pydantic-ai-examples 0.1.2__py3-none-any.whl → 1.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. pydantic_ai_examples/ag_ui/__init__.py +41 -0
  2. pydantic_ai_examples/ag_ui/__main__.py +9 -0
  3. pydantic_ai_examples/ag_ui/api/__init__.py +19 -0
  4. pydantic_ai_examples/ag_ui/api/agentic_chat.py +28 -0
  5. pydantic_ai_examples/ag_ui/api/agentic_generative_ui.py +120 -0
  6. pydantic_ai_examples/ag_ui/api/human_in_the_loop.py +27 -0
  7. pydantic_ai_examples/ag_ui/api/predictive_state_updates.py +78 -0
  8. pydantic_ai_examples/ag_ui/api/shared_state.py +139 -0
  9. pydantic_ai_examples/ag_ui/api/tool_based_generative_ui.py +12 -0
  10. pydantic_ai_examples/bank_support.py +16 -10
  11. pydantic_ai_examples/chat_app.py +8 -7
  12. pydantic_ai_examples/data_analyst.py +107 -0
  13. pydantic_ai_examples/evals/agent.py +1 -1
  14. pydantic_ai_examples/evals/custom_evaluators.py +5 -6
  15. pydantic_ai_examples/evals/example_01_generate_dataset.py +1 -2
  16. pydantic_ai_examples/evals/example_02_add_custom_evaluators.py +1 -2
  17. pydantic_ai_examples/evals/example_03_unit_testing.py +4 -2
  18. pydantic_ai_examples/evals/example_04_compare_models.py +3 -3
  19. pydantic_ai_examples/flight_booking.py +15 -10
  20. pydantic_ai_examples/py.typed +0 -0
  21. pydantic_ai_examples/pydantic_model.py +4 -3
  22. pydantic_ai_examples/question_graph.py +5 -5
  23. pydantic_ai_examples/rag.py +8 -7
  24. pydantic_ai_examples/roulette_wheel.py +1 -2
  25. pydantic_ai_examples/slack_lead_qualifier/__init__.py +0 -0
  26. pydantic_ai_examples/slack_lead_qualifier/agent.py +47 -0
  27. pydantic_ai_examples/slack_lead_qualifier/app.py +36 -0
  28. pydantic_ai_examples/slack_lead_qualifier/functions.py +85 -0
  29. pydantic_ai_examples/slack_lead_qualifier/modal.py +66 -0
  30. pydantic_ai_examples/slack_lead_qualifier/models.py +46 -0
  31. pydantic_ai_examples/slack_lead_qualifier/slack.py +30 -0
  32. pydantic_ai_examples/slack_lead_qualifier/store.py +31 -0
  33. pydantic_ai_examples/sql_gen.py +6 -7
  34. pydantic_ai_examples/stream_markdown.py +5 -4
  35. pydantic_ai_examples/stream_whales.py +4 -16
  36. pydantic_ai_examples/weather_agent.py +36 -88
  37. pydantic_ai_examples/weather_agent_gradio.py +10 -15
  38. {pydantic_ai_examples-0.1.2.dist-info → pydantic_ai_examples-1.12.0.dist-info}/METADATA +17 -13
  39. pydantic_ai_examples-1.12.0.dist-info/RECORD +50 -0
  40. pydantic_ai_examples-1.12.0.dist-info/licenses/LICENSE +21 -0
  41. pydantic_ai_examples-0.1.2.dist-info/RECORD +0 -30
  42. {pydantic_ai_examples-0.1.2.dist-info → pydantic_ai_examples-1.12.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,41 @@
1
+ """Example usage of the AG-UI adapter for Pydantic AI.
2
+
3
+ This provides a FastAPI application that demonstrates how to use the
4
+ Pydantic AI agent with the AG-UI protocol. It includes examples for
5
+ each of the AG-UI dojo features:
6
+ - Agentic Chat
7
+ - Human in the Loop
8
+ - Agentic Generative UI
9
+ - Tool Based Generative UI
10
+ - Shared State
11
+ - Predictive State Updates
12
+ """
13
+
14
+ from __future__ import annotations
15
+
16
+ from fastapi import FastAPI
17
+
18
+ from .api import (
19
+ agentic_chat_app,
20
+ agentic_generative_ui_app,
21
+ human_in_the_loop_app,
22
+ predictive_state_updates_app,
23
+ shared_state_app,
24
+ tool_based_generative_ui_app,
25
+ )
26
+
27
+ app = FastAPI(title='Pydantic AI AG-UI server')
28
+ app.mount('/agentic_chat', agentic_chat_app, 'Agentic Chat')
29
+ app.mount('/agentic_generative_ui', agentic_generative_ui_app, 'Agentic Generative UI')
30
+ app.mount('/human_in_the_loop', human_in_the_loop_app, 'Human in the Loop')
31
+ app.mount(
32
+ '/predictive_state_updates',
33
+ predictive_state_updates_app,
34
+ 'Predictive State Updates',
35
+ )
36
+ app.mount('/shared_state', shared_state_app, 'Shared State')
37
+ app.mount(
38
+ '/tool_based_generative_ui',
39
+ tool_based_generative_ui_app,
40
+ 'Tool Based Generative UI',
41
+ )
@@ -0,0 +1,9 @@
1
+ """Very simply CLI to run the AG-UI example.
2
+
3
+ See https://ai.pydantic.dev/examples/ag-ui/ for more information.
4
+ """
5
+
6
+ if __name__ == '__main__':
7
+ import uvicorn
8
+
9
+ uvicorn.run('pydantic_ai_examples.ag_ui:app', port=9000)
@@ -0,0 +1,19 @@
1
+ """Example API for a AG-UI compatible Pydantic AI Agent UI."""
2
+
3
+ from __future__ import annotations
4
+
5
+ from .agentic_chat import app as agentic_chat_app
6
+ from .agentic_generative_ui import app as agentic_generative_ui_app
7
+ from .human_in_the_loop import app as human_in_the_loop_app
8
+ from .predictive_state_updates import app as predictive_state_updates_app
9
+ from .shared_state import app as shared_state_app
10
+ from .tool_based_generative_ui import app as tool_based_generative_ui_app
11
+
12
+ __all__ = [
13
+ 'agentic_chat_app',
14
+ 'agentic_generative_ui_app',
15
+ 'human_in_the_loop_app',
16
+ 'predictive_state_updates_app',
17
+ 'shared_state_app',
18
+ 'tool_based_generative_ui_app',
19
+ ]
@@ -0,0 +1,28 @@
1
+ """Agentic Chat feature."""
2
+
3
+ from __future__ import annotations
4
+
5
+ from datetime import datetime
6
+ from zoneinfo import ZoneInfo
7
+
8
+ from pydantic_ai import Agent
9
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
10
+
11
+ agent = Agent('openai:gpt-5-mini')
12
+
13
+
14
+ @agent.tool_plain
15
+ async def current_time(timezone: str = 'UTC') -> str:
16
+ """Get the current time in ISO format.
17
+
18
+ Args:
19
+ timezone: The timezone to use.
20
+
21
+ Returns:
22
+ The current time in ISO format string.
23
+ """
24
+ tz: ZoneInfo = ZoneInfo(timezone)
25
+ return datetime.now(tz=tz).isoformat()
26
+
27
+
28
+ app = AGUIApp(agent)
@@ -0,0 +1,120 @@
1
+ """Agentic Generative UI feature."""
2
+
3
+ from __future__ import annotations
4
+
5
+ from textwrap import dedent
6
+ from typing import Any, Literal
7
+
8
+ from pydantic import BaseModel, Field
9
+
10
+ from ag_ui.core import EventType, StateDeltaEvent, StateSnapshotEvent
11
+ from pydantic_ai import Agent
12
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
13
+
14
+ StepStatus = Literal['pending', 'completed']
15
+
16
+
17
+ class Step(BaseModel):
18
+ """Represents a step in a plan."""
19
+
20
+ description: str = Field(description='The description of the step')
21
+ status: StepStatus = Field(
22
+ default='pending',
23
+ description='The status of the step (e.g., pending, completed)',
24
+ )
25
+
26
+
27
+ class Plan(BaseModel):
28
+ """Represents a plan with multiple steps."""
29
+
30
+ steps: list[Step] = Field(default_factory=list, description='The steps in the plan')
31
+
32
+
33
+ class JSONPatchOp(BaseModel):
34
+ """A class representing a JSON Patch operation (RFC 6902)."""
35
+
36
+ op: Literal['add', 'remove', 'replace', 'move', 'copy', 'test'] = Field(
37
+ description='The operation to perform: add, remove, replace, move, copy, or test',
38
+ )
39
+ path: str = Field(description='JSON Pointer (RFC 6901) to the target location')
40
+ value: Any = Field(
41
+ default=None,
42
+ description='The value to apply (for add, replace operations)',
43
+ )
44
+ from_: str | None = Field(
45
+ default=None,
46
+ alias='from',
47
+ description='Source path (for move, copy operations)',
48
+ )
49
+
50
+
51
+ agent = Agent(
52
+ 'openai:gpt-5-mini',
53
+ instructions=dedent(
54
+ """
55
+ When planning use tools only, without any other messages.
56
+ IMPORTANT:
57
+ - Use the `create_plan` tool to set the initial state of the steps
58
+ - Use the `update_plan_step` tool to update the status of each step
59
+ - Do NOT repeat the plan or summarise it in a message
60
+ - Do NOT confirm the creation or updates in a message
61
+ - Do NOT ask the user for additional information or next steps
62
+
63
+ Only one plan can be active at a time, so do not call the `create_plan` tool
64
+ again until all the steps in current plan are completed.
65
+ """
66
+ ),
67
+ )
68
+
69
+
70
+ @agent.tool_plain
71
+ async def create_plan(steps: list[str]) -> StateSnapshotEvent:
72
+ """Create a plan with multiple steps.
73
+
74
+ Args:
75
+ steps: List of step descriptions to create the plan.
76
+
77
+ Returns:
78
+ StateSnapshotEvent containing the initial state of the steps.
79
+ """
80
+ plan: Plan = Plan(
81
+ steps=[Step(description=step) for step in steps],
82
+ )
83
+ return StateSnapshotEvent(
84
+ type=EventType.STATE_SNAPSHOT,
85
+ snapshot=plan.model_dump(),
86
+ )
87
+
88
+
89
+ @agent.tool_plain
90
+ async def update_plan_step(
91
+ index: int, description: str | None = None, status: StepStatus | None = None
92
+ ) -> StateDeltaEvent:
93
+ """Update the plan with new steps or changes.
94
+
95
+ Args:
96
+ index: The index of the step to update.
97
+ description: The new description for the step.
98
+ status: The new status for the step.
99
+
100
+ Returns:
101
+ StateDeltaEvent containing the changes made to the plan.
102
+ """
103
+ changes: list[JSONPatchOp] = []
104
+ if description is not None:
105
+ changes.append(
106
+ JSONPatchOp(
107
+ op='replace', path=f'/steps/{index}/description', value=description
108
+ )
109
+ )
110
+ if status is not None:
111
+ changes.append(
112
+ JSONPatchOp(op='replace', path=f'/steps/{index}/status', value=status)
113
+ )
114
+ return StateDeltaEvent(
115
+ type=EventType.STATE_DELTA,
116
+ delta=changes,
117
+ )
118
+
119
+
120
+ app = AGUIApp(agent)
@@ -0,0 +1,27 @@
1
+ """Human in the Loop Feature.
2
+
3
+ No special handling is required for this feature.
4
+ """
5
+
6
+ from __future__ import annotations
7
+
8
+ from textwrap import dedent
9
+
10
+ from pydantic_ai import Agent
11
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
12
+
13
+ agent = Agent(
14
+ 'openai:gpt-5-mini',
15
+ instructions=dedent(
16
+ """
17
+ When planning tasks use tools only, without any other messages.
18
+ IMPORTANT:
19
+ - Use the `generate_task_steps` tool to display the suggested steps to the user
20
+ - Never repeat the plan, or send a message detailing steps
21
+ - If accepted, confirm the creation of the plan and the number of selected (enabled) steps only
22
+ - If not accepted, ask the user for more information, DO NOT use the `generate_task_steps` tool again
23
+ """
24
+ ),
25
+ )
26
+
27
+ app = AGUIApp(agent)
@@ -0,0 +1,78 @@
1
+ """Predictive State feature."""
2
+
3
+ from __future__ import annotations
4
+
5
+ from textwrap import dedent
6
+
7
+ from pydantic import BaseModel
8
+
9
+ from ag_ui.core import CustomEvent, EventType
10
+ from pydantic_ai import Agent, RunContext
11
+ from pydantic_ai.ui import StateDeps
12
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
13
+
14
+
15
+ class DocumentState(BaseModel):
16
+ """State for the document being written."""
17
+
18
+ document: str = ''
19
+
20
+
21
+ agent = Agent('openai:gpt-5-mini', deps_type=StateDeps[DocumentState])
22
+
23
+
24
+ # Tools which return AG-UI events will be sent to the client as part of the
25
+ # event stream, single events and iterables of events are supported.
26
+ @agent.tool_plain
27
+ async def document_predict_state() -> list[CustomEvent]:
28
+ """Enable document state prediction.
29
+
30
+ Returns:
31
+ CustomEvent containing the event to enable state prediction.
32
+ """
33
+ return [
34
+ CustomEvent(
35
+ type=EventType.CUSTOM,
36
+ name='PredictState',
37
+ value=[
38
+ {
39
+ 'state_key': 'document',
40
+ 'tool': 'write_document',
41
+ 'tool_argument': 'document',
42
+ },
43
+ ],
44
+ ),
45
+ ]
46
+
47
+
48
+ @agent.instructions()
49
+ async def story_instructions(ctx: RunContext[StateDeps[DocumentState]]) -> str:
50
+ """Provide instructions for writing document if present.
51
+
52
+ Args:
53
+ ctx: The run context containing document state information.
54
+
55
+ Returns:
56
+ Instructions string for the document writing agent.
57
+ """
58
+ return dedent(
59
+ f"""You are a helpful assistant for writing documents.
60
+
61
+ Before you start writing, you MUST call the `document_predict_state`
62
+ tool to enable state prediction.
63
+
64
+ To present the document to the user for review, you MUST use the
65
+ `write_document` tool.
66
+
67
+ When you have written the document, DO NOT repeat it as a message.
68
+ If accepted briefly summarize the changes you made, 2 sentences
69
+ max, otherwise ask the user to clarify what they want to change.
70
+
71
+ This is the current document:
72
+
73
+ {ctx.deps.state.document}
74
+ """
75
+ )
76
+
77
+
78
+ app = AGUIApp(agent, deps=StateDeps(DocumentState()))
@@ -0,0 +1,139 @@
1
+ """Shared State feature."""
2
+
3
+ from __future__ import annotations
4
+
5
+ from enum import Enum
6
+ from textwrap import dedent
7
+
8
+ from pydantic import BaseModel, Field
9
+
10
+ from ag_ui.core import EventType, StateSnapshotEvent
11
+ from pydantic_ai import Agent, RunContext
12
+ from pydantic_ai.ui import StateDeps
13
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
14
+
15
+
16
+ class SkillLevel(str, Enum):
17
+ """The level of skill required for the recipe."""
18
+
19
+ BEGINNER = 'Beginner'
20
+ INTERMEDIATE = 'Intermediate'
21
+ ADVANCED = 'Advanced'
22
+
23
+
24
+ class SpecialPreferences(str, Enum):
25
+ """Special preferences for the recipe."""
26
+
27
+ HIGH_PROTEIN = 'High Protein'
28
+ LOW_CARB = 'Low Carb'
29
+ SPICY = 'Spicy'
30
+ BUDGET_FRIENDLY = 'Budget-Friendly'
31
+ ONE_POT_MEAL = 'One-Pot Meal'
32
+ VEGETARIAN = 'Vegetarian'
33
+ VEGAN = 'Vegan'
34
+
35
+
36
+ class CookingTime(str, Enum):
37
+ """The cooking time of the recipe."""
38
+
39
+ FIVE_MIN = '5 min'
40
+ FIFTEEN_MIN = '15 min'
41
+ THIRTY_MIN = '30 min'
42
+ FORTY_FIVE_MIN = '45 min'
43
+ SIXTY_PLUS_MIN = '60+ min'
44
+
45
+
46
+ class Ingredient(BaseModel):
47
+ """A class representing an ingredient in a recipe."""
48
+
49
+ icon: str = Field(
50
+ default='ingredient',
51
+ description="The icon emoji (not emoji code like '\x1f35e', but the actual emoji like 🥕) of the ingredient",
52
+ )
53
+ name: str
54
+ amount: str
55
+
56
+
57
+ class Recipe(BaseModel):
58
+ """A class representing a recipe."""
59
+
60
+ skill_level: SkillLevel = Field(
61
+ default=SkillLevel.BEGINNER,
62
+ description='The skill level required for the recipe',
63
+ )
64
+ special_preferences: list[SpecialPreferences] = Field(
65
+ default_factory=list,
66
+ description='Any special preferences for the recipe',
67
+ )
68
+ cooking_time: CookingTime = Field(
69
+ default=CookingTime.FIVE_MIN, description='The cooking time of the recipe'
70
+ )
71
+ ingredients: list[Ingredient] = Field(
72
+ default_factory=list,
73
+ description='Ingredients for the recipe',
74
+ )
75
+ instructions: list[str] = Field(
76
+ default_factory=list, description='Instructions for the recipe'
77
+ )
78
+
79
+
80
+ class RecipeSnapshot(BaseModel):
81
+ """A class representing the state of the recipe."""
82
+
83
+ recipe: Recipe = Field(
84
+ default_factory=Recipe, description='The current state of the recipe'
85
+ )
86
+
87
+
88
+ agent = Agent('openai:gpt-5-mini', deps_type=StateDeps[RecipeSnapshot])
89
+
90
+
91
+ @agent.tool_plain
92
+ async def display_recipe(recipe: Recipe) -> StateSnapshotEvent:
93
+ """Display the recipe to the user.
94
+
95
+ Args:
96
+ recipe: The recipe to display.
97
+
98
+ Returns:
99
+ StateSnapshotEvent containing the recipe snapshot.
100
+ """
101
+ return StateSnapshotEvent(
102
+ type=EventType.STATE_SNAPSHOT,
103
+ snapshot={'recipe': recipe},
104
+ )
105
+
106
+
107
+ @agent.instructions
108
+ async def recipe_instructions(ctx: RunContext[StateDeps[RecipeSnapshot]]) -> str:
109
+ """Instructions for the recipe generation agent.
110
+
111
+ Args:
112
+ ctx: The run context containing recipe state information.
113
+
114
+ Returns:
115
+ Instructions string for the recipe generation agent.
116
+ """
117
+ return dedent(
118
+ f"""
119
+ You are a helpful assistant for creating recipes.
120
+
121
+ IMPORTANT:
122
+ - Create a complete recipe using the existing ingredients
123
+ - Append new ingredients to the existing ones
124
+ - Use the `display_recipe` tool to present the recipe to the user
125
+ - Do NOT repeat the recipe in the message, use the tool instead
126
+ - Do NOT run the `display_recipe` tool multiple times in a row
127
+
128
+ Once you have created the updated recipe and displayed it to the user,
129
+ summarise the changes in one sentence, don't describe the recipe in
130
+ detail or send it as a message to the user.
131
+
132
+ The current state of the recipe is:
133
+
134
+ {ctx.deps.state.recipe.model_dump_json(indent=2)}
135
+ """,
136
+ )
137
+
138
+
139
+ app = AGUIApp(agent, deps=StateDeps(RecipeSnapshot()))
@@ -0,0 +1,12 @@
1
+ """Tool Based Generative UI feature.
2
+
3
+ No special handling is required for this feature.
4
+ """
5
+
6
+ from __future__ import annotations
7
+
8
+ from pydantic_ai import Agent
9
+ from pydantic_ai.ui.ag_ui.app import AGUIApp
10
+
11
+ agent = Agent('openai:gpt-5-mini')
12
+ app = AGUIApp(agent)
@@ -1,4 +1,4 @@
1
- """Small but complete example of using PydanticAI to build a support agent for a bank.
1
+ """Small but complete example of using Pydantic AI to build a support agent for a bank.
2
2
 
3
3
  Run with:
4
4
 
@@ -7,7 +7,7 @@ Run with:
7
7
 
8
8
  from dataclasses import dataclass
9
9
 
10
- from pydantic import BaseModel, Field
10
+ from pydantic import BaseModel
11
11
 
12
12
  from pydantic_ai import Agent, RunContext
13
13
 
@@ -26,8 +26,11 @@ class DatabaseConn:
26
26
 
27
27
  @classmethod
28
28
  async def customer_balance(cls, *, id: int, include_pending: bool) -> float:
29
- if id == 123 and include_pending:
30
- return 123.45
29
+ if id == 123:
30
+ if include_pending:
31
+ return 123.45
32
+ else:
33
+ return 100.00
31
34
  else:
32
35
  raise ValueError('Customer not found')
33
36
 
@@ -39,16 +42,19 @@ class SupportDependencies:
39
42
 
40
43
 
41
44
  class SupportOutput(BaseModel):
42
- support_advice: str = Field(description='Advice returned to the customer')
43
- block_card: bool = Field(description='Whether to block their card or not')
44
- risk: int = Field(description='Risk level of query', ge=0, le=10)
45
+ support_advice: str
46
+ """Advice returned to the customer"""
47
+ block_card: bool
48
+ """Whether to block their card or not"""
49
+ risk: int
50
+ """Risk level of query"""
45
51
 
46
52
 
47
53
  support_agent = Agent(
48
- 'openai:gpt-4o',
54
+ 'openai:gpt-5',
49
55
  deps_type=SupportDependencies,
50
56
  output_type=SupportOutput,
51
- system_prompt=(
57
+ instructions=(
52
58
  'You are a support agent in our bank, give the '
53
59
  'customer support and judge the risk level of their query. '
54
60
  "Reply using the customer's name."
@@ -56,7 +62,7 @@ support_agent = Agent(
56
62
  )
57
63
 
58
64
 
59
- @support_agent.system_prompt
65
+ @support_agent.instructions
60
66
  async def add_customer_name(ctx: RunContext[SupportDependencies]) -> str:
61
67
  customer_name = await ctx.deps.db.customer_name(id=ctx.deps.customer_id)
62
68
  return f"The customer's name is {customer_name!r}"
@@ -10,14 +10,14 @@ from __future__ import annotations as _annotations
10
10
  import asyncio
11
11
  import json
12
12
  import sqlite3
13
- from collections.abc import AsyncIterator
13
+ from collections.abc import AsyncIterator, Callable
14
14
  from concurrent.futures.thread import ThreadPoolExecutor
15
15
  from contextlib import asynccontextmanager
16
16
  from dataclasses import dataclass
17
17
  from datetime import datetime, timezone
18
18
  from functools import partial
19
19
  from pathlib import Path
20
- from typing import Annotated, Any, Callable, Literal, TypeVar
20
+ from typing import Annotated, Any, Literal, TypeVar
21
21
 
22
22
  import fastapi
23
23
  import logfire
@@ -25,21 +25,22 @@ from fastapi import Depends, Request
25
25
  from fastapi.responses import FileResponse, Response, StreamingResponse
26
26
  from typing_extensions import LiteralString, ParamSpec, TypedDict
27
27
 
28
- from pydantic_ai import Agent
29
- from pydantic_ai.exceptions import UnexpectedModelBehavior
30
- from pydantic_ai.messages import (
28
+ from pydantic_ai import (
29
+ Agent,
31
30
  ModelMessage,
32
31
  ModelMessagesTypeAdapter,
33
32
  ModelRequest,
34
33
  ModelResponse,
35
34
  TextPart,
35
+ UnexpectedModelBehavior,
36
36
  UserPromptPart,
37
37
  )
38
38
 
39
39
  # 'if-token-present' means nothing will be sent (and the example will work) if you don't have logfire configured
40
40
  logfire.configure(send_to_logfire='if-token-present')
41
+ logfire.instrument_pydantic_ai()
41
42
 
42
- agent = Agent('openai:gpt-4o', instrument=True)
43
+ agent = Agent('openai:gpt-5')
43
44
  THIS_DIR = Path(__file__).parent
44
45
 
45
46
 
@@ -126,7 +127,7 @@ async def post_chat(
126
127
  messages = await database.get_messages()
127
128
  # run the agent with the user prompt and the chat history
128
129
  async with agent.run_stream(prompt, message_history=messages) as result:
129
- async for text in result.stream(debounce_by=0.01):
130
+ async for text in result.stream_output(debounce_by=0.01):
130
131
  # text here is a `str` and the frontend wants
131
132
  # JSON encoded ModelResponse, so we create one
132
133
  m = ModelResponse(parts=[TextPart(text)], timestamp=result.timestamp())