pydae 0.56.4__py3-none-any.whl → 0.57__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pydae/__init__.py +1 -1
- pydae/bmapu/bmapu_builder.py +681 -681
- pydae/bmapu/bmapu_builder_line_exp.py +564 -0
- pydae/bmapu/lines/lib_dtr.py +425 -0
- pydae/bmapu/lines/lines.py +237 -1
- pydae/bmapu/lines/temp.py +1823 -0
- pydae/bmapu/lines/temp_ini_cffi.c +1280 -0
- pydae/bmapu/lines/temp_run_cffi.c +1280 -0
- pydae/bmapu/lines/temp_trap_cffi.c +971 -0
- pydae/bmapu/lines/temp_xy_0.json +7 -0
- pydae/bmapu/lines/xy_0.json +7 -0
- pydae/bmapu/pvs/pv_string.py +647 -0
- pydae/build_cffi.py +1 -1
- pydae/build_v2.py +29 -18
- pydae/models/pendulum/api_test.http +106 -0
- pydae/models/pendulum/dae_api.py +107 -0
- pydae/models/pendulum/dashboard.py +211 -0
- pydae/models/pendulum/temp.py +1882 -0
- pydae/models/pendulum/temp_ini_cffi.c +1247 -0
- pydae/models/pendulum/temp_run_cffi.c +1247 -0
- pydae/models/pendulum/temp_trap_cffi.c +950 -0
- pydae/svg_tools/bmapu_tooltips.ipynb +119 -0
- pydae/svg_tools/svg_tools.py +11 -4
- pydae/temp.py +1 -1
- pydae/temp_ini_cffi.c +4 -0
- pydae/temp_run_cffi.c +4 -0
- pydae/temp_trap_cffi.c +4 -0
- pydae/templates/class_dae_template_api.py +1857 -0
- pydae/utils/dates.py +233 -0
- {pydae-0.56.4.dist-info → pydae-0.57.dist-info}/METADATA +4 -2
- {pydae-0.56.4.dist-info → pydae-0.57.dist-info}/RECORD +34 -15
- {pydae-0.56.4.dist-info → pydae-0.57.dist-info}/WHEEL +1 -1
- {pydae-0.56.4.dist-info → pydae-0.57.dist-info/licenses}/COPYING +0 -0
- {pydae-0.56.4.dist-info → pydae-0.57.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,647 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
Created on Thu August 10 23:52:55 2022
|
|
4
|
+
|
|
5
|
+
@author: jmmauricio
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import sympy as sym
|
|
10
|
+
from pydae.utils.ss_num2sym import ss_num2sym
|
|
11
|
+
|
|
12
|
+
def pv_dq_ss(grid,name,bus_name,data_dict):
|
|
13
|
+
'''
|
|
14
|
+
|
|
15
|
+
A substation with a LV to MV transformer
|
|
16
|
+
N_vsc converters connected radially to the substation
|
|
17
|
+
N_eq number of considered VSC
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
VSC VSC
|
|
21
|
+
SS
|
|
22
|
+
VSC VSC
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
VSC model with L filter coupling and purely algebraic.
|
|
27
|
+
PQ control is implemented.
|
|
28
|
+
|
|
29
|
+
parameters
|
|
30
|
+
----------
|
|
31
|
+
|
|
32
|
+
S_n: nominal power in VA
|
|
33
|
+
U_n: nominal rms phase to phase voltage in V
|
|
34
|
+
F_n: nominal frequency in Hz
|
|
35
|
+
X_s: coupling reactance in pu (base machine S_n)
|
|
36
|
+
R_s: coupling resistance in pu (base machine S_n)
|
|
37
|
+
|
|
38
|
+
inputs
|
|
39
|
+
------
|
|
40
|
+
|
|
41
|
+
p_s_ref: active power reference (pu, S_n base)
|
|
42
|
+
q_s_ref: reactive power reference (pu, S_n base)
|
|
43
|
+
v_dc: dc voltage in pu (when v_dc = 1 and m = 1, v_ac = 1)
|
|
44
|
+
|
|
45
|
+
example
|
|
46
|
+
-------
|
|
47
|
+
|
|
48
|
+
"vscs": [{"bus":bus_name,"type":"pv_pq",
|
|
49
|
+
"S_n":1e6,"U_n":400.0,"F_n":50.0,
|
|
50
|
+
"X_s":0.1,"R_s":0.01,"monitor":True,
|
|
51
|
+
"I_sc":3.87,"V_oc":42.1,"I_mp":3.56,"V_mp":33.7,
|
|
52
|
+
"K_vt":-0.160,"K_it":0.065,
|
|
53
|
+
"N_pv_s":25,"N_pv_p":250}]
|
|
54
|
+
|
|
55
|
+
'''
|
|
56
|
+
|
|
57
|
+
sin = sym.sin
|
|
58
|
+
cos = sym.cos
|
|
59
|
+
|
|
60
|
+
## Common
|
|
61
|
+
### inputs
|
|
62
|
+
V_s = sym.Symbol(f"V_{bus_name}", real=True)
|
|
63
|
+
p_s = sym.Symbol(f"p_s_{name}", real=True)
|
|
64
|
+
theta_s = sym.Symbol(f"theta_{bus_name}", real=True)
|
|
65
|
+
v_dc = sym.Symbol(f"v_dc_{name}", real=True)
|
|
66
|
+
p_s_ppc = sym.Symbol(f"p_s_ppc_{name}", real=True)
|
|
67
|
+
q_s_ppc = sym.Symbol(f"q_s_ppc_{name}", real=True)
|
|
68
|
+
|
|
69
|
+
### parameters
|
|
70
|
+
S_n = sym.Symbol(f"S_n_{name}", real=True)
|
|
71
|
+
U_n = sym.Symbol(f"U_n_{name}", real=True)
|
|
72
|
+
V_dc_b = U_n*np.sqrt(2)
|
|
73
|
+
X_s = sym.Symbol(f"X_s_{name}", real=True)
|
|
74
|
+
R_s = sym.Symbol(f"R_s_{name}", real=True)
|
|
75
|
+
|
|
76
|
+
## PV
|
|
77
|
+
K_vt,K_it = sym.symbols(f"K_vt_{name},K_it_{name}", real=True)
|
|
78
|
+
V_oc,V_mp,I_sc,I_mp = sym.symbols(f"V_oc_{name},V_mp_{name},I_sc_{name},I_mp_{name}", real=True)
|
|
79
|
+
temp_deg,irrad = sym.symbols(f"temp_deg_{name},irrad_{name}", real=True)
|
|
80
|
+
T_stc_k,i,v = sym.symbols(f"T_stc_k_{name},i_{name},v_{name}", real=True)
|
|
81
|
+
v_dc,v_dc_v,K_it = sym.symbols(f"v_dc_{name},v_dc_v_{name},K_it_{name}", real=True)
|
|
82
|
+
N_pv_s,N_pv_p = sym.symbols(f"N_pv_s_{name},N_pv_p_{name}", real=True)
|
|
83
|
+
|
|
84
|
+
T_stc_deg = 25.0
|
|
85
|
+
|
|
86
|
+
V_oc_t = N_pv_s*V_oc * (1 + K_vt/100.0*(temp_deg - T_stc_deg))
|
|
87
|
+
V_mp_t = N_pv_s*V_mp * (1 + K_vt/100.0*(temp_deg - T_stc_deg))
|
|
88
|
+
I_sc_t = N_pv_p*I_sc * (1 + K_it/100.0*(temp_deg - T_stc_deg))
|
|
89
|
+
I_mp_t = N_pv_p*I_mp * (1 + K_it/100.0*(temp_deg - T_stc_deg))
|
|
90
|
+
I_mp_i = I_mp_t*irrad/1000.0
|
|
91
|
+
|
|
92
|
+
v_1,i_1 = V_mp_t,I_mp_i
|
|
93
|
+
v_2,i_2 = V_oc_t,0
|
|
94
|
+
|
|
95
|
+
# (v_1 - v)/(v_1 - v_2) = (i_1 - i)/(i_1 - i_2)
|
|
96
|
+
i_pv = p_s*S_n/(v_dc*V_dc_b)
|
|
97
|
+
p_mp = (V_mp_t*I_mp_i)/S_n
|
|
98
|
+
#v_dc_v = v_1 - (i_1 - i_pv)*(v_1 - v_2)/(i_1 - i_2)
|
|
99
|
+
v_dc_v = v_1 - (i_1 - i_pv)*(v_1 - v_2)/(i_1 - i_2)
|
|
100
|
+
g_v_dc = -v_dc + v_dc_v/V_dc_b
|
|
101
|
+
|
|
102
|
+
grid.dae['g'] += [g_v_dc]
|
|
103
|
+
grid.dae['y_ini'] += [ v_dc]
|
|
104
|
+
grid.dae['y_run'] += [ v_dc]
|
|
105
|
+
|
|
106
|
+
grid.dae['u_ini_dict'].update({f'{str(irrad)}':1000.0})
|
|
107
|
+
grid.dae['u_run_dict'].update({f'{str(irrad)}':1000.0})
|
|
108
|
+
|
|
109
|
+
grid.dae['u_ini_dict'].update({f'{str(temp_deg)}':25.0})
|
|
110
|
+
grid.dae['u_run_dict'].update({f'{str(temp_deg)}':25.0})
|
|
111
|
+
|
|
112
|
+
grid.dae['params_dict'].update({
|
|
113
|
+
str(I_sc):data_dict['I_sc'],
|
|
114
|
+
str(I_mp):data_dict['I_mp'],
|
|
115
|
+
str(V_mp):data_dict['V_mp'],
|
|
116
|
+
str(V_oc):data_dict['V_oc'],
|
|
117
|
+
str(N_pv_s):data_dict['N_pv_s'],
|
|
118
|
+
str(N_pv_p):data_dict['N_pv_p'],
|
|
119
|
+
str(K_vt):data_dict['K_vt'],
|
|
120
|
+
str(K_it):data_dict['K_it']
|
|
121
|
+
})
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
#grid.dae['xy_0_dict'].update({f"v_dc_v_{name}":data_dict['V_mp']*data_dict['N_pv_s']})
|
|
126
|
+
grid.dae['xy_0_dict'].update({f"v_dc_{name}":1.5})
|
|
127
|
+
|
|
128
|
+
## VSC control
|
|
129
|
+
### inputs
|
|
130
|
+
p_s_ref = sym.Symbol(f"p_s_ref_{name}", real=True)
|
|
131
|
+
q_s_ref = sym.Symbol(f"q_s_ref_{name}", real=True)
|
|
132
|
+
i_sa_ref = sym.Symbol(f"i_sa_ref_{name}", real=True)
|
|
133
|
+
i_sr_ref = sym.Symbol(f"i_sr_ref_{name}", real=True)
|
|
134
|
+
|
|
135
|
+
### dynamic states
|
|
136
|
+
|
|
137
|
+
### algebraic states
|
|
138
|
+
i_sd_pq_ref,i_sq_pq_ref = sym.symbols(f'i_sd_pq_ref_{name},i_sq_pq_ref_{name}', real=True)
|
|
139
|
+
i_sd_ar_ref,i_sq_ar_ref = sym.symbols(f'i_sd_ar_ref_{name},i_sq_ar_ref_{name}', real=True)
|
|
140
|
+
i_sd_ref,i_sq_ref = sym.symbols(f'i_sd_ref_{name},i_sq_ref_{name}', real=True)
|
|
141
|
+
i_sd_ref,i_sq_ref = sym.symbols(f'i_sd_ref_{name},i_sq_ref_{name}', real=True)
|
|
142
|
+
|
|
143
|
+
v_td_ref,v_tq_ref = sym.symbols(f'v_td_ref_{name},v_tq_ref_{name}', real=True)
|
|
144
|
+
v_lvrt,lvrt_ext = sym.symbols(f"v_lvrt_{name},lvrt_ext_{name}", real=True)
|
|
145
|
+
|
|
146
|
+
x_p_1, x_p_2 = sym.symbols(f"x_p_1_{name},x_p_2_{name}", real=True)
|
|
147
|
+
A_11p,A_12p,A_21p,A_22p = sym.symbols(f"A_11p_{name},A_12p_{name},A_21p_{name},A_22p_{name}", real=True)
|
|
148
|
+
B_11p,B_21p = sym.symbols(f"B_11p_{name},B_21p_{name}", real=True)
|
|
149
|
+
C_11p,C_12p = sym.symbols(f"C_11p_{name},C_12p_{name}", real=True)
|
|
150
|
+
D_11p = sym.symbols(f"D_11p_{name}", real=True)
|
|
151
|
+
|
|
152
|
+
x_q_1, x_q_2 = sym.symbols(f"x_q_1_{name},x_q_2_{name}", real=True)
|
|
153
|
+
A_11q,A_12q,A_21q,A_22q = sym.symbols(f"A_11q_{name},A_12q_{name},A_21q_{name},A_22q_{name}", real=True)
|
|
154
|
+
B_11q,B_21q = sym.symbols(f"B_11q_{name},B_12q_{name}", real=True)
|
|
155
|
+
C_11q,C_12q = sym.symbols(f"C_11q_{name},C_12q_{name}", real=True)
|
|
156
|
+
D_11q = sym.symbols(f"D_11q_{name}", real=True)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
### parameters
|
|
160
|
+
|
|
161
|
+
### auxiliar
|
|
162
|
+
delta = theta_s # ideal PLL
|
|
163
|
+
v_sD = V_s*sin(theta_s) # v_si e^(-j)
|
|
164
|
+
v_sQ = V_s*cos(theta_s) # v_sr
|
|
165
|
+
v_sd = v_sD * cos(delta) - v_sQ * sin(delta)
|
|
166
|
+
v_sq = v_sD * sin(delta) + v_sQ * cos(delta)
|
|
167
|
+
|
|
168
|
+
v_m = sym.sqrt(v_sd**2 + v_sq**2)
|
|
169
|
+
lvrt = sym.Piecewise((0.0,v_m>=v_lvrt),(1.0,v_m<v_lvrt)) + lvrt_ext
|
|
170
|
+
|
|
171
|
+
A_p = A_q = np.array([[-10.0]])
|
|
172
|
+
B_p = B_q = np.array([[-10.0]])
|
|
173
|
+
C_p = C_q = np.array([[1.0]])
|
|
174
|
+
D_p = D_q = np.array([[0.0]])
|
|
175
|
+
|
|
176
|
+
if 'A_p' in data_dict:
|
|
177
|
+
A_p = np.array(data_dict['A_p'])
|
|
178
|
+
B_p = np.array(data_dict['B_p'])
|
|
179
|
+
C_p = np.array(data_dict['C_p'])
|
|
180
|
+
D_p = np.array(data_dict['D_p'])
|
|
181
|
+
|
|
182
|
+
sys_p = ss_num2sym(f'p_{name}',A_p,B_p,C_p,D_p)
|
|
183
|
+
sys_p['dx']= sys_p['dx'].replace(sys_p['u'][0],p_s_ppc)
|
|
184
|
+
sys_p['z_evaluated']= sys_p['z_evaluated'].replace(sys_p['u'][0],p_s_ppc)
|
|
185
|
+
|
|
186
|
+
### dynamic equations
|
|
187
|
+
grid.dae['f'] += list(sys_p['dx'])
|
|
188
|
+
grid.dae['x'] += list(sys_p['x'])
|
|
189
|
+
|
|
190
|
+
p_s_ppc_d = sys_p['z_evaluated'][0,0]
|
|
191
|
+
|
|
192
|
+
grid.dae['params_dict'].update(sys_p['params_dict'])
|
|
193
|
+
|
|
194
|
+
if 'A_q' in data_dict:
|
|
195
|
+
A_q = np.array(data_dict['A_q'])
|
|
196
|
+
B_q = np.array(data_dict['B_q'])
|
|
197
|
+
C_q = np.array(data_dict['C_q'])
|
|
198
|
+
D_q = np.array(data_dict['D_q'])
|
|
199
|
+
|
|
200
|
+
sys_q = ss_num2sym(f'q_{name}',A_q,B_q,C_q,D_q)
|
|
201
|
+
sys_q['dx']= sys_q['dx'].replace(sys_q['u'][0],q_s_ppc)
|
|
202
|
+
sys_q['z_evaluated']= sys_q['z_evaluated'].replace(sys_q['u'][0],q_s_ppc)
|
|
203
|
+
|
|
204
|
+
### dynamic equations
|
|
205
|
+
grid.dae['f'] += list(sys_q['dx'])
|
|
206
|
+
grid.dae['x'] += list(sys_q['x'])
|
|
207
|
+
|
|
208
|
+
q_s_ppc_d = sys_q['z_evaluated'][0,0]
|
|
209
|
+
|
|
210
|
+
grid.dae['params_dict'].update(sys_q['params_dict'])
|
|
211
|
+
|
|
212
|
+
if 'A_pq' in data_dict:
|
|
213
|
+
A_pq = np.array(data_dict['A_pq'])
|
|
214
|
+
B_pq = np.array(data_dict['B_pq'])
|
|
215
|
+
C_pq = np.array(data_dict['C_pq'])
|
|
216
|
+
D_pq = np.array(data_dict['D_pq'])
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
sys_pq = ss_num2sym(f'pq_{name}',A_pq,B_pq,C_pq,D_pq)
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
sys_pq['dx']= sys_pq['dx'].replace(sys_pq['u'][0],p_s_ppc)
|
|
223
|
+
sys_pq['dx']= sys_pq['dx'].replace(sys_pq['u'][1],q_s_ppc)
|
|
224
|
+
sys_pq['z_evaluated']= sys_pq['z_evaluated'].replace(sys_pq['u'][0],p_s_ppc)
|
|
225
|
+
sys_pq['z_evaluated']= sys_pq['z_evaluated'].replace(sys_pq['u'][1],q_s_ppc)
|
|
226
|
+
|
|
227
|
+
### dynamic equations
|
|
228
|
+
grid.dae['f'] += list(sys_pq['dx'])
|
|
229
|
+
grid.dae['x'] += list(sys_pq['x'])
|
|
230
|
+
|
|
231
|
+
p_s_ppc_d = sys_pq['z_evaluated'][0,0]
|
|
232
|
+
q_s_ppc_d = sys_pq['z_evaluated'][1,0]
|
|
233
|
+
|
|
234
|
+
grid.dae['params_dict'].update(sys_pq['params_dict'])
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
p_s_ref = sym.Piecewise((p_s_ppc_d,p_s_ppc_d<p_mp),(p_mp,p_s_ppc_d>=p_mp))
|
|
241
|
+
q_s_ref = q_s_ppc_d
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
### algebraic equations
|
|
246
|
+
#g_i_sd_pq_ref = i_sd_pq_ref*v_sd + i_sq_pq_ref*v_sq - p_s_ref
|
|
247
|
+
#g_i_sq_pq_ref =-i_sq_pq_ref*v_sd + i_sd_pq_ref*v_sq - q_s_ref
|
|
248
|
+
#g_i_sd_ar_ref = i_sd_ar_ref*v_sd/v_m + i_sq_ar_ref*v_sq/v_m - i_sa_ref
|
|
249
|
+
#g_i_sq_ar_ref =-i_sq_ar_ref*v_sd/v_m + i_sd_ar_ref*v_sq/v_m - i_sr_ref
|
|
250
|
+
#g_v_td_ref = v_td_ref - R_s*i_sd_ref + X_s*i_sq_ref - v_sd
|
|
251
|
+
#g_v_tq_ref = v_tq_ref - R_s*i_sq_ref - X_s*i_sd_ref - v_sq
|
|
252
|
+
|
|
253
|
+
i_sd_ar_ref = i_sa_ref*v_sd/sym.sqrt(v_sd**2 + v_sq**2) + i_sr_ref*v_sq/sym.sqrt(v_sd**2 + v_sq**2)
|
|
254
|
+
i_sq_ar_ref = i_sa_ref*v_sq/sym.sqrt(v_sd**2 + v_sq**2) - i_sr_ref*v_sd/sym.sqrt(v_sd**2 + v_sq**2)
|
|
255
|
+
|
|
256
|
+
i_sd_pq_ref = (p_s_ref*v_sd + q_s_ref*v_sq)/(v_sd**2 + v_sq**2)
|
|
257
|
+
i_sq_pq_ref = (p_s_ref*v_sq - q_s_ref*v_sd)/(v_sd**2 + v_sq**2)
|
|
258
|
+
i_sd_ref_nosat = (1.0-lvrt)*i_sd_pq_ref + lvrt*i_sd_ar_ref
|
|
259
|
+
i_sq_ref_nosat = (1.0-lvrt)*i_sq_pq_ref + lvrt*i_sq_ar_ref
|
|
260
|
+
g_i_sd_ref = -i_sd_ref + sym.Piecewise((-1.2,i_sd_ref_nosat<-1.2),(1.2,i_sd_ref_nosat>1.2),(i_sd_ref_nosat,True))
|
|
261
|
+
g_i_sq_ref = -i_sq_ref + sym.Piecewise((-1.2,i_sq_ref_nosat<-1.2),(1.2,i_sq_ref_nosat>1.2),(i_sq_ref_nosat,True))
|
|
262
|
+
|
|
263
|
+
v_td_ref = R_s*i_sd_ref - X_s*i_sq_ref + v_sd
|
|
264
|
+
v_tq_ref = R_s*i_sq_ref + X_s*i_sd_ref + v_sq
|
|
265
|
+
|
|
266
|
+
v_tD_ref = v_td_ref * cos(delta) + v_tq_ref * sin(delta)
|
|
267
|
+
v_tQ_ref =-v_td_ref * sin(delta) + v_tq_ref * cos(delta)
|
|
268
|
+
v_ti_ref = v_tD_ref
|
|
269
|
+
v_tr_ref = v_tQ_ref
|
|
270
|
+
m_ref = sym.sqrt(v_tr_ref**2 + v_ti_ref**2)/v_dc
|
|
271
|
+
theta_t_ref = sym.atan2(v_ti_ref,v_tr_ref)
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
### dae
|
|
275
|
+
grid.dae['g'] += [g_i_sd_ref, g_i_sq_ref]
|
|
276
|
+
grid.dae['y_ini'] += [i_sq_ref, i_sd_ref]
|
|
277
|
+
grid.dae['y_run'] += [i_sq_ref, i_sd_ref]
|
|
278
|
+
|
|
279
|
+
grid.dae['u_ini_dict'].update({f'lvrt_ext_{name}':0.0})
|
|
280
|
+
grid.dae['u_run_dict'].update({f'lvrt_ext_{name}':0.0})
|
|
281
|
+
|
|
282
|
+
grid.dae['u_ini_dict'].update({f'p_s_ppc_{name}':1.5})
|
|
283
|
+
grid.dae['u_run_dict'].update({f'p_s_ppc_{name}':1.5})
|
|
284
|
+
|
|
285
|
+
grid.dae['u_ini_dict'].update({f'q_s_ppc_{name}':0.0})
|
|
286
|
+
grid.dae['u_run_dict'].update({f'q_s_ppc_{name}':0.0})
|
|
287
|
+
|
|
288
|
+
grid.dae['u_ini_dict'].update({f'{str(i_sa_ref)}':0.0})
|
|
289
|
+
grid.dae['u_run_dict'].update({f'{str(i_sa_ref)}':0.0})
|
|
290
|
+
|
|
291
|
+
grid.dae['u_ini_dict'].update({f'{str(i_sr_ref)}':0.0})
|
|
292
|
+
grid.dae['u_run_dict'].update({f'{str(i_sr_ref)}':0.0})
|
|
293
|
+
|
|
294
|
+
grid.dae['params_dict'].update({f'{str(v_lvrt)}':0.8})
|
|
295
|
+
# grid.dae['params_dict'].update({f'{str(T_lp1p)}':0.1,f'{str(T_lp2p)}':0.1})
|
|
296
|
+
# grid.dae['params_dict'].update({f'{str(T_lp1q)}':0.1,f'{str(T_lp2q)}':0.1})
|
|
297
|
+
# grid.dae['params_dict'].update({f'{str(PRampUp)}':2.5,f'{str(PRampDown)}':-2.5})
|
|
298
|
+
# grid.dae['params_dict'].update({f'{str(QRampUp)}':2.5,f'{str(QRampDown)}':-2.5})
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
### outputs
|
|
304
|
+
grid.dae['h_dict'].update({f"m_ref_{name}":m_ref})
|
|
305
|
+
grid.dae['h_dict'].update({f"v_sd_{name}":v_sd})
|
|
306
|
+
grid.dae['h_dict'].update({f"v_sq_{name}":v_sq})
|
|
307
|
+
grid.dae['h_dict'].update({f"lvrt_{name}":lvrt})
|
|
308
|
+
grid.dae['h_dict'].update({f'p_s_ppc_{name}':p_s_ppc})
|
|
309
|
+
grid.dae['h_dict'].update({f'q_s_ppc_{name}':q_s_ppc})
|
|
310
|
+
|
|
311
|
+
## VSC model
|
|
312
|
+
# m = sym.Symbol(f"m_{name}", real=True)
|
|
313
|
+
# theta_t = sym.Symbol(f"theta_t_{name}", real=True)
|
|
314
|
+
|
|
315
|
+
### dynamic states
|
|
316
|
+
#m_f = sym.Symbol(f"m_f_{name}", real=True)
|
|
317
|
+
|
|
318
|
+
### algebraic states
|
|
319
|
+
i_si = sym.Symbol(f"i_si_{name}", real=True)
|
|
320
|
+
i_sr = sym.Symbol(f"i_sr_{name}", real=True)
|
|
321
|
+
p_s = sym.Symbol(f"p_s_{name}", real=True)
|
|
322
|
+
q_s = sym.Symbol(f"q_s_{name}", real=True)
|
|
323
|
+
|
|
324
|
+
### parameters
|
|
325
|
+
F_n = sym.Symbol(f"F_n_{name}", real=True)
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
params_list = ['S_n','F_n','U_n','X_s','R_s']
|
|
329
|
+
|
|
330
|
+
### auxiliar
|
|
331
|
+
v_si = V_s*sin(theta_s) # v_D, e^(-j)
|
|
332
|
+
v_sr = V_s*cos(theta_s) # v_Q
|
|
333
|
+
Omega_b = 2*np.pi*F_n
|
|
334
|
+
m = m_ref
|
|
335
|
+
theta_t = theta_t_ref
|
|
336
|
+
v_t_m = m*v_dc
|
|
337
|
+
v_tr = v_t_m*cos(theta_t)
|
|
338
|
+
v_ti = v_t_m*sin(theta_t)
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
### dynamic equations
|
|
343
|
+
|
|
344
|
+
### algebraic equations
|
|
345
|
+
v_ti = v_ti_ref
|
|
346
|
+
v_tr = v_tr_ref
|
|
347
|
+
g_i_si = v_ti - R_s*i_si + X_s*i_sr - v_si
|
|
348
|
+
g_i_sr = v_tr - R_s*i_sr - X_s*i_si - v_sr
|
|
349
|
+
# i_sr = (-R_s*v_sr + R_s*v_tr + X_s*v_si - X_s*v_ti)/(R_s**2 + X_s**2)
|
|
350
|
+
# i_si = (-R_s*v_si + R_s*v_ti - X_s*v_sr + X_s*v_tr)/(R_s**2 + X_s**2)
|
|
351
|
+
g_p_s = i_si*v_si + i_sr*v_sr - p_s
|
|
352
|
+
g_q_s = i_si*v_sr - i_sr*v_si - q_s
|
|
353
|
+
|
|
354
|
+
### dae
|
|
355
|
+
f_vsg = []
|
|
356
|
+
x_vsg = []
|
|
357
|
+
g_vsg = [g_i_si,g_i_sr,g_p_s,g_q_s]
|
|
358
|
+
y_vsg = [ i_sr, i_si, p_s, q_s]
|
|
359
|
+
|
|
360
|
+
grid.dae['f'] += f_vsg
|
|
361
|
+
grid.dae['x'] += x_vsg
|
|
362
|
+
grid.dae['g'] += g_vsg
|
|
363
|
+
grid.dae['y_ini'] += y_vsg
|
|
364
|
+
grid.dae['y_run'] += y_vsg
|
|
365
|
+
|
|
366
|
+
# grid.dae['u_ini_dict'].update({f'{m}':1.0})
|
|
367
|
+
# grid.dae['u_run_dict'].update({f'{m}':1.0})
|
|
368
|
+
|
|
369
|
+
# grid.dae['u_ini_dict'].update({f'{theta_t}':0.0})
|
|
370
|
+
# grid.dae['u_run_dict'].update({f'{theta_t}':0.0})
|
|
371
|
+
|
|
372
|
+
# grid.dae['u_ini_dict'].update({f'{v_dc}':1.2})
|
|
373
|
+
# grid.dae['u_run_dict'].update({f'{v_dc}':1.2})
|
|
374
|
+
|
|
375
|
+
grid.dae['xy_0_dict'].update({str(p_s):0.5})
|
|
376
|
+
|
|
377
|
+
### outputs
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
for item in params_list:
|
|
382
|
+
grid.dae['params_dict'].update({f"{item}_{name}":data_dict[item]})
|
|
383
|
+
|
|
384
|
+
if 'monitor' in data_dict:
|
|
385
|
+
if data_dict['monitor'] == True:
|
|
386
|
+
|
|
387
|
+
grid.dae['h_dict'].update({f"v_dc_v_{name}":v_dc*V_dc_b})
|
|
388
|
+
grid.dae['h_dict'].update({f"v_ac_v_{name}":v_t_m*U_n})
|
|
389
|
+
grid.dae['h_dict'].update({f"v_dc_v_{name}":v_dc_v})
|
|
390
|
+
grid.dae['h_dict'].update({f"p_mp_{name}":p_mp})
|
|
391
|
+
grid.dae['h_dict'].update({f"i_pv_{name}":i_pv})
|
|
392
|
+
grid.dae['h_dict'].update({f"v_dc_{name}":v_dc})
|
|
393
|
+
grid.dae['h_dict'].update({f"p_s_{name}":p_s})
|
|
394
|
+
grid.dae['h_dict'].update({f"q_s_{name}":q_s})
|
|
395
|
+
grid.dae['h_dict'].update({f"v_ti_{name}":v_ti})
|
|
396
|
+
grid.dae['h_dict'].update({f"v_tr_{name}":v_tr})
|
|
397
|
+
grid.dae['h_dict'].update({f"i_si_{name}":i_si})
|
|
398
|
+
grid.dae['h_dict'].update({f"i_sr_{name}":i_sr})
|
|
399
|
+
i_s = sym.sqrt(i_sr**2 + i_si**2)
|
|
400
|
+
grid.dae['h_dict'].update({f"i_s_{name}":i_s})
|
|
401
|
+
|
|
402
|
+
p_W = p_s * S_n
|
|
403
|
+
q_var = q_s * S_n
|
|
404
|
+
|
|
405
|
+
return p_W,q_var
|
|
406
|
+
|
|
407
|
+
def sym2model():
|
|
408
|
+
v_sd = sym.Symbol(f"v_sd", real=True)
|
|
409
|
+
v_sq = sym.Symbol(f"v_sq", real=True)
|
|
410
|
+
p_s_ref = sym.Symbol(f"p_s_ref", real=True)
|
|
411
|
+
q_s_ref = sym.Symbol(f"q_s_ref", real=True)
|
|
412
|
+
i_sa_ref = sym.Symbol(f"i_sa_ref", real=True)
|
|
413
|
+
i_sr_ref = sym.Symbol(f"i_sr_ref", real=True)
|
|
414
|
+
i_sd_pq_ref,i_sq_pq_ref = sym.symbols(f'i_sd_pq_ref,i_sq_pq_ref', real=True)
|
|
415
|
+
i_sd_ar_ref,i_sq_ar_ref = sym.symbols(f'i_sd_ar_ref,i_sq_ar_ref', real=True)
|
|
416
|
+
|
|
417
|
+
|
|
418
|
+
g_i_sd_pq_ref = i_sd_pq_ref*v_sd + i_sq_pq_ref*v_sq - p_s_ref
|
|
419
|
+
g_i_sq_pq_ref =-i_sq_pq_ref*v_sd + i_sd_pq_ref*v_sq - q_s_ref
|
|
420
|
+
|
|
421
|
+
sol = sym.solve([g_i_sd_pq_ref,g_i_sq_pq_ref],[i_sd_pq_ref,i_sq_pq_ref])
|
|
422
|
+
|
|
423
|
+
for item in sol:
|
|
424
|
+
print(f"{item} = {sol[item]}")
|
|
425
|
+
|
|
426
|
+
v_m = sym.sqrt(v_sd**2 + v_sq**2)
|
|
427
|
+
g_i_sd_ar_ref = i_sd_ar_ref*v_sd/v_m + i_sq_ar_ref*v_sq/v_m - i_sa_ref
|
|
428
|
+
g_i_sq_ar_ref =-i_sq_ar_ref*v_sd/v_m + i_sd_ar_ref*v_sq/v_m - i_sr_ref
|
|
429
|
+
|
|
430
|
+
sol = sym.solve([g_i_sd_ar_ref,g_i_sq_ar_ref],[i_sd_ar_ref,i_sq_ar_ref])
|
|
431
|
+
|
|
432
|
+
for item in sol:
|
|
433
|
+
print(f"{item} = {sol[item]}")
|
|
434
|
+
|
|
435
|
+
# coupling filter:
|
|
436
|
+
v_tr,v_ti = sym.symbols(f"v_tr,v_ti", real=True)
|
|
437
|
+
i_sr,i_si = sym.symbols(f"i_sr,i_si", real=True)
|
|
438
|
+
v_sr,v_si = sym.symbols(f"v_sr,v_si", real=True)
|
|
439
|
+
R_s,X_s = sym.symbols(f"R_s,X_s", real=True)
|
|
440
|
+
|
|
441
|
+
g_i_si = v_ti - R_s*i_si + X_s*i_sr - v_si
|
|
442
|
+
g_i_sr = v_tr - R_s*i_sr - X_s*i_si - v_sr
|
|
443
|
+
sol = sym.solve([g_i_sr,g_i_si],[i_sr,i_si])
|
|
444
|
+
|
|
445
|
+
for item in sol:
|
|
446
|
+
print(f"{item} = {sol[item]}")
|
|
447
|
+
|
|
448
|
+
# simplified PV module
|
|
449
|
+
|
|
450
|
+
|
|
451
|
+
def change_ss(model,A,B,C,D):
|
|
452
|
+
pass
|
|
453
|
+
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
def test_build():
|
|
457
|
+
from pydae.bmapu import bmapu_builder
|
|
458
|
+
|
|
459
|
+
data = {
|
|
460
|
+
"system":{"name":"test_model","S_base":100e6, "K_p_agc":0.0,"K_i_agc":0.0,"K_xif":0.01},
|
|
461
|
+
"buses":[{"name":"1", "P_W":0.0,"Q_var":0.0,"U_kV":20.0},
|
|
462
|
+
{"name":"2", "P_W":0.0,"Q_var":0.0,"U_kV":20.0}
|
|
463
|
+
],
|
|
464
|
+
"lines":[{"bus_j":"1", "bus_k":"2", "X_pu":0.05,"R_pu":0.0,"Bs_pu":0.0,"S_mva":10000.0}],
|
|
465
|
+
"sources":[{"bus":"2","type":"genape", "S_n":10000e6,"F_n":50.0,"X_v":0.001,"R_v":0.0,"K_delta":0.001,"K_alpha":1e-6}],
|
|
466
|
+
"pvs":[{
|
|
467
|
+
"bus": "1",
|
|
468
|
+
"type": "pv_dq_ss",
|
|
469
|
+
"S_n": 3000000.0,
|
|
470
|
+
"U_n": 400.0,
|
|
471
|
+
"F_n": 50.0,
|
|
472
|
+
"X_s": 0.1,
|
|
473
|
+
"R_s": 0.0001,
|
|
474
|
+
"monitor": False,
|
|
475
|
+
"I_sc": 8,
|
|
476
|
+
"V_oc": 42.1,
|
|
477
|
+
"I_mp": 3.56,
|
|
478
|
+
"V_mp": 33.7,
|
|
479
|
+
"K_vt": -0.16,
|
|
480
|
+
"K_it": 0.065,
|
|
481
|
+
"N_pv_s": 23,
|
|
482
|
+
"N_pv_p": 1087,
|
|
483
|
+
# # Close loop
|
|
484
|
+
# "A_p": [[ 2.22745959, 2.89134367],[-5.98640302, -5.13853719]],
|
|
485
|
+
# "B_p":[[-2.62892537],[-3.35747765]],
|
|
486
|
+
# "C_p":[[-0.53183608 ,-0.28013641]],
|
|
487
|
+
# "D_p":[[0.]],
|
|
488
|
+
# "A_q": [[ 2.22745959, 2.89134367],[-5.98640302, -5.13853719]],
|
|
489
|
+
# "B_q":[[-2.62892537],[-3.35747765]],
|
|
490
|
+
# "C_q":[[-0.53183608 ,-0.28013641]],
|
|
491
|
+
# "D_q":[[0.]],
|
|
492
|
+
# Close loop pq coupled
|
|
493
|
+
"A_pq": [[ 2.22745959, 2.89134367, 0.0, 0.0],
|
|
494
|
+
[-5.98640302, -5.13853719, 0.0, 0.0],
|
|
495
|
+
[ 0.0, 0.0, 2.22745959, 2.89134367],
|
|
496
|
+
[ 0.0, 0.0,-5.98640302,-5.13853719]],
|
|
497
|
+
"B_pq":[[-2.62892537, 0.0],
|
|
498
|
+
[-3.35747765, 0.0],
|
|
499
|
+
[ 0.0,-2.62892537],
|
|
500
|
+
[ 0.0,-3.35747765]],
|
|
501
|
+
"C_pq":[[-0.53183608 ,-0.28013641, 0.0, 0.0],
|
|
502
|
+
[ 0.0, 0.0,-0.53183608 ,-0.28013641]],
|
|
503
|
+
"D_pq":[[0.,0.],[0.,0.]],
|
|
504
|
+
# Open loop
|
|
505
|
+
# "A_p":[[ 0.33137699, 2.1000962 ], [-9.11825055, -6.20455623]],
|
|
506
|
+
# "B_p":[[-3.44429742], [-5.67395313]],
|
|
507
|
+
# "C_p":[[-0.53651084, -0.02498652]],
|
|
508
|
+
# "D_p":[[0.]],
|
|
509
|
+
# "A_q":[[ 0.33137699, 2.1000962 ], [-9.11825055, -6.20455623]],
|
|
510
|
+
# "B_q":[[-3.44429742], [-5.67395313]],
|
|
511
|
+
# "C_q":[[-0.53651084, -0.02498652]],
|
|
512
|
+
# "D_q":[[0.]],
|
|
513
|
+
# Open loop high order
|
|
514
|
+
# "A_p":[[ 8.38271015, -1.7571524 , 1.73425499, -1.30126187, -0.65661779, 0.19946719, -0.27419108],
|
|
515
|
+
# [ 9.21838154, 4.00099853, -7.81509434, 4.35694934, 1.93722067,-0.5469874 , 0.71654726],
|
|
516
|
+
# [-2.40905211, 2.06691677, 1.45133758, -4.4215498 , -1.4626006 , 0.3642175 , -0.44442714],
|
|
517
|
+
# [ 1.49417659, -0.95112217, 3.64830378, -0.65345492, 2.62637562,-0.48697018, 0.52522081],
|
|
518
|
+
# [ 1.76580717, -0.98874696, 2.81999399, -6.13573245, -2.77497888,-1.4733826 , 1.18610772],
|
|
519
|
+
# [-3.98772761, 2.0720406 , -5.20922579, 8.4373616 , 10.92677635,-5.37878648, -6.41515444],
|
|
520
|
+
# [ 2.15679302, -1.06505127, 2.48988235, -3.55911887, -3.43500894, 2.50096692, -9.87800368]],
|
|
521
|
+
# "B_p":[[ 0.76019693],[-1.61641228],[ 0.79263982],[-0.70153677],[-1.0642704 ],[ 2.92345721],[-1.86444729]],
|
|
522
|
+
# "C_p":[[ 0.53471062, -0.22393912, 0.43508347, -0.49268284, -0.34211526,0.13852951, -0.2621668 ]],
|
|
523
|
+
# "D_p":[[0.]],
|
|
524
|
+
# "A_q":[[ 8.38271015, -1.7571524 , 1.73425499, -1.30126187, -0.65661779, 0.19946719, -0.27419108],
|
|
525
|
+
# [ 9.21838154, 4.00099853, -7.81509434, 4.35694934, 1.93722067,-0.5469874 , 0.71654726],
|
|
526
|
+
# [-2.40905211, 2.06691677, 1.45133758, -4.4215498 , -1.4626006 , 0.3642175 , -0.44442714],
|
|
527
|
+
# [ 1.49417659, -0.95112217, 3.64830378, -0.65345492, 2.62637562,-0.48697018, 0.52522081],
|
|
528
|
+
# [ 1.76580717, -0.98874696, 2.81999399, -6.13573245, -2.77497888,-1.4733826 , 1.18610772],
|
|
529
|
+
# [-3.98772761, 2.0720406 , -5.20922579, 8.4373616 , 10.92677635,-5.37878648, -6.41515444],
|
|
530
|
+
# [ 2.15679302, -1.06505127, 2.48988235, -3.55911887, -3.43500894, 2.50096692, -9.87800368]],
|
|
531
|
+
# "B_q":[[ 0.76019693],[-1.61641228],[ 0.79263982],[-0.70153677],[-1.0642704 ],[ 2.92345721],[-1.86444729]],
|
|
532
|
+
# "C_q":[[ 0.53471062, -0.22393912, 0.43508347, -0.49268284, -0.34211526,0.13852951, -0.2621668 ]],
|
|
533
|
+
# "D_q":[[0.]],
|
|
534
|
+
}]
|
|
535
|
+
}
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
grid = bmapu_builder.bmapu(data)
|
|
540
|
+
#grid.checker()
|
|
541
|
+
grid.verbose = False
|
|
542
|
+
grid.build('temp')
|
|
543
|
+
|
|
544
|
+
def test_run():
|
|
545
|
+
import temp
|
|
546
|
+
|
|
547
|
+
model = temp.model()
|
|
548
|
+
#model.ini({},'xy_0.json')
|
|
549
|
+
model.ini({},1)
|
|
550
|
+
|
|
551
|
+
model.report_x()
|
|
552
|
+
model.report_y()
|
|
553
|
+
model.report_z()
|
|
554
|
+
|
|
555
|
+
if __name__=='__main__':
|
|
556
|
+
|
|
557
|
+
test_build()
|
|
558
|
+
test_run()
|
|
559
|
+
|
|
560
|
+
# def test():
|
|
561
|
+
|
|
562
|
+
# from pydae.bmapu import bmapu_builder
|
|
563
|
+
# import pytest
|
|
564
|
+
|
|
565
|
+
# grid = bmapu_builder.bmapu('bess_pq_Hithium.hjson')
|
|
566
|
+
# #grid.checker()
|
|
567
|
+
# grid.verbose = False
|
|
568
|
+
# grid.build('temp')
|
|
569
|
+
|
|
570
|
+
# import temp
|
|
571
|
+
|
|
572
|
+
# model = temp.model()
|
|
573
|
+
# soc_ref = 0.5
|
|
574
|
+
# model.ini({'soc_ref_1':soc_ref},'xy_0.json')
|
|
575
|
+
|
|
576
|
+
# assert model.get_value('soc_1') == pytest.approx(soc_ref, rel=0.001)
|
|
577
|
+
# assert model.get_value('p_dc_1') == pytest.approx(0.0)
|
|
578
|
+
|
|
579
|
+
|
|
580
|
+
# ### run:
|
|
581
|
+
# model.Dt = 1.0
|
|
582
|
+
# model.run(1.0,{})
|
|
583
|
+
# model.run(0.5*3600,{'p_s_ref_1': 1.0}) # half an hour discharging
|
|
584
|
+
|
|
585
|
+
# assert model.get_value('soc_1') == pytest.approx(0.25, rel=0.05)
|
|
586
|
+
|
|
587
|
+
# model.run(1.0*3600,{'p_s_ref_1':-1.0}) # half an hour discharging
|
|
588
|
+
# model.post()
|
|
589
|
+
|
|
590
|
+
# assert model.get_value('soc_1') == pytest.approx(0.5, rel=0.05)
|
|
591
|
+
|
|
592
|
+
|
|
593
|
+
|
|
594
|
+
|
|
595
|
+
|
|
596
|
+
|
|
597
|
+
|
|
598
|
+
|
|
599
|
+
|
|
600
|
+
# #sym2model()
|
|
601
|
+
# if __name__ == "__main__":
|
|
602
|
+
|
|
603
|
+
|
|
604
|
+
|
|
605
|
+
# grid = bmapu_builder.bmapu(data)
|
|
606
|
+
# #grid.checker()
|
|
607
|
+
# grid.uz_jacs = True
|
|
608
|
+
# grid.verbose = False
|
|
609
|
+
# grid.construct('test_model')
|
|
610
|
+
|
|
611
|
+
# bus_name = "1"
|
|
612
|
+
# data_dict = {"bus":bus_name,"type":"pv_pq",
|
|
613
|
+
# "S_n":1e6,"U_n":400.0,"F_n":50.0,
|
|
614
|
+
# "X_s":0.1,"R_s":0.01,"monitor":True,
|
|
615
|
+
# "I_sc":8,"V_oc":42.1,"I_mp":3.56,"V_mp":33.7,
|
|
616
|
+
# "K_vt":-0.160,"K_it":0.065,
|
|
617
|
+
# "N_pv_s":25,"N_pv_p":250}
|
|
618
|
+
|
|
619
|
+
# p_W,q_var = pv_dq(grid,'1','1',data_dict)
|
|
620
|
+
|
|
621
|
+
# # grid power injection
|
|
622
|
+
# idx_bus = [bus['name'] for bus in grid.data['buses']].index(bus_name) # get the number of the bus where the syn is connected
|
|
623
|
+
|
|
624
|
+
# S_base = sym.Symbol('S_base', real = True)
|
|
625
|
+
# grid.dae['g'][idx_bus*2] += -p_W/S_base
|
|
626
|
+
# grid.dae['g'][idx_bus*2+1] += -q_var/S_base
|
|
627
|
+
|
|
628
|
+
# grid.compile()
|
|
629
|
+
|
|
630
|
+
# import test_model
|
|
631
|
+
|
|
632
|
+
# xy_0 = {
|
|
633
|
+
# "V_1": 1.0,
|
|
634
|
+
# "theta_1": 0.0,
|
|
635
|
+
# "V_2": 1.0,
|
|
636
|
+
# "theta_2": 0.0,
|
|
637
|
+
# "omega_coi": 1.0,
|
|
638
|
+
# "omega_2": 1.0,
|
|
639
|
+
# "v_dc_v_1":800
|
|
640
|
+
# }
|
|
641
|
+
# model = test_model.model()
|
|
642
|
+
# model.ini({'p_s_ppc_1':0.9,'q_s_ppc_1':0.2,'irrad_1':100,'temp_deg_1':75,
|
|
643
|
+
# 'v_ref_2':1.0},xy_0)
|
|
644
|
+
|
|
645
|
+
# #model.report_y()
|
|
646
|
+
# model.report_z()
|
|
647
|
+
# #model.report_u()
|