datasets/time_range_v2.yaml,sha256=zIffxC5bR2l05MrrECJsTHiagFaz8nIPTH-YrmjJz8I,4326
27
27
  pydantic_ai_examples/evals/datasets/time_range_v2_schema.json,sha256=GDbDtBH1skdbUzK5Wd_0-SNXTmEWHMTYhhshaLsq_1Q,21309
28
- pydantic_ai_examples-0.3.4.dist-info/METADATA,sha256=zYH16Qb3yS8AIA7cpAuj4AEJlLzLVa6SwFPtsi48HaU,2570
29
- pydantic_ai_examples-0.3.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
30
- pydantic_ai_examples-0.3.4.dist-info/licenses/LICENSE,sha256=vA6Jc482lEyBBuGUfD1pYx-cM7jxvLYOxPidZ30t_PQ,1100
31
- pydantic_ai_examples-0.3.4.dist-info/RECORD,,
28
+ pydantic_ai_examples/slack_lead_qualifier/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
+ pydantic_ai_examples/slack_lead_qualifier/agent.py,sha256=0OlqkXYps7bbetRVpv3jgBdwU4kJcYSyy1RycQxfyDk,1936
30
+ pydantic_ai_examples/slack_lead_qualifier/app.py,sha256=KALNxIV8hz0lGxFclZHxolqoH4MsiIYga_CmpidzONE,1036
31
+ pydantic_ai_examples/slack_lead_qualifier/functions.py,sha256=4LsYtPH_SBo_rJ7008DXvKq_SOwiGtweW_DfzJh8R0s,2196
32
+ pydantic_ai_examples/slack_lead_qualifier/modal.py,sha256=f464AaeyP-n3UIfvEVVc4DZ7FQQtsEX7-kUP3VqoPYo,1635
33
+ pydantic_ai_examples/slack_lead_qualifier/models.py,sha256=WTp6D2WCASXqrjPVT3vGgTSYATLPBM3_cjq9wvXMRao,1586
34
+ pydantic_ai_examples/slack_lead_qualifier/slack.py,sha256=VJVfMeUXYClWUJBLHNuaW8PB2sxjNzpTC-O_AJwcxQ4,833
35
+ pydantic_ai_examples/slack_lead_qualifier/store.py,sha256=04vB4eZWKk_Tx0b9K4QuVI1U24JEyJyBS4X76cui7OI,896
36
+ pydantic_ai_examples-0.3.6.dist-info/METADATA,sha256=hKVGb6gcHiy4WDt2tfbH8ajqLn-uMbX2qsXtGvdMVLM,2598
37
+ pydantic_ai_examples-0.3.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
38
+ pydantic_ai_examples-0.3.6.dist-info/licenses/LICENSE,sha256=vA6Jc482lEyBBuGUfD1pYx-cM7jxvLYOxPidZ30t_PQ,1100
39
+ pydantic_ai_examples-0.3.6.dist-info/RECORD,,