pydae 0.54.2__py3-none-any.whl → 0.54.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pydae/__init__.py +1 -1
- pydae/bmapu/miscellaneous/pll.py +10 -9
- pydae/bmapu/syns/milano4ord.py +1 -1
- pydae/bmapu/vscs/bess_pq.ipynb +1 -1
- pydae/bmapu/vscs/temp.py +26 -26
- pydae/bmapu/vscs/temp_cffi.c +1923 -807
- pydae/bmapu/vscs/temp_xy_0.json +8 -0
- pydae/bmapu/vscs/vdc_pq_qv_pfr.ipynb +116 -0
- pydae/bmapu/vscs/vsc_pq_qv_pfr.hjson +9 -0
- pydae/bmapu/vscs/vsc_pq_qv_pfr.py +134 -0
- pydae/bmapu/vscs/vscs.py +10 -3
- pydae/bmapu/vscs/xy_0.json +5 -11
- {pydae-0.54.2.dist-info → pydae-0.54.3.dist-info}/METADATA +1 -1
- {pydae-0.54.2.dist-info → pydae-0.54.3.dist-info}/RECORD +17 -13
- {pydae-0.54.2.dist-info → pydae-0.54.3.dist-info}/COPYING +0 -0
- {pydae-0.54.2.dist-info → pydae-0.54.3.dist-info}/LICENSE +0 -0
- {pydae-0.54.2.dist-info → pydae-0.54.3.dist-info}/WHEEL +0 -0
pydae/bmapu/vscs/temp_cffi.c
CHANGED
|
@@ -568,787 +568,1639 @@ static void (*_cffi_call_python_org)(struct _cffi_externpy_s *, char *);
|
|
|
568
568
|
|
|
569
569
|
void f_ini_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
570
570
|
|
|
571
|
-
out[0] =
|
|
572
|
-
out[1] =
|
|
573
|
-
out[2] = -x[
|
|
574
|
-
out[3] =
|
|
571
|
+
out[0] = p[13]*(314.15926535897933*p[11]*x[1] + 314.15926535897933*p[10]*(y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1])) - 314.15926535897933*y[12] + 314.15926535897933);
|
|
572
|
+
out[1] = y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1]);
|
|
573
|
+
out[2] = (p[11]*x[1] + p[10]*(y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1])) - x[2] + 1.0)/p[12];
|
|
574
|
+
out[3] = (y[6] - x[3])/p[12];
|
|
575
|
+
out[4] = 6.2831853071795862*p[15]*(y[7] - y[12]) - p[18]*(x[4] - u[11]);
|
|
576
|
+
out[5] = -x[5]*p[19] + u[8];
|
|
577
|
+
out[6] = -x[6]*p[20] + u[13];
|
|
578
|
+
out[7] = -p[23]*x[7] - y[12] + 1;
|
|
575
579
|
|
|
576
580
|
}
|
|
577
581
|
void g_ini_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
578
582
|
|
|
579
|
-
out[0] = -u[0]/p[0] + y[2]
|
|
580
|
-
out[1] = -u[1]/p[0] + y[2]*y[0]*(p[2]*cos(y[
|
|
581
|
-
out[2] = -u[2]/p[0] +
|
|
582
|
-
out[3] = -u[3]/p[0] +
|
|
583
|
-
out[4] = -
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
out[
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
583
|
+
out[0] = -u[0]/p[0] + pow(y[0], 2)*p[1] + y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) - p[6]*y[4]/p[0];
|
|
584
|
+
out[1] = -u[1]/p[0] + pow(y[0], 2)*(-p[2] - 1.0/2.0*p[3]) + y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3])) - p[6]*y[5]/p[0];
|
|
585
|
+
out[2] = -u[2]/p[0] + y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + pow(y[2], 2)*p[1] - p[14]*y[10]/p[0];
|
|
586
|
+
out[3] = -u[3]/p[0] + y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + pow(y[2], 2)*(-p[2] - 1.0/2.0*p[3]) - p[14]*y[11]/p[0];
|
|
587
|
+
out[4] = -y[4] + ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
588
|
+
0.0
|
|
589
|
+
)
|
|
590
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
591
|
+
u[4]
|
|
592
|
+
)
|
|
593
|
+
: (
|
|
594
|
+
u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]
|
|
595
|
+
)));
|
|
596
|
+
out[5] = -y[5] + ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
597
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
598
|
+
)
|
|
599
|
+
: (
|
|
600
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
601
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
602
|
+
)
|
|
603
|
+
: (
|
|
604
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
605
|
+
))
|
|
606
|
+
))) ? (
|
|
607
|
+
-sqrt(1 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
608
|
+
0.0
|
|
609
|
+
)
|
|
610
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
611
|
+
pow(u[4], 2)
|
|
612
|
+
)
|
|
613
|
+
: (
|
|
614
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
615
|
+
))))
|
|
616
|
+
)
|
|
617
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
618
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
619
|
+
)
|
|
620
|
+
: (
|
|
621
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
622
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
623
|
+
)
|
|
624
|
+
: (
|
|
625
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
626
|
+
))
|
|
627
|
+
))) ? (
|
|
628
|
+
sqrt(1 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
629
|
+
0.0
|
|
630
|
+
)
|
|
631
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
632
|
+
pow(u[4], 2)
|
|
633
|
+
)
|
|
634
|
+
: (
|
|
635
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
636
|
+
))))
|
|
637
|
+
)
|
|
638
|
+
: (
|
|
639
|
+
u[6] + p[9]*(-y[0] + u[7])
|
|
640
|
+
)));
|
|
641
|
+
out[6] = y[6] - (p[11]*x[1] + p[10]*(y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1])) - x[2] + 1.0)/p[12];
|
|
642
|
+
out[7] = x[5] - y[7] + u[10];
|
|
643
|
+
out[8] = -p[17]*y[8] - y[2]*sin(x[4] + u[12] - y[3]) + p[16]*y[9];
|
|
644
|
+
out[9] = x[6] - p[17]*y[9] - y[2]*cos(x[4] + u[12] - y[3]) - p[16]*y[8] + u[9];
|
|
645
|
+
out[10] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]) - y[10];
|
|
646
|
+
out[11] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]) - y[11];
|
|
647
|
+
out[12] = 1.0*y[7] - y[12];
|
|
648
|
+
out[13] = p[22]*x[7] + p[21]*(1 - y[12]) - y[13];
|
|
600
649
|
|
|
601
650
|
}
|
|
602
651
|
void f_run_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
603
652
|
|
|
604
|
-
out[0] =
|
|
605
|
-
out[1] =
|
|
606
|
-
out[2] = -x[
|
|
607
|
-
out[3] =
|
|
653
|
+
out[0] = p[13]*(314.15926535897933*p[11]*x[1] + 314.15926535897933*p[10]*(y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1])) - 314.15926535897933*y[12] + 314.15926535897933);
|
|
654
|
+
out[1] = y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1]);
|
|
655
|
+
out[2] = (p[11]*x[1] + p[10]*(y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1])) - x[2] + 1.0)/p[12];
|
|
656
|
+
out[3] = (y[6] - x[3])/p[12];
|
|
657
|
+
out[4] = 6.2831853071795862*p[15]*(y[7] - y[12]) - p[18]*(x[4] - u[11]);
|
|
658
|
+
out[5] = -x[5]*p[19] + u[8];
|
|
659
|
+
out[6] = -x[6]*p[20] + u[13];
|
|
660
|
+
out[7] = -p[23]*x[7] - y[12] + 1;
|
|
608
661
|
|
|
609
662
|
}
|
|
610
663
|
void g_run_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
611
664
|
|
|
612
|
-
out[0] = -u[0]/p[0] + y[2]
|
|
613
|
-
out[1] = -u[1]/p[0] + y[2]*y[0]*(p[2]*cos(y[
|
|
614
|
-
out[2] = -u[2]/p[0] +
|
|
615
|
-
out[3] = -u[3]/p[0] +
|
|
616
|
-
out[4] = -
|
|
617
|
-
|
|
618
|
-
|
|
619
|
-
|
|
620
|
-
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
|
|
625
|
-
out[
|
|
626
|
-
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
|
|
632
|
-
|
|
665
|
+
out[0] = -u[0]/p[0] + pow(y[0], 2)*p[1] + y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) - p[6]*y[4]/p[0];
|
|
666
|
+
out[1] = -u[1]/p[0] + pow(y[0], 2)*(-p[2] - 1.0/2.0*p[3]) + y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3])) - p[6]*y[5]/p[0];
|
|
667
|
+
out[2] = -u[2]/p[0] + y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + pow(y[2], 2)*p[1] - p[14]*y[10]/p[0];
|
|
668
|
+
out[3] = -u[3]/p[0] + y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + pow(y[2], 2)*(-p[2] - 1.0/2.0*p[3]) - p[14]*y[11]/p[0];
|
|
669
|
+
out[4] = -y[4] + ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
670
|
+
0.0
|
|
671
|
+
)
|
|
672
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
673
|
+
u[4]
|
|
674
|
+
)
|
|
675
|
+
: (
|
|
676
|
+
u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]
|
|
677
|
+
)));
|
|
678
|
+
out[5] = -y[5] + ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
679
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
680
|
+
)
|
|
681
|
+
: (
|
|
682
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
683
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
684
|
+
)
|
|
685
|
+
: (
|
|
686
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
687
|
+
))
|
|
688
|
+
))) ? (
|
|
689
|
+
-sqrt(1 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
690
|
+
0.0
|
|
691
|
+
)
|
|
692
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
693
|
+
pow(u[4], 2)
|
|
694
|
+
)
|
|
695
|
+
: (
|
|
696
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
697
|
+
))))
|
|
698
|
+
)
|
|
699
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
700
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
701
|
+
)
|
|
702
|
+
: (
|
|
703
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
704
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
705
|
+
)
|
|
706
|
+
: (
|
|
707
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
708
|
+
))
|
|
709
|
+
))) ? (
|
|
710
|
+
sqrt(1 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
711
|
+
0.0
|
|
712
|
+
)
|
|
713
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
714
|
+
pow(u[4], 2)
|
|
715
|
+
)
|
|
716
|
+
: (
|
|
717
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
718
|
+
))))
|
|
719
|
+
)
|
|
720
|
+
: (
|
|
721
|
+
u[6] + p[9]*(-y[0] + u[7])
|
|
722
|
+
)));
|
|
723
|
+
out[6] = y[6] - (p[11]*x[1] + p[10]*(y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1])) - x[2] + 1.0)/p[12];
|
|
724
|
+
out[7] = x[5] - y[7] + u[10];
|
|
725
|
+
out[8] = -p[17]*y[8] - y[2]*sin(x[4] + u[12] - y[3]) + p[16]*y[9];
|
|
726
|
+
out[9] = x[6] - p[17]*y[9] - y[2]*cos(x[4] + u[12] - y[3]) - p[16]*y[8] + u[9];
|
|
727
|
+
out[10] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]) - y[10];
|
|
728
|
+
out[11] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]) - y[11];
|
|
729
|
+
out[12] = 1.0*y[7] - y[12];
|
|
730
|
+
out[13] = p[22]*x[7] + p[21]*(1 - y[12]) - y[13];
|
|
633
731
|
|
|
634
732
|
}
|
|
635
733
|
void h_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
636
734
|
|
|
637
735
|
out[0] = y[0];
|
|
638
736
|
out[1] = y[2];
|
|
639
|
-
out[2] =
|
|
640
|
-
out[3] =
|
|
641
|
-
out[4] =
|
|
642
|
-
out[5] =
|
|
643
|
-
out[6] =
|
|
644
|
-
out[7] =
|
|
645
|
-
out[8] =
|
|
646
|
-
out[9] =
|
|
647
|
-
out[10] = y[6]*y[4]*(p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5])) - pow(y[4], 2)*p[5];
|
|
648
|
-
out[11] = pow(y[6], 2)*p[4] + y[6]*y[4]*(-p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
649
|
-
out[12] = -pow(y[6], 2)*p[5] + y[6]*y[4]*(p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
650
|
-
out[13] = sqrt(pow(y[11], 2) + pow(y[10], 2));
|
|
651
|
-
out[14] = u[10];
|
|
652
|
-
out[15] = p[15] + p[16]*pow(y[2], 2)*(pow(y[11], 2) + pow(y[10], 2)) - y[2]*y[11]*sin(y[3]) - y[2]*y[10]*cos(y[3]);
|
|
653
|
-
out[16] = y[12];
|
|
654
|
-
out[17] = u[12];
|
|
655
|
-
out[18] = u[14];
|
|
656
|
-
out[19] = x[2];
|
|
737
|
+
out[2] = u[4];
|
|
738
|
+
out[3] = u[5];
|
|
739
|
+
out[4] = u[6];
|
|
740
|
+
out[5] = p[11]*x[1] + p[10]*(y[0]*sin(y[1])*cos(x[0]) - y[0]*sin(x[0])*cos(y[1])) + 1.0;
|
|
741
|
+
out[6] = x[2];
|
|
742
|
+
out[7] = y[6];
|
|
743
|
+
out[8] = u[8];
|
|
744
|
+
out[9] = x[6];
|
|
657
745
|
|
|
658
746
|
}
|
|
659
747
|
void de_jac_ini_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
660
748
|
|
|
661
|
-
out[
|
|
662
|
-
out[
|
|
663
|
-
out[
|
|
664
|
-
out[
|
|
665
|
-
out[
|
|
666
|
-
out[
|
|
667
|
-
out[
|
|
668
|
-
out[
|
|
669
|
-
out[
|
|
670
|
-
out[
|
|
671
|
-
out[
|
|
672
|
-
out[
|
|
673
|
-
out[
|
|
674
|
-
out[
|
|
675
|
-
out[
|
|
676
|
-
out[
|
|
677
|
-
out[
|
|
678
|
-
out[
|
|
679
|
-
out[
|
|
680
|
-
out[
|
|
681
|
-
out[
|
|
682
|
-
out[
|
|
683
|
-
out[
|
|
684
|
-
out[
|
|
685
|
-
out[
|
|
686
|
-
out[
|
|
687
|
-
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
out[
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
697
|
-
|
|
698
|
-
out[
|
|
699
|
-
|
|
700
|
-
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
|
|
708
|
-
|
|
709
|
-
|
|
710
|
-
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
|
|
722
|
-
|
|
723
|
-
|
|
724
|
-
|
|
725
|
-
|
|
726
|
-
|
|
727
|
-
|
|
728
|
-
|
|
729
|
-
|
|
730
|
-
|
|
731
|
-
|
|
732
|
-
|
|
749
|
+
out[0] = 314.15926535897933*p[10]*p[13]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
750
|
+
out[8] = 314.15926535897933*p[10]*p[13]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
751
|
+
out[9] = 314.15926535897933*p[10]*p[13]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
752
|
+
out[22] = -y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]);
|
|
753
|
+
out[30] = sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]);
|
|
754
|
+
out[31] = y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]);
|
|
755
|
+
out[44] = p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
756
|
+
out[52] = p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
757
|
+
out[53] = p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
758
|
+
out[184] = 2.0*y[0]*p[1] + y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
759
|
+
out[185] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
760
|
+
out[186] = y[0]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
761
|
+
out[187] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
762
|
+
out[206] = 2.0*y[0]*(-p[2] - 0.5*p[3]) + y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
763
|
+
out[207] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
764
|
+
out[208] = y[0]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
765
|
+
out[209] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
766
|
+
out[228] = y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
767
|
+
out[229] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
768
|
+
out[230] = y[0]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + 2.0*y[2]*p[1];
|
|
769
|
+
out[231] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
770
|
+
out[250] = y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
771
|
+
out[251] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
772
|
+
out[252] = y[0]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + 2.0*y[2]*(-p[2] - 0.5*p[3]);
|
|
773
|
+
out[253] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
774
|
+
out[266] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
775
|
+
0
|
|
776
|
+
)
|
|
777
|
+
: (
|
|
778
|
+
-p[7]
|
|
779
|
+
));
|
|
780
|
+
out[267] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
781
|
+
0
|
|
782
|
+
)
|
|
783
|
+
: (
|
|
784
|
+
-p[8]
|
|
785
|
+
));
|
|
786
|
+
out[288] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
787
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
788
|
+
)
|
|
789
|
+
: (
|
|
790
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
791
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
792
|
+
)
|
|
793
|
+
: (
|
|
794
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
795
|
+
))
|
|
796
|
+
))) ? (
|
|
797
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
798
|
+
0
|
|
799
|
+
)
|
|
800
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
801
|
+
pow(u[4], 2)
|
|
802
|
+
)
|
|
803
|
+
: (
|
|
804
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
805
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
806
|
+
0
|
|
807
|
+
)
|
|
808
|
+
: (
|
|
809
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
810
|
+
))
|
|
811
|
+
)
|
|
812
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
813
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
814
|
+
)
|
|
815
|
+
: (
|
|
816
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
817
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
818
|
+
)
|
|
819
|
+
: (
|
|
820
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
821
|
+
))
|
|
822
|
+
))) ? (
|
|
823
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
824
|
+
0
|
|
825
|
+
)
|
|
826
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
827
|
+
pow(u[4], 2)
|
|
828
|
+
)
|
|
829
|
+
: (
|
|
830
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
831
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
832
|
+
0
|
|
833
|
+
)
|
|
834
|
+
: (
|
|
835
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
836
|
+
))
|
|
837
|
+
)
|
|
838
|
+
: (
|
|
839
|
+
0
|
|
840
|
+
)));
|
|
841
|
+
out[289] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
842
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
843
|
+
)
|
|
844
|
+
: (
|
|
845
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
846
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
847
|
+
)
|
|
848
|
+
: (
|
|
849
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
850
|
+
))
|
|
851
|
+
))) ? (
|
|
852
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
853
|
+
0
|
|
854
|
+
)
|
|
855
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
856
|
+
pow(u[4], 2)
|
|
857
|
+
)
|
|
858
|
+
: (
|
|
859
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
860
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
861
|
+
0
|
|
862
|
+
)
|
|
863
|
+
: (
|
|
864
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
865
|
+
))
|
|
866
|
+
)
|
|
867
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
868
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
869
|
+
)
|
|
870
|
+
: (
|
|
871
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
872
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
873
|
+
)
|
|
874
|
+
: (
|
|
875
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
876
|
+
))
|
|
877
|
+
))) ? (
|
|
878
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
879
|
+
0
|
|
880
|
+
)
|
|
881
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
882
|
+
pow(u[4], 2)
|
|
883
|
+
)
|
|
884
|
+
: (
|
|
885
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
886
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
887
|
+
0
|
|
888
|
+
)
|
|
889
|
+
: (
|
|
890
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
891
|
+
))
|
|
892
|
+
)
|
|
893
|
+
: (
|
|
894
|
+
0
|
|
895
|
+
)));
|
|
896
|
+
out[294] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
897
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
898
|
+
)
|
|
899
|
+
: (
|
|
900
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
901
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
902
|
+
)
|
|
903
|
+
: (
|
|
904
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
905
|
+
))
|
|
906
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
907
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
908
|
+
)
|
|
909
|
+
: (
|
|
910
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
911
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
912
|
+
)
|
|
913
|
+
: (
|
|
914
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
915
|
+
))
|
|
916
|
+
))) ? (
|
|
917
|
+
0
|
|
918
|
+
)
|
|
919
|
+
: (
|
|
920
|
+
-p[9]
|
|
921
|
+
));
|
|
922
|
+
out[308] = -p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
923
|
+
out[316] = -p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
924
|
+
out[317] = -p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
925
|
+
out[356] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
926
|
+
out[362] = -sin(x[4] + u[12] - y[3]);
|
|
927
|
+
out[363] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
928
|
+
out[378] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
929
|
+
out[384] = -cos(x[4] + u[12] - y[3]);
|
|
930
|
+
out[385] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
931
|
+
out[400] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
932
|
+
out[406] = y[8]*sin(x[4] + u[12] - y[3]) + y[9]*cos(x[4] + u[12] - y[3]);
|
|
933
|
+
out[407] = -y[2]*y[8]*cos(x[4] + u[12] - y[3]) + y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
934
|
+
out[412] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
935
|
+
out[413] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
936
|
+
out[422] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
937
|
+
out[428] = y[8]*cos(x[4] + u[12] - y[3]) - y[9]*sin(x[4] + u[12] - y[3]);
|
|
938
|
+
out[429] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
939
|
+
out[434] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
940
|
+
out[435] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
733
941
|
|
|
734
942
|
}
|
|
735
943
|
|
|
736
944
|
void de_jac_ini_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
737
945
|
|
|
738
|
-
out[
|
|
739
|
-
out[
|
|
740
|
-
out[
|
|
741
|
-
out[
|
|
742
|
-
out[
|
|
743
|
-
out[
|
|
744
|
-
out[
|
|
745
|
-
out[
|
|
746
|
-
out[
|
|
747
|
-
out[
|
|
748
|
-
out[
|
|
749
|
-
out[
|
|
750
|
-
out[
|
|
751
|
-
out[
|
|
752
|
-
out[
|
|
753
|
-
out[
|
|
754
|
-
out[
|
|
755
|
-
out[
|
|
756
|
-
out[
|
|
946
|
+
out[1] = 314.15926535897933*p[11]*p[13];
|
|
947
|
+
out[20] = -314.15926535897933*p[13];
|
|
948
|
+
out[45] = p[11]/p[12];
|
|
949
|
+
out[46] = -1/p[12];
|
|
950
|
+
out[69] = -1/p[12];
|
|
951
|
+
out[80] = 1.0/p[12];
|
|
952
|
+
out[92] = -p[18];
|
|
953
|
+
out[103] = 6.2831853071795862*p[15];
|
|
954
|
+
out[108] = -6.2831853071795862*p[15];
|
|
955
|
+
out[115] = -p[19];
|
|
956
|
+
out[138] = -p[20];
|
|
957
|
+
out[161] = -p[23];
|
|
958
|
+
out[188] = -p[6]/p[0];
|
|
959
|
+
out[211] = -p[6]/p[0];
|
|
960
|
+
out[238] = -p[14]/p[0];
|
|
961
|
+
out[261] = -p[14]/p[0];
|
|
962
|
+
out[309] = -p[11]/p[12];
|
|
963
|
+
out[310] = 1.0/p[12];
|
|
964
|
+
out[368] = -p[17];
|
|
965
|
+
out[369] = p[16];
|
|
966
|
+
out[390] = -p[16];
|
|
967
|
+
out[391] = -p[17];
|
|
968
|
+
out[469] = p[22];
|
|
969
|
+
out[482] = -p[21];
|
|
757
970
|
|
|
758
971
|
}
|
|
759
972
|
|
|
760
973
|
void de_jac_ini_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
761
974
|
|
|
762
|
-
out[
|
|
763
|
-
out[
|
|
764
|
-
out[
|
|
765
|
-
out[
|
|
766
|
-
out[
|
|
767
|
-
out[
|
|
768
|
-
out[
|
|
769
|
-
out[
|
|
770
|
-
out[
|
|
771
|
-
out[
|
|
975
|
+
out[174] = -1.0;
|
|
976
|
+
out[276] = -1.0;
|
|
977
|
+
out[299] = -1.0;
|
|
978
|
+
out[322] = 1.0;
|
|
979
|
+
out[335] = 1.0;
|
|
980
|
+
out[345] = -1.0;
|
|
981
|
+
out[380] = 1.0;
|
|
982
|
+
out[414] = -1.0;
|
|
983
|
+
out[437] = -1.0;
|
|
984
|
+
out[455] = 1.0;
|
|
985
|
+
out[460] = -1.0;
|
|
986
|
+
out[483] = -1.0;
|
|
772
987
|
|
|
773
988
|
}
|
|
774
989
|
|
|
775
990
|
void sp_jac_ini_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
776
991
|
|
|
777
|
-
out[
|
|
778
|
-
out[
|
|
779
|
-
out[
|
|
780
|
-
out[
|
|
781
|
-
out[
|
|
782
|
-
out[
|
|
783
|
-
out[
|
|
784
|
-
out[
|
|
785
|
-
out[
|
|
786
|
-
out[
|
|
787
|
-
out[
|
|
788
|
-
out[
|
|
789
|
-
out[
|
|
790
|
-
out[
|
|
791
|
-
out[
|
|
792
|
-
out[
|
|
793
|
-
out[
|
|
794
|
-
out[
|
|
795
|
-
out[
|
|
796
|
-
out[
|
|
797
|
-
out[
|
|
798
|
-
out[
|
|
799
|
-
out[
|
|
800
|
-
out[
|
|
801
|
-
out[
|
|
802
|
-
out[
|
|
803
|
-
|
|
804
|
-
|
|
805
|
-
|
|
806
|
-
|
|
807
|
-
|
|
808
|
-
out[
|
|
809
|
-
|
|
810
|
-
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
out[
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
|
|
822
|
-
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
|
|
826
|
-
|
|
827
|
-
|
|
828
|
-
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
838
|
-
|
|
839
|
-
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
|
|
844
|
-
|
|
845
|
-
|
|
846
|
-
|
|
847
|
-
|
|
848
|
-
|
|
992
|
+
out[0] = 314.15926535897933*p[10]*p[13]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
993
|
+
out[2] = 314.15926535897933*p[10]*p[13]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
994
|
+
out[3] = 314.15926535897933*p[10]*p[13]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
995
|
+
out[5] = -y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]);
|
|
996
|
+
out[6] = sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]);
|
|
997
|
+
out[7] = y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]);
|
|
998
|
+
out[8] = p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
999
|
+
out[11] = p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1000
|
+
out[12] = p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1001
|
+
out[22] = 2.0*y[0]*p[1] + y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1002
|
+
out[23] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1003
|
+
out[24] = y[0]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1004
|
+
out[25] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1005
|
+
out[27] = 2.0*y[0]*(-p[2] - 0.5*p[3]) + y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1006
|
+
out[28] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1007
|
+
out[29] = y[0]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1008
|
+
out[30] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1009
|
+
out[32] = y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1010
|
+
out[33] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1011
|
+
out[34] = y[0]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + 2.0*y[2]*p[1];
|
|
1012
|
+
out[35] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1013
|
+
out[37] = y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1014
|
+
out[38] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1015
|
+
out[39] = y[0]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + 2.0*y[2]*(-p[2] - 0.5*p[3]);
|
|
1016
|
+
out[40] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1017
|
+
out[42] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1018
|
+
0
|
|
1019
|
+
)
|
|
1020
|
+
: (
|
|
1021
|
+
-p[7]
|
|
1022
|
+
));
|
|
1023
|
+
out[43] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1024
|
+
0
|
|
1025
|
+
)
|
|
1026
|
+
: (
|
|
1027
|
+
-p[8]
|
|
1028
|
+
));
|
|
1029
|
+
out[45] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1030
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1031
|
+
)
|
|
1032
|
+
: (
|
|
1033
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1034
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1035
|
+
)
|
|
1036
|
+
: (
|
|
1037
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1038
|
+
))
|
|
1039
|
+
))) ? (
|
|
1040
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1041
|
+
0
|
|
1042
|
+
)
|
|
1043
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1044
|
+
pow(u[4], 2)
|
|
1045
|
+
)
|
|
1046
|
+
: (
|
|
1047
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1048
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1049
|
+
0
|
|
1050
|
+
)
|
|
1051
|
+
: (
|
|
1052
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1053
|
+
))
|
|
1054
|
+
)
|
|
1055
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1056
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1057
|
+
)
|
|
1058
|
+
: (
|
|
1059
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1060
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1061
|
+
)
|
|
1062
|
+
: (
|
|
1063
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1064
|
+
))
|
|
1065
|
+
))) ? (
|
|
1066
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1067
|
+
0
|
|
1068
|
+
)
|
|
1069
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1070
|
+
pow(u[4], 2)
|
|
1071
|
+
)
|
|
1072
|
+
: (
|
|
1073
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1074
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1075
|
+
0
|
|
1076
|
+
)
|
|
1077
|
+
: (
|
|
1078
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1079
|
+
))
|
|
1080
|
+
)
|
|
1081
|
+
: (
|
|
1082
|
+
0
|
|
1083
|
+
)));
|
|
1084
|
+
out[46] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1085
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1086
|
+
)
|
|
1087
|
+
: (
|
|
1088
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1089
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1090
|
+
)
|
|
1091
|
+
: (
|
|
1092
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1093
|
+
))
|
|
1094
|
+
))) ? (
|
|
1095
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1096
|
+
0
|
|
1097
|
+
)
|
|
1098
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1099
|
+
pow(u[4], 2)
|
|
1100
|
+
)
|
|
1101
|
+
: (
|
|
1102
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1103
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1104
|
+
0
|
|
1105
|
+
)
|
|
1106
|
+
: (
|
|
1107
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1108
|
+
))
|
|
1109
|
+
)
|
|
1110
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1111
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1112
|
+
)
|
|
1113
|
+
: (
|
|
1114
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1115
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1116
|
+
)
|
|
1117
|
+
: (
|
|
1118
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1119
|
+
))
|
|
1120
|
+
))) ? (
|
|
1121
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1122
|
+
0
|
|
1123
|
+
)
|
|
1124
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1125
|
+
pow(u[4], 2)
|
|
1126
|
+
)
|
|
1127
|
+
: (
|
|
1128
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1129
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1130
|
+
0
|
|
1131
|
+
)
|
|
1132
|
+
: (
|
|
1133
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1134
|
+
))
|
|
1135
|
+
)
|
|
1136
|
+
: (
|
|
1137
|
+
0
|
|
1138
|
+
)));
|
|
1139
|
+
out[47] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1140
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1141
|
+
)
|
|
1142
|
+
: (
|
|
1143
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1144
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1145
|
+
)
|
|
1146
|
+
: (
|
|
1147
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1148
|
+
))
|
|
1149
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1150
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1151
|
+
)
|
|
1152
|
+
: (
|
|
1153
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1154
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1155
|
+
)
|
|
1156
|
+
: (
|
|
1157
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1158
|
+
))
|
|
1159
|
+
))) ? (
|
|
1160
|
+
0
|
|
1161
|
+
)
|
|
1162
|
+
: (
|
|
1163
|
+
-p[9]
|
|
1164
|
+
));
|
|
1165
|
+
out[49] = -p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1166
|
+
out[52] = -p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1167
|
+
out[53] = -p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1168
|
+
out[57] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
1169
|
+
out[58] = -sin(x[4] + u[12] - y[3]);
|
|
1170
|
+
out[59] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1171
|
+
out[62] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1172
|
+
out[64] = -cos(x[4] + u[12] - y[3]);
|
|
1173
|
+
out[65] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
1174
|
+
out[68] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1175
|
+
out[69] = y[8]*sin(x[4] + u[12] - y[3]) + y[9]*cos(x[4] + u[12] - y[3]);
|
|
1176
|
+
out[70] = -y[2]*y[8]*cos(x[4] + u[12] - y[3]) + y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1177
|
+
out[71] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1178
|
+
out[72] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1179
|
+
out[74] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1180
|
+
out[75] = y[8]*cos(x[4] + u[12] - y[3]) - y[9]*sin(x[4] + u[12] - y[3]);
|
|
1181
|
+
out[76] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1182
|
+
out[77] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1183
|
+
out[78] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
849
1184
|
|
|
850
1185
|
}
|
|
851
1186
|
|
|
852
1187
|
void sp_jac_ini_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
853
1188
|
|
|
854
|
-
out[
|
|
855
|
-
out[
|
|
856
|
-
out[
|
|
857
|
-
out[
|
|
858
|
-
out[
|
|
859
|
-
out[
|
|
860
|
-
out[
|
|
861
|
-
out[
|
|
862
|
-
out[
|
|
863
|
-
out[
|
|
864
|
-
out[
|
|
865
|
-
out[
|
|
866
|
-
out[
|
|
867
|
-
out[
|
|
868
|
-
out[
|
|
869
|
-
out[
|
|
870
|
-
out[
|
|
871
|
-
out[
|
|
872
|
-
out[
|
|
1189
|
+
out[1] = 314.15926535897933*p[11]*p[13];
|
|
1190
|
+
out[4] = -314.15926535897933*p[13];
|
|
1191
|
+
out[9] = p[11]/p[12];
|
|
1192
|
+
out[10] = -1/p[12];
|
|
1193
|
+
out[13] = -1/p[12];
|
|
1194
|
+
out[14] = 1.0/p[12];
|
|
1195
|
+
out[15] = -p[18];
|
|
1196
|
+
out[16] = 6.2831853071795862*p[15];
|
|
1197
|
+
out[17] = -6.2831853071795862*p[15];
|
|
1198
|
+
out[18] = -p[19];
|
|
1199
|
+
out[19] = -p[20];
|
|
1200
|
+
out[20] = -p[23];
|
|
1201
|
+
out[26] = -p[6]/p[0];
|
|
1202
|
+
out[31] = -p[6]/p[0];
|
|
1203
|
+
out[36] = -p[14]/p[0];
|
|
1204
|
+
out[41] = -p[14]/p[0];
|
|
1205
|
+
out[50] = -p[11]/p[12];
|
|
1206
|
+
out[51] = 1.0/p[12];
|
|
1207
|
+
out[60] = -p[17];
|
|
1208
|
+
out[61] = p[16];
|
|
1209
|
+
out[66] = -p[16];
|
|
1210
|
+
out[67] = -p[17];
|
|
1211
|
+
out[82] = p[22];
|
|
1212
|
+
out[83] = -p[21];
|
|
873
1213
|
|
|
874
1214
|
}
|
|
875
1215
|
|
|
876
1216
|
void sp_jac_ini_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
877
1217
|
|
|
878
|
-
out[
|
|
879
|
-
out[
|
|
880
|
-
out[
|
|
881
|
-
out[
|
|
882
|
-
out[
|
|
883
|
-
out[
|
|
884
|
-
out[
|
|
885
|
-
out[
|
|
886
|
-
out[
|
|
887
|
-
out[
|
|
1218
|
+
out[21] = -1.0;
|
|
1219
|
+
out[44] = -1.0;
|
|
1220
|
+
out[48] = -1.0;
|
|
1221
|
+
out[54] = 1.0;
|
|
1222
|
+
out[55] = 1.0;
|
|
1223
|
+
out[56] = -1.0;
|
|
1224
|
+
out[63] = 1.0;
|
|
1225
|
+
out[73] = -1.0;
|
|
1226
|
+
out[79] = -1.0;
|
|
1227
|
+
out[80] = 1.0;
|
|
1228
|
+
out[81] = -1.0;
|
|
1229
|
+
out[84] = -1.0;
|
|
888
1230
|
|
|
889
1231
|
}
|
|
890
1232
|
|
|
891
1233
|
void de_jac_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
892
1234
|
|
|
893
|
-
out[
|
|
894
|
-
out[
|
|
895
|
-
out[
|
|
896
|
-
out[
|
|
897
|
-
out[
|
|
898
|
-
out[
|
|
899
|
-
out[
|
|
900
|
-
out[
|
|
901
|
-
out[
|
|
902
|
-
out[
|
|
903
|
-
out[
|
|
904
|
-
out[
|
|
905
|
-
out[
|
|
906
|
-
out[
|
|
907
|
-
out[
|
|
908
|
-
out[
|
|
909
|
-
out[
|
|
910
|
-
out[
|
|
911
|
-
out[
|
|
912
|
-
out[
|
|
913
|
-
out[
|
|
914
|
-
out[
|
|
915
|
-
out[
|
|
916
|
-
out[
|
|
917
|
-
out[
|
|
918
|
-
out[
|
|
919
|
-
|
|
920
|
-
|
|
921
|
-
|
|
922
|
-
|
|
923
|
-
|
|
924
|
-
out[
|
|
925
|
-
|
|
926
|
-
|
|
927
|
-
|
|
928
|
-
|
|
929
|
-
|
|
930
|
-
out[
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
934
|
-
|
|
935
|
-
|
|
936
|
-
|
|
937
|
-
|
|
938
|
-
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
|
|
944
|
-
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
956
|
-
|
|
957
|
-
|
|
958
|
-
|
|
959
|
-
|
|
960
|
-
|
|
961
|
-
|
|
962
|
-
|
|
963
|
-
|
|
964
|
-
|
|
1235
|
+
out[0] = 314.15926535897933*p[10]*p[13]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
1236
|
+
out[8] = 314.15926535897933*p[10]*p[13]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
1237
|
+
out[9] = 314.15926535897933*p[10]*p[13]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1238
|
+
out[22] = -y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]);
|
|
1239
|
+
out[30] = sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]);
|
|
1240
|
+
out[31] = y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]);
|
|
1241
|
+
out[44] = p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1242
|
+
out[52] = p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1243
|
+
out[53] = p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1244
|
+
out[184] = 2.0*y[0]*p[1] + y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1245
|
+
out[185] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1246
|
+
out[186] = y[0]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1247
|
+
out[187] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1248
|
+
out[206] = 2.0*y[0]*(-p[2] - 0.5*p[3]) + y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1249
|
+
out[207] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1250
|
+
out[208] = y[0]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1251
|
+
out[209] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1252
|
+
out[228] = y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1253
|
+
out[229] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1254
|
+
out[230] = y[0]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + 2.0*y[2]*p[1];
|
|
1255
|
+
out[231] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1256
|
+
out[250] = y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1257
|
+
out[251] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1258
|
+
out[252] = y[0]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + 2.0*y[2]*(-p[2] - 0.5*p[3]);
|
|
1259
|
+
out[253] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1260
|
+
out[266] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1261
|
+
0
|
|
1262
|
+
)
|
|
1263
|
+
: (
|
|
1264
|
+
-p[7]
|
|
1265
|
+
));
|
|
1266
|
+
out[267] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1267
|
+
0
|
|
1268
|
+
)
|
|
1269
|
+
: (
|
|
1270
|
+
-p[8]
|
|
1271
|
+
));
|
|
1272
|
+
out[288] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1273
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1274
|
+
)
|
|
1275
|
+
: (
|
|
1276
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1277
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1278
|
+
)
|
|
1279
|
+
: (
|
|
1280
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1281
|
+
))
|
|
1282
|
+
))) ? (
|
|
1283
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1284
|
+
0
|
|
1285
|
+
)
|
|
1286
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1287
|
+
pow(u[4], 2)
|
|
1288
|
+
)
|
|
1289
|
+
: (
|
|
1290
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1291
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1292
|
+
0
|
|
1293
|
+
)
|
|
1294
|
+
: (
|
|
1295
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1296
|
+
))
|
|
1297
|
+
)
|
|
1298
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1299
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1300
|
+
)
|
|
1301
|
+
: (
|
|
1302
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1303
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1304
|
+
)
|
|
1305
|
+
: (
|
|
1306
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1307
|
+
))
|
|
1308
|
+
))) ? (
|
|
1309
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1310
|
+
0
|
|
1311
|
+
)
|
|
1312
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1313
|
+
pow(u[4], 2)
|
|
1314
|
+
)
|
|
1315
|
+
: (
|
|
1316
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1317
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1318
|
+
0
|
|
1319
|
+
)
|
|
1320
|
+
: (
|
|
1321
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1322
|
+
))
|
|
1323
|
+
)
|
|
1324
|
+
: (
|
|
1325
|
+
0
|
|
1326
|
+
)));
|
|
1327
|
+
out[289] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1328
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1329
|
+
)
|
|
1330
|
+
: (
|
|
1331
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1332
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1333
|
+
)
|
|
1334
|
+
: (
|
|
1335
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1336
|
+
))
|
|
1337
|
+
))) ? (
|
|
1338
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1339
|
+
0
|
|
1340
|
+
)
|
|
1341
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1342
|
+
pow(u[4], 2)
|
|
1343
|
+
)
|
|
1344
|
+
: (
|
|
1345
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1346
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1347
|
+
0
|
|
1348
|
+
)
|
|
1349
|
+
: (
|
|
1350
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1351
|
+
))
|
|
1352
|
+
)
|
|
1353
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1354
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1355
|
+
)
|
|
1356
|
+
: (
|
|
1357
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1358
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1359
|
+
)
|
|
1360
|
+
: (
|
|
1361
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1362
|
+
))
|
|
1363
|
+
))) ? (
|
|
1364
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1365
|
+
0
|
|
1366
|
+
)
|
|
1367
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1368
|
+
pow(u[4], 2)
|
|
1369
|
+
)
|
|
1370
|
+
: (
|
|
1371
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1372
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1373
|
+
0
|
|
1374
|
+
)
|
|
1375
|
+
: (
|
|
1376
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1377
|
+
))
|
|
1378
|
+
)
|
|
1379
|
+
: (
|
|
1380
|
+
0
|
|
1381
|
+
)));
|
|
1382
|
+
out[294] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1383
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1384
|
+
)
|
|
1385
|
+
: (
|
|
1386
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1387
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1388
|
+
)
|
|
1389
|
+
: (
|
|
1390
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1391
|
+
))
|
|
1392
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1393
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1394
|
+
)
|
|
1395
|
+
: (
|
|
1396
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1397
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1398
|
+
)
|
|
1399
|
+
: (
|
|
1400
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1401
|
+
))
|
|
1402
|
+
))) ? (
|
|
1403
|
+
0
|
|
1404
|
+
)
|
|
1405
|
+
: (
|
|
1406
|
+
-p[9]
|
|
1407
|
+
));
|
|
1408
|
+
out[308] = -p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1409
|
+
out[316] = -p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1410
|
+
out[317] = -p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1411
|
+
out[356] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
1412
|
+
out[362] = -sin(x[4] + u[12] - y[3]);
|
|
1413
|
+
out[363] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1414
|
+
out[378] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1415
|
+
out[384] = -cos(x[4] + u[12] - y[3]);
|
|
1416
|
+
out[385] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
1417
|
+
out[400] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1418
|
+
out[406] = y[8]*sin(x[4] + u[12] - y[3]) + y[9]*cos(x[4] + u[12] - y[3]);
|
|
1419
|
+
out[407] = -y[2]*y[8]*cos(x[4] + u[12] - y[3]) + y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1420
|
+
out[412] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1421
|
+
out[413] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1422
|
+
out[422] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1423
|
+
out[428] = y[8]*cos(x[4] + u[12] - y[3]) - y[9]*sin(x[4] + u[12] - y[3]);
|
|
1424
|
+
out[429] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1425
|
+
out[434] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1426
|
+
out[435] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
965
1427
|
|
|
966
1428
|
}
|
|
967
1429
|
|
|
968
1430
|
void de_jac_run_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
969
1431
|
|
|
970
|
-
out[
|
|
971
|
-
out[
|
|
972
|
-
out[
|
|
973
|
-
out[
|
|
974
|
-
out[
|
|
975
|
-
out[
|
|
976
|
-
out[
|
|
977
|
-
out[
|
|
978
|
-
out[
|
|
979
|
-
out[
|
|
980
|
-
out[
|
|
981
|
-
out[
|
|
982
|
-
out[
|
|
983
|
-
out[
|
|
984
|
-
out[
|
|
985
|
-
out[
|
|
986
|
-
out[
|
|
987
|
-
out[
|
|
988
|
-
out[
|
|
1432
|
+
out[1] = 314.15926535897933*p[11]*p[13];
|
|
1433
|
+
out[20] = -314.15926535897933*p[13];
|
|
1434
|
+
out[45] = p[11]/p[12];
|
|
1435
|
+
out[46] = -1/p[12];
|
|
1436
|
+
out[69] = -1/p[12];
|
|
1437
|
+
out[80] = 1.0/p[12];
|
|
1438
|
+
out[92] = -p[18];
|
|
1439
|
+
out[103] = 6.2831853071795862*p[15];
|
|
1440
|
+
out[108] = -6.2831853071795862*p[15];
|
|
1441
|
+
out[115] = -p[19];
|
|
1442
|
+
out[138] = -p[20];
|
|
1443
|
+
out[161] = -p[23];
|
|
1444
|
+
out[188] = -p[6]/p[0];
|
|
1445
|
+
out[211] = -p[6]/p[0];
|
|
1446
|
+
out[238] = -p[14]/p[0];
|
|
1447
|
+
out[261] = -p[14]/p[0];
|
|
1448
|
+
out[309] = -p[11]/p[12];
|
|
1449
|
+
out[310] = 1.0/p[12];
|
|
1450
|
+
out[368] = -p[17];
|
|
1451
|
+
out[369] = p[16];
|
|
1452
|
+
out[390] = -p[16];
|
|
1453
|
+
out[391] = -p[17];
|
|
1454
|
+
out[469] = p[22];
|
|
1455
|
+
out[482] = -p[21];
|
|
989
1456
|
|
|
990
1457
|
}
|
|
991
1458
|
|
|
992
1459
|
void de_jac_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
993
1460
|
|
|
994
|
-
out[
|
|
995
|
-
out[
|
|
996
|
-
out[
|
|
997
|
-
out[
|
|
998
|
-
out[
|
|
999
|
-
out[
|
|
1000
|
-
out[
|
|
1001
|
-
out[
|
|
1002
|
-
out[
|
|
1003
|
-
out[
|
|
1461
|
+
out[174] = -1.0;
|
|
1462
|
+
out[276] = -1.0;
|
|
1463
|
+
out[299] = -1.0;
|
|
1464
|
+
out[322] = 1.0;
|
|
1465
|
+
out[335] = 1.0;
|
|
1466
|
+
out[345] = -1.0;
|
|
1467
|
+
out[380] = 1.0;
|
|
1468
|
+
out[414] = -1.0;
|
|
1469
|
+
out[437] = -1.0;
|
|
1470
|
+
out[455] = 1.0;
|
|
1471
|
+
out[460] = -1.0;
|
|
1472
|
+
out[483] = -1.0;
|
|
1004
1473
|
|
|
1005
1474
|
}
|
|
1006
1475
|
|
|
1007
1476
|
void sp_jac_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1008
1477
|
|
|
1009
|
-
out[
|
|
1010
|
-
out[
|
|
1011
|
-
out[
|
|
1012
|
-
out[
|
|
1013
|
-
out[
|
|
1014
|
-
out[
|
|
1015
|
-
out[
|
|
1016
|
-
out[
|
|
1017
|
-
out[
|
|
1018
|
-
out[
|
|
1019
|
-
out[
|
|
1020
|
-
out[
|
|
1021
|
-
out[
|
|
1022
|
-
out[
|
|
1023
|
-
out[
|
|
1024
|
-
out[
|
|
1025
|
-
out[
|
|
1026
|
-
out[
|
|
1027
|
-
out[
|
|
1028
|
-
out[
|
|
1029
|
-
out[
|
|
1030
|
-
out[
|
|
1031
|
-
out[
|
|
1032
|
-
out[
|
|
1033
|
-
out[
|
|
1034
|
-
out[
|
|
1035
|
-
|
|
1036
|
-
|
|
1037
|
-
|
|
1038
|
-
|
|
1039
|
-
|
|
1040
|
-
out[
|
|
1041
|
-
|
|
1042
|
-
|
|
1043
|
-
|
|
1044
|
-
|
|
1045
|
-
|
|
1046
|
-
out[
|
|
1047
|
-
|
|
1048
|
-
|
|
1049
|
-
|
|
1050
|
-
|
|
1051
|
-
|
|
1052
|
-
|
|
1053
|
-
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
|
|
1057
|
-
|
|
1058
|
-
|
|
1059
|
-
|
|
1060
|
-
|
|
1061
|
-
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
|
|
1069
|
-
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
|
|
1077
|
-
|
|
1078
|
-
|
|
1079
|
-
|
|
1080
|
-
|
|
1478
|
+
out[0] = 314.15926535897933*p[10]*p[13]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
1479
|
+
out[2] = 314.15926535897933*p[10]*p[13]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
1480
|
+
out[3] = 314.15926535897933*p[10]*p[13]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1481
|
+
out[5] = -y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]);
|
|
1482
|
+
out[6] = sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]);
|
|
1483
|
+
out[7] = y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]);
|
|
1484
|
+
out[8] = p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1485
|
+
out[11] = p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1486
|
+
out[12] = p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1487
|
+
out[22] = 2.0*y[0]*p[1] + y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1488
|
+
out[23] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1489
|
+
out[24] = y[0]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1490
|
+
out[25] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1491
|
+
out[27] = 2.0*y[0]*(-p[2] - 0.5*p[3]) + y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1492
|
+
out[28] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1493
|
+
out[29] = y[0]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1494
|
+
out[30] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1495
|
+
out[32] = y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1496
|
+
out[33] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1497
|
+
out[34] = y[0]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + 2.0*y[2]*p[1];
|
|
1498
|
+
out[35] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1499
|
+
out[37] = y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1500
|
+
out[38] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1501
|
+
out[39] = y[0]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + 2.0*y[2]*(-p[2] - 0.5*p[3]);
|
|
1502
|
+
out[40] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1503
|
+
out[42] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1504
|
+
0
|
|
1505
|
+
)
|
|
1506
|
+
: (
|
|
1507
|
+
-p[7]
|
|
1508
|
+
));
|
|
1509
|
+
out[43] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1510
|
+
0
|
|
1511
|
+
)
|
|
1512
|
+
: (
|
|
1513
|
+
-p[8]
|
|
1514
|
+
));
|
|
1515
|
+
out[45] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1516
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1517
|
+
)
|
|
1518
|
+
: (
|
|
1519
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1520
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1521
|
+
)
|
|
1522
|
+
: (
|
|
1523
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1524
|
+
))
|
|
1525
|
+
))) ? (
|
|
1526
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1527
|
+
0
|
|
1528
|
+
)
|
|
1529
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1530
|
+
pow(u[4], 2)
|
|
1531
|
+
)
|
|
1532
|
+
: (
|
|
1533
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1534
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1535
|
+
0
|
|
1536
|
+
)
|
|
1537
|
+
: (
|
|
1538
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1539
|
+
))
|
|
1540
|
+
)
|
|
1541
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1542
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1543
|
+
)
|
|
1544
|
+
: (
|
|
1545
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1546
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1547
|
+
)
|
|
1548
|
+
: (
|
|
1549
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1550
|
+
))
|
|
1551
|
+
))) ? (
|
|
1552
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1553
|
+
0
|
|
1554
|
+
)
|
|
1555
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1556
|
+
pow(u[4], 2)
|
|
1557
|
+
)
|
|
1558
|
+
: (
|
|
1559
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1560
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1561
|
+
0
|
|
1562
|
+
)
|
|
1563
|
+
: (
|
|
1564
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1565
|
+
))
|
|
1566
|
+
)
|
|
1567
|
+
: (
|
|
1568
|
+
0
|
|
1569
|
+
)));
|
|
1570
|
+
out[46] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1571
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1572
|
+
)
|
|
1573
|
+
: (
|
|
1574
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1575
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1576
|
+
)
|
|
1577
|
+
: (
|
|
1578
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1579
|
+
))
|
|
1580
|
+
))) ? (
|
|
1581
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1582
|
+
0
|
|
1583
|
+
)
|
|
1584
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1585
|
+
pow(u[4], 2)
|
|
1586
|
+
)
|
|
1587
|
+
: (
|
|
1588
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1589
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1590
|
+
0
|
|
1591
|
+
)
|
|
1592
|
+
: (
|
|
1593
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1594
|
+
))
|
|
1595
|
+
)
|
|
1596
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1597
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1598
|
+
)
|
|
1599
|
+
: (
|
|
1600
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1601
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1602
|
+
)
|
|
1603
|
+
: (
|
|
1604
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1605
|
+
))
|
|
1606
|
+
))) ? (
|
|
1607
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1608
|
+
0
|
|
1609
|
+
)
|
|
1610
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1611
|
+
pow(u[4], 2)
|
|
1612
|
+
)
|
|
1613
|
+
: (
|
|
1614
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1615
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1616
|
+
0
|
|
1617
|
+
)
|
|
1618
|
+
: (
|
|
1619
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1620
|
+
))
|
|
1621
|
+
)
|
|
1622
|
+
: (
|
|
1623
|
+
0
|
|
1624
|
+
)));
|
|
1625
|
+
out[47] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1626
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1627
|
+
)
|
|
1628
|
+
: (
|
|
1629
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1630
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1631
|
+
)
|
|
1632
|
+
: (
|
|
1633
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1634
|
+
))
|
|
1635
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1636
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1637
|
+
)
|
|
1638
|
+
: (
|
|
1639
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1640
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1641
|
+
)
|
|
1642
|
+
: (
|
|
1643
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1644
|
+
))
|
|
1645
|
+
))) ? (
|
|
1646
|
+
0
|
|
1647
|
+
)
|
|
1648
|
+
: (
|
|
1649
|
+
-p[9]
|
|
1650
|
+
));
|
|
1651
|
+
out[49] = -p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1652
|
+
out[52] = -p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1653
|
+
out[53] = -p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1654
|
+
out[57] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
1655
|
+
out[58] = -sin(x[4] + u[12] - y[3]);
|
|
1656
|
+
out[59] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1657
|
+
out[62] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1658
|
+
out[64] = -cos(x[4] + u[12] - y[3]);
|
|
1659
|
+
out[65] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
1660
|
+
out[68] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1661
|
+
out[69] = y[8]*sin(x[4] + u[12] - y[3]) + y[9]*cos(x[4] + u[12] - y[3]);
|
|
1662
|
+
out[70] = -y[2]*y[8]*cos(x[4] + u[12] - y[3]) + y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1663
|
+
out[71] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1664
|
+
out[72] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1665
|
+
out[74] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1666
|
+
out[75] = y[8]*cos(x[4] + u[12] - y[3]) - y[9]*sin(x[4] + u[12] - y[3]);
|
|
1667
|
+
out[76] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1668
|
+
out[77] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1669
|
+
out[78] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
1081
1670
|
|
|
1082
1671
|
}
|
|
1083
1672
|
|
|
1084
1673
|
void sp_jac_run_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1085
1674
|
|
|
1086
|
-
out[
|
|
1087
|
-
out[
|
|
1088
|
-
out[
|
|
1089
|
-
out[
|
|
1090
|
-
out[
|
|
1091
|
-
out[
|
|
1092
|
-
out[
|
|
1093
|
-
out[
|
|
1094
|
-
out[
|
|
1095
|
-
out[
|
|
1096
|
-
out[
|
|
1097
|
-
out[
|
|
1098
|
-
out[
|
|
1099
|
-
out[
|
|
1100
|
-
out[
|
|
1101
|
-
out[
|
|
1102
|
-
out[
|
|
1103
|
-
out[
|
|
1104
|
-
out[
|
|
1675
|
+
out[1] = 314.15926535897933*p[11]*p[13];
|
|
1676
|
+
out[4] = -314.15926535897933*p[13];
|
|
1677
|
+
out[9] = p[11]/p[12];
|
|
1678
|
+
out[10] = -1/p[12];
|
|
1679
|
+
out[13] = -1/p[12];
|
|
1680
|
+
out[14] = 1.0/p[12];
|
|
1681
|
+
out[15] = -p[18];
|
|
1682
|
+
out[16] = 6.2831853071795862*p[15];
|
|
1683
|
+
out[17] = -6.2831853071795862*p[15];
|
|
1684
|
+
out[18] = -p[19];
|
|
1685
|
+
out[19] = -p[20];
|
|
1686
|
+
out[20] = -p[23];
|
|
1687
|
+
out[26] = -p[6]/p[0];
|
|
1688
|
+
out[31] = -p[6]/p[0];
|
|
1689
|
+
out[36] = -p[14]/p[0];
|
|
1690
|
+
out[41] = -p[14]/p[0];
|
|
1691
|
+
out[50] = -p[11]/p[12];
|
|
1692
|
+
out[51] = 1.0/p[12];
|
|
1693
|
+
out[60] = -p[17];
|
|
1694
|
+
out[61] = p[16];
|
|
1695
|
+
out[66] = -p[16];
|
|
1696
|
+
out[67] = -p[17];
|
|
1697
|
+
out[82] = p[22];
|
|
1698
|
+
out[83] = -p[21];
|
|
1105
1699
|
|
|
1106
1700
|
}
|
|
1107
1701
|
|
|
1108
1702
|
void sp_jac_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1109
1703
|
|
|
1110
|
-
out[
|
|
1111
|
-
out[
|
|
1112
|
-
out[
|
|
1113
|
-
out[
|
|
1114
|
-
out[
|
|
1115
|
-
out[
|
|
1116
|
-
out[
|
|
1117
|
-
out[
|
|
1118
|
-
out[
|
|
1119
|
-
out[
|
|
1704
|
+
out[21] = -1.0;
|
|
1705
|
+
out[44] = -1.0;
|
|
1706
|
+
out[48] = -1.0;
|
|
1707
|
+
out[54] = 1.0;
|
|
1708
|
+
out[55] = 1.0;
|
|
1709
|
+
out[56] = -1.0;
|
|
1710
|
+
out[63] = 1.0;
|
|
1711
|
+
out[73] = -1.0;
|
|
1712
|
+
out[79] = -1.0;
|
|
1713
|
+
out[80] = 1.0;
|
|
1714
|
+
out[81] = -1.0;
|
|
1715
|
+
out[84] = -1.0;
|
|
1120
1716
|
|
|
1121
1717
|
}
|
|
1122
1718
|
|
|
1123
1719
|
void de_jac_trap_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1124
1720
|
|
|
1125
|
-
out[
|
|
1126
|
-
out[
|
|
1127
|
-
out[
|
|
1128
|
-
out[
|
|
1129
|
-
out[
|
|
1130
|
-
out[
|
|
1131
|
-
out[
|
|
1132
|
-
out[
|
|
1133
|
-
out[
|
|
1134
|
-
out[
|
|
1135
|
-
out[
|
|
1136
|
-
out[
|
|
1137
|
-
out[
|
|
1138
|
-
out[
|
|
1139
|
-
out[
|
|
1140
|
-
out[
|
|
1141
|
-
out[
|
|
1142
|
-
out[
|
|
1143
|
-
out[
|
|
1144
|
-
out[
|
|
1145
|
-
out[
|
|
1146
|
-
out[
|
|
1147
|
-
out[
|
|
1148
|
-
out[
|
|
1149
|
-
out[
|
|
1150
|
-
out[
|
|
1151
|
-
|
|
1152
|
-
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
out[
|
|
1157
|
-
|
|
1158
|
-
|
|
1159
|
-
|
|
1160
|
-
|
|
1161
|
-
|
|
1162
|
-
out[
|
|
1163
|
-
|
|
1164
|
-
|
|
1165
|
-
|
|
1166
|
-
|
|
1167
|
-
|
|
1168
|
-
|
|
1169
|
-
|
|
1170
|
-
|
|
1171
|
-
|
|
1172
|
-
|
|
1173
|
-
|
|
1174
|
-
|
|
1175
|
-
|
|
1176
|
-
|
|
1177
|
-
|
|
1178
|
-
|
|
1179
|
-
|
|
1180
|
-
|
|
1181
|
-
|
|
1182
|
-
|
|
1183
|
-
|
|
1184
|
-
|
|
1185
|
-
|
|
1186
|
-
|
|
1187
|
-
|
|
1188
|
-
|
|
1189
|
-
|
|
1190
|
-
|
|
1191
|
-
|
|
1192
|
-
|
|
1193
|
-
|
|
1194
|
-
|
|
1195
|
-
|
|
1196
|
-
|
|
1721
|
+
out[0] = -157.07963267948966*Dt*p[10]*p[13]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0])) + 1.0;
|
|
1722
|
+
out[8] = -157.07963267948966*Dt*p[10]*p[13]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
1723
|
+
out[9] = -157.07963267948966*Dt*p[10]*p[13]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1724
|
+
out[22] = -0.5*Dt*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
1725
|
+
out[30] = -0.5*Dt*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
1726
|
+
out[31] = -0.5*Dt*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1727
|
+
out[44] = -0.5*Dt*p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1728
|
+
out[52] = -0.5*Dt*p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1729
|
+
out[53] = -0.5*Dt*p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1730
|
+
out[184] = 2.0*y[0]*p[1] + y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1731
|
+
out[185] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1732
|
+
out[186] = y[0]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1733
|
+
out[187] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1734
|
+
out[206] = 2.0*y[0]*(-p[2] - 0.5*p[3]) + y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1735
|
+
out[207] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1736
|
+
out[208] = y[0]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1737
|
+
out[209] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1738
|
+
out[228] = y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1739
|
+
out[229] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1740
|
+
out[230] = y[0]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + 2.0*y[2]*p[1];
|
|
1741
|
+
out[231] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1742
|
+
out[250] = y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1743
|
+
out[251] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1744
|
+
out[252] = y[0]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + 2.0*y[2]*(-p[2] - 0.5*p[3]);
|
|
1745
|
+
out[253] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1746
|
+
out[266] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1747
|
+
0
|
|
1748
|
+
)
|
|
1749
|
+
: (
|
|
1750
|
+
-p[7]
|
|
1751
|
+
));
|
|
1752
|
+
out[267] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1753
|
+
0
|
|
1754
|
+
)
|
|
1755
|
+
: (
|
|
1756
|
+
-p[8]
|
|
1757
|
+
));
|
|
1758
|
+
out[288] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1759
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1760
|
+
)
|
|
1761
|
+
: (
|
|
1762
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1763
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1764
|
+
)
|
|
1765
|
+
: (
|
|
1766
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1767
|
+
))
|
|
1768
|
+
))) ? (
|
|
1769
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1770
|
+
0
|
|
1771
|
+
)
|
|
1772
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1773
|
+
pow(u[4], 2)
|
|
1774
|
+
)
|
|
1775
|
+
: (
|
|
1776
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1777
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1778
|
+
0
|
|
1779
|
+
)
|
|
1780
|
+
: (
|
|
1781
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1782
|
+
))
|
|
1783
|
+
)
|
|
1784
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1785
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1786
|
+
)
|
|
1787
|
+
: (
|
|
1788
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1789
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1790
|
+
)
|
|
1791
|
+
: (
|
|
1792
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1793
|
+
))
|
|
1794
|
+
))) ? (
|
|
1795
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1796
|
+
0
|
|
1797
|
+
)
|
|
1798
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1799
|
+
pow(u[4], 2)
|
|
1800
|
+
)
|
|
1801
|
+
: (
|
|
1802
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1803
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1804
|
+
0
|
|
1805
|
+
)
|
|
1806
|
+
: (
|
|
1807
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1808
|
+
))
|
|
1809
|
+
)
|
|
1810
|
+
: (
|
|
1811
|
+
0
|
|
1812
|
+
)));
|
|
1813
|
+
out[289] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1814
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1815
|
+
)
|
|
1816
|
+
: (
|
|
1817
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1818
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1819
|
+
)
|
|
1820
|
+
: (
|
|
1821
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1822
|
+
))
|
|
1823
|
+
))) ? (
|
|
1824
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1825
|
+
0
|
|
1826
|
+
)
|
|
1827
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1828
|
+
pow(u[4], 2)
|
|
1829
|
+
)
|
|
1830
|
+
: (
|
|
1831
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1832
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1833
|
+
0
|
|
1834
|
+
)
|
|
1835
|
+
: (
|
|
1836
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1837
|
+
))
|
|
1838
|
+
)
|
|
1839
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1840
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1841
|
+
)
|
|
1842
|
+
: (
|
|
1843
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1844
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1845
|
+
)
|
|
1846
|
+
: (
|
|
1847
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1848
|
+
))
|
|
1849
|
+
))) ? (
|
|
1850
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1851
|
+
0
|
|
1852
|
+
)
|
|
1853
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1854
|
+
pow(u[4], 2)
|
|
1855
|
+
)
|
|
1856
|
+
: (
|
|
1857
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
1858
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1859
|
+
0
|
|
1860
|
+
)
|
|
1861
|
+
: (
|
|
1862
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
1863
|
+
))
|
|
1864
|
+
)
|
|
1865
|
+
: (
|
|
1866
|
+
0
|
|
1867
|
+
)));
|
|
1868
|
+
out[294] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1869
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
1870
|
+
)
|
|
1871
|
+
: (
|
|
1872
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1873
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
1874
|
+
)
|
|
1875
|
+
: (
|
|
1876
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1877
|
+
))
|
|
1878
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1879
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
1880
|
+
)
|
|
1881
|
+
: (
|
|
1882
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
1883
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
1884
|
+
)
|
|
1885
|
+
: (
|
|
1886
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
1887
|
+
))
|
|
1888
|
+
))) ? (
|
|
1889
|
+
0
|
|
1890
|
+
)
|
|
1891
|
+
: (
|
|
1892
|
+
-p[9]
|
|
1893
|
+
));
|
|
1894
|
+
out[308] = -p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1895
|
+
out[316] = -p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1896
|
+
out[317] = -p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1897
|
+
out[356] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
1898
|
+
out[362] = -sin(x[4] + u[12] - y[3]);
|
|
1899
|
+
out[363] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1900
|
+
out[378] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1901
|
+
out[384] = -cos(x[4] + u[12] - y[3]);
|
|
1902
|
+
out[385] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
1903
|
+
out[400] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1904
|
+
out[406] = y[8]*sin(x[4] + u[12] - y[3]) + y[9]*cos(x[4] + u[12] - y[3]);
|
|
1905
|
+
out[407] = -y[2]*y[8]*cos(x[4] + u[12] - y[3]) + y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
1906
|
+
out[412] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
1907
|
+
out[413] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1908
|
+
out[422] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1909
|
+
out[428] = y[8]*cos(x[4] + u[12] - y[3]) - y[9]*sin(x[4] + u[12] - y[3]);
|
|
1910
|
+
out[429] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1911
|
+
out[434] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
1912
|
+
out[435] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
1197
1913
|
|
|
1198
1914
|
}
|
|
1199
1915
|
|
|
1200
1916
|
void de_jac_trap_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1201
1917
|
|
|
1202
|
-
out[
|
|
1203
|
-
out[
|
|
1204
|
-
out[
|
|
1205
|
-
out[
|
|
1206
|
-
out[
|
|
1207
|
-
out[
|
|
1208
|
-
out[
|
|
1209
|
-
out[
|
|
1210
|
-
out[
|
|
1211
|
-
out[
|
|
1212
|
-
out[
|
|
1213
|
-
out[
|
|
1214
|
-
out[
|
|
1215
|
-
out[
|
|
1216
|
-
out[
|
|
1217
|
-
out[
|
|
1218
|
-
out[
|
|
1219
|
-
out[
|
|
1220
|
-
out[
|
|
1221
|
-
out[
|
|
1918
|
+
out[1] = -157.07963267948966*Dt*p[11]*p[13];
|
|
1919
|
+
out[20] = 157.07963267948966*Dt*p[13];
|
|
1920
|
+
out[45] = -0.5*Dt*p[11]/p[12];
|
|
1921
|
+
out[46] = 0.5*Dt/p[12] + 1.0;
|
|
1922
|
+
out[69] = 0.5*Dt/p[12] + 1.0;
|
|
1923
|
+
out[80] = -0.5*Dt/p[12];
|
|
1924
|
+
out[92] = 0.5*Dt*p[18] + 1.0;
|
|
1925
|
+
out[103] = -3.1415926535897931*Dt*p[15];
|
|
1926
|
+
out[108] = 3.1415926535897931*Dt*p[15];
|
|
1927
|
+
out[115] = 0.5*Dt*p[19] + 1.0;
|
|
1928
|
+
out[138] = 0.5*Dt*p[20] + 1.0;
|
|
1929
|
+
out[161] = 0.5*Dt*p[23] + 1.0;
|
|
1930
|
+
out[174] = 0.5*Dt;
|
|
1931
|
+
out[188] = -p[6]/p[0];
|
|
1932
|
+
out[211] = -p[6]/p[0];
|
|
1933
|
+
out[238] = -p[14]/p[0];
|
|
1934
|
+
out[261] = -p[14]/p[0];
|
|
1935
|
+
out[309] = -p[11]/p[12];
|
|
1936
|
+
out[310] = 1.0/p[12];
|
|
1937
|
+
out[368] = -p[17];
|
|
1938
|
+
out[369] = p[16];
|
|
1939
|
+
out[390] = -p[16];
|
|
1940
|
+
out[391] = -p[17];
|
|
1941
|
+
out[469] = p[22];
|
|
1942
|
+
out[482] = -p[21];
|
|
1222
1943
|
|
|
1223
1944
|
}
|
|
1224
1945
|
|
|
1225
1946
|
void de_jac_trap_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1226
1947
|
|
|
1227
|
-
out[
|
|
1228
|
-
out[
|
|
1229
|
-
out[
|
|
1230
|
-
out[
|
|
1231
|
-
out[
|
|
1232
|
-
out[
|
|
1233
|
-
out[
|
|
1234
|
-
out[
|
|
1235
|
-
out[
|
|
1948
|
+
out[23] = 1.0;
|
|
1949
|
+
out[276] = -1.0;
|
|
1950
|
+
out[299] = -1.0;
|
|
1951
|
+
out[322] = 1.0;
|
|
1952
|
+
out[335] = 1.0;
|
|
1953
|
+
out[345] = -1.0;
|
|
1954
|
+
out[380] = 1.0;
|
|
1955
|
+
out[414] = -1.0;
|
|
1956
|
+
out[437] = -1.0;
|
|
1957
|
+
out[455] = 1.0;
|
|
1958
|
+
out[460] = -1.0;
|
|
1959
|
+
out[483] = -1.0;
|
|
1236
1960
|
|
|
1237
1961
|
}
|
|
1238
1962
|
|
|
1239
1963
|
void sp_jac_trap_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1240
1964
|
|
|
1241
|
-
out[
|
|
1242
|
-
out[
|
|
1243
|
-
out[
|
|
1244
|
-
out[
|
|
1245
|
-
out[
|
|
1246
|
-
out[
|
|
1247
|
-
out[
|
|
1248
|
-
out[
|
|
1249
|
-
out[
|
|
1250
|
-
out[
|
|
1251
|
-
out[
|
|
1252
|
-
out[
|
|
1253
|
-
out[
|
|
1254
|
-
out[
|
|
1255
|
-
out[
|
|
1256
|
-
out[
|
|
1257
|
-
out[
|
|
1258
|
-
out[
|
|
1259
|
-
out[
|
|
1260
|
-
out[
|
|
1261
|
-
out[
|
|
1262
|
-
out[
|
|
1263
|
-
out[
|
|
1264
|
-
out[
|
|
1265
|
-
out[
|
|
1266
|
-
out[
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
|
|
1270
|
-
|
|
1271
|
-
|
|
1272
|
-
out[
|
|
1273
|
-
|
|
1274
|
-
|
|
1275
|
-
|
|
1276
|
-
|
|
1277
|
-
|
|
1278
|
-
out[
|
|
1279
|
-
|
|
1280
|
-
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
|
-
|
|
1284
|
-
|
|
1285
|
-
|
|
1286
|
-
|
|
1287
|
-
|
|
1288
|
-
|
|
1289
|
-
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
|
|
1293
|
-
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
|
|
1298
|
-
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
|
|
1308
|
-
|
|
1309
|
-
|
|
1310
|
-
|
|
1311
|
-
|
|
1312
|
-
|
|
1965
|
+
out[0] = -157.07963267948966*Dt*p[10]*p[13]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0])) + 1.0;
|
|
1966
|
+
out[2] = -157.07963267948966*Dt*p[10]*p[13]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
1967
|
+
out[3] = -157.07963267948966*Dt*p[10]*p[13]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1968
|
+
out[5] = -0.5*Dt*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
1969
|
+
out[7] = -0.5*Dt*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
1970
|
+
out[8] = -0.5*Dt*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1971
|
+
out[9] = -0.5*Dt*p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1972
|
+
out[12] = -0.5*Dt*p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
1973
|
+
out[13] = -0.5*Dt*p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
1974
|
+
out[23] = 2.0*y[0]*p[1] + y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1975
|
+
out[24] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1976
|
+
out[25] = y[0]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1977
|
+
out[26] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1978
|
+
out[28] = 2.0*y[0]*(-p[2] - 0.5*p[3]) + y[2]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1979
|
+
out[29] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1980
|
+
out[30] = y[0]*(p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1981
|
+
out[31] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1982
|
+
out[33] = y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1983
|
+
out[34] = y[0]*y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1984
|
+
out[35] = y[0]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3])) + 2.0*y[2]*p[1];
|
|
1985
|
+
out[36] = y[0]*y[2]*(-p[2]*cos(y[1] - y[3]) - p[1]*sin(y[1] - y[3]));
|
|
1986
|
+
out[38] = y[2]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3]));
|
|
1987
|
+
out[39] = y[0]*y[2]*(-p[2]*sin(y[1] - y[3]) + p[1]*cos(y[1] - y[3]));
|
|
1988
|
+
out[40] = y[0]*(p[2]*cos(y[1] - y[3]) + p[1]*sin(y[1] - y[3])) + 2.0*y[2]*(-p[2] - 0.5*p[3]);
|
|
1989
|
+
out[41] = y[0]*y[2]*(p[2]*sin(y[1] - y[3]) - p[1]*cos(y[1] - y[3]));
|
|
1990
|
+
out[43] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1991
|
+
0
|
|
1992
|
+
)
|
|
1993
|
+
: (
|
|
1994
|
+
-p[7]
|
|
1995
|
+
));
|
|
1996
|
+
out[44] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
1997
|
+
0
|
|
1998
|
+
)
|
|
1999
|
+
: (
|
|
2000
|
+
-p[8]
|
|
2001
|
+
));
|
|
2002
|
+
out[46] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2003
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2004
|
+
)
|
|
2005
|
+
: (
|
|
2006
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2007
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2008
|
+
)
|
|
2009
|
+
: (
|
|
2010
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2011
|
+
))
|
|
2012
|
+
))) ? (
|
|
2013
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2014
|
+
0
|
|
2015
|
+
)
|
|
2016
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2017
|
+
pow(u[4], 2)
|
|
2018
|
+
)
|
|
2019
|
+
: (
|
|
2020
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2021
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2022
|
+
0
|
|
2023
|
+
)
|
|
2024
|
+
: (
|
|
2025
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
2026
|
+
))
|
|
2027
|
+
)
|
|
2028
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2029
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2030
|
+
)
|
|
2031
|
+
: (
|
|
2032
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2033
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2034
|
+
)
|
|
2035
|
+
: (
|
|
2036
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2037
|
+
))
|
|
2038
|
+
))) ? (
|
|
2039
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2040
|
+
0
|
|
2041
|
+
)
|
|
2042
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2043
|
+
pow(u[4], 2)
|
|
2044
|
+
)
|
|
2045
|
+
: (
|
|
2046
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2047
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2048
|
+
0
|
|
2049
|
+
)
|
|
2050
|
+
: (
|
|
2051
|
+
-2.0*p[7]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
2052
|
+
))
|
|
2053
|
+
)
|
|
2054
|
+
: (
|
|
2055
|
+
0
|
|
2056
|
+
)));
|
|
2057
|
+
out[47] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2058
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2059
|
+
)
|
|
2060
|
+
: (
|
|
2061
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2062
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2063
|
+
)
|
|
2064
|
+
: (
|
|
2065
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2066
|
+
))
|
|
2067
|
+
))) ? (
|
|
2068
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2069
|
+
0
|
|
2070
|
+
)
|
|
2071
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2072
|
+
pow(u[4], 2)
|
|
2073
|
+
)
|
|
2074
|
+
: (
|
|
2075
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2076
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2077
|
+
0
|
|
2078
|
+
)
|
|
2079
|
+
: (
|
|
2080
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
2081
|
+
))
|
|
2082
|
+
)
|
|
2083
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2084
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2085
|
+
)
|
|
2086
|
+
: (
|
|
2087
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2088
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2089
|
+
)
|
|
2090
|
+
: (
|
|
2091
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2092
|
+
))
|
|
2093
|
+
))) ? (
|
|
2094
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2095
|
+
0
|
|
2096
|
+
)
|
|
2097
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2098
|
+
pow(u[4], 2)
|
|
2099
|
+
)
|
|
2100
|
+
: (
|
|
2101
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2102
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2103
|
+
0
|
|
2104
|
+
)
|
|
2105
|
+
: (
|
|
2106
|
+
-2.0*p[8]*(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4])
|
|
2107
|
+
))
|
|
2108
|
+
)
|
|
2109
|
+
: (
|
|
2110
|
+
0
|
|
2111
|
+
)));
|
|
2112
|
+
out[48] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2113
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2114
|
+
)
|
|
2115
|
+
: (
|
|
2116
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2117
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2118
|
+
)
|
|
2119
|
+
: (
|
|
2120
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2121
|
+
))
|
|
2122
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2123
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2124
|
+
)
|
|
2125
|
+
: (
|
|
2126
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2127
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2128
|
+
)
|
|
2129
|
+
: (
|
|
2130
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2131
|
+
))
|
|
2132
|
+
))) ? (
|
|
2133
|
+
0
|
|
2134
|
+
)
|
|
2135
|
+
: (
|
|
2136
|
+
-p[9]
|
|
2137
|
+
));
|
|
2138
|
+
out[50] = -p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
2139
|
+
out[53] = -p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]))/p[12];
|
|
2140
|
+
out[54] = -p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]))/p[12];
|
|
2141
|
+
out[58] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
2142
|
+
out[59] = -sin(x[4] + u[12] - y[3]);
|
|
2143
|
+
out[60] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
2144
|
+
out[63] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
2145
|
+
out[65] = -cos(x[4] + u[12] - y[3]);
|
|
2146
|
+
out[66] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
2147
|
+
out[69] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
2148
|
+
out[70] = y[8]*sin(x[4] + u[12] - y[3]) + y[9]*cos(x[4] + u[12] - y[3]);
|
|
2149
|
+
out[71] = -y[2]*y[8]*cos(x[4] + u[12] - y[3]) + y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
2150
|
+
out[72] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
2151
|
+
out[73] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
2152
|
+
out[75] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
2153
|
+
out[76] = y[8]*cos(x[4] + u[12] - y[3]) - y[9]*sin(x[4] + u[12] - y[3]);
|
|
2154
|
+
out[77] = y[2]*y[8]*sin(x[4] + u[12] - y[3]) + y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
2155
|
+
out[78] = y[2]*cos(x[4] + u[12] - y[3]);
|
|
2156
|
+
out[79] = -y[2]*sin(x[4] + u[12] - y[3]);
|
|
1313
2157
|
|
|
1314
2158
|
}
|
|
1315
2159
|
|
|
1316
2160
|
void sp_jac_trap_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1317
2161
|
|
|
1318
|
-
out[
|
|
1319
|
-
out[
|
|
1320
|
-
out[
|
|
1321
|
-
out[
|
|
1322
|
-
out[
|
|
1323
|
-
out[
|
|
1324
|
-
out[
|
|
1325
|
-
out[
|
|
1326
|
-
out[
|
|
1327
|
-
out[
|
|
1328
|
-
out[
|
|
1329
|
-
out[
|
|
1330
|
-
out[
|
|
1331
|
-
out[
|
|
1332
|
-
out[
|
|
1333
|
-
out[
|
|
1334
|
-
out[
|
|
1335
|
-
out[
|
|
1336
|
-
out[
|
|
1337
|
-
out[
|
|
2162
|
+
out[1] = -157.07963267948966*Dt*p[11]*p[13];
|
|
2163
|
+
out[4] = 157.07963267948966*Dt*p[13];
|
|
2164
|
+
out[10] = -0.5*Dt*p[11]/p[12];
|
|
2165
|
+
out[11] = 0.5*Dt/p[12] + 1.0;
|
|
2166
|
+
out[14] = 0.5*Dt/p[12] + 1.0;
|
|
2167
|
+
out[15] = -0.5*Dt/p[12];
|
|
2168
|
+
out[16] = 0.5*Dt*p[18] + 1.0;
|
|
2169
|
+
out[17] = -3.1415926535897931*Dt*p[15];
|
|
2170
|
+
out[18] = 3.1415926535897931*Dt*p[15];
|
|
2171
|
+
out[19] = 0.5*Dt*p[19] + 1.0;
|
|
2172
|
+
out[20] = 0.5*Dt*p[20] + 1.0;
|
|
2173
|
+
out[21] = 0.5*Dt*p[23] + 1.0;
|
|
2174
|
+
out[22] = 0.5*Dt;
|
|
2175
|
+
out[27] = -p[6]/p[0];
|
|
2176
|
+
out[32] = -p[6]/p[0];
|
|
2177
|
+
out[37] = -p[14]/p[0];
|
|
2178
|
+
out[42] = -p[14]/p[0];
|
|
2179
|
+
out[51] = -p[11]/p[12];
|
|
2180
|
+
out[52] = 1.0/p[12];
|
|
2181
|
+
out[61] = -p[17];
|
|
2182
|
+
out[62] = p[16];
|
|
2183
|
+
out[67] = -p[16];
|
|
2184
|
+
out[68] = -p[17];
|
|
2185
|
+
out[83] = p[22];
|
|
2186
|
+
out[84] = -p[21];
|
|
1338
2187
|
|
|
1339
2188
|
}
|
|
1340
2189
|
|
|
1341
2190
|
void sp_jac_trap_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1342
2191
|
|
|
1343
|
-
out[
|
|
1344
|
-
out[
|
|
1345
|
-
out[
|
|
1346
|
-
out[
|
|
1347
|
-
out[
|
|
1348
|
-
out[
|
|
1349
|
-
out[
|
|
1350
|
-
out[
|
|
1351
|
-
out[
|
|
2192
|
+
out[6] = 1.0;
|
|
2193
|
+
out[45] = -1.0;
|
|
2194
|
+
out[49] = -1.0;
|
|
2195
|
+
out[55] = 1.0;
|
|
2196
|
+
out[56] = 1.0;
|
|
2197
|
+
out[57] = -1.0;
|
|
2198
|
+
out[64] = 1.0;
|
|
2199
|
+
out[74] = -1.0;
|
|
2200
|
+
out[80] = -1.0;
|
|
2201
|
+
out[81] = 1.0;
|
|
2202
|
+
out[82] = -1.0;
|
|
2203
|
+
out[85] = -1.0;
|
|
1352
2204
|
|
|
1353
2205
|
}
|
|
1354
2206
|
|
|
@@ -1359,111 +2211,245 @@ void de_Fu_run_xy_eval(double *out,double *x,double *y,double *u,double *p,doubl
|
|
|
1359
2211
|
|
|
1360
2212
|
void de_Fu_run_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1361
2213
|
|
|
1362
|
-
out[
|
|
2214
|
+
out[67] = p[18];
|
|
1363
2215
|
|
|
1364
2216
|
}
|
|
1365
2217
|
|
|
1366
2218
|
void de_Fu_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1367
2219
|
|
|
1368
|
-
out[
|
|
1369
|
-
out[
|
|
2220
|
+
out[78] = 1.0;
|
|
2221
|
+
out[97] = 1.0;
|
|
1370
2222
|
|
|
1371
2223
|
}
|
|
1372
2224
|
|
|
1373
2225
|
void de_Gu_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1374
2226
|
|
|
1375
|
-
out[
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
2227
|
+
out[60] = ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2228
|
+
0
|
|
2229
|
+
)
|
|
2230
|
+
: (
|
|
2231
|
+
1.0
|
|
2232
|
+
));
|
|
2233
|
+
out[61] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2234
|
+
0
|
|
2235
|
+
)
|
|
2236
|
+
: (
|
|
2237
|
+
1.0
|
|
2238
|
+
));
|
|
2239
|
+
out[74] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2240
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2241
|
+
)
|
|
2242
|
+
: (
|
|
2243
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2244
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2245
|
+
)
|
|
2246
|
+
: (
|
|
2247
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2248
|
+
))
|
|
2249
|
+
))) ? (
|
|
2250
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2251
|
+
0
|
|
2252
|
+
)
|
|
2253
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2254
|
+
pow(u[4], 2)
|
|
2255
|
+
)
|
|
2256
|
+
: (
|
|
2257
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2258
|
+
))), -0.5)*((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2259
|
+
0
|
|
2260
|
+
)
|
|
2261
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2262
|
+
2.0*u[4]
|
|
2263
|
+
)
|
|
2264
|
+
: (
|
|
2265
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2266
|
+
)))
|
|
2267
|
+
)
|
|
2268
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2269
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2270
|
+
)
|
|
2271
|
+
: (
|
|
2272
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2273
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2274
|
+
)
|
|
2275
|
+
: (
|
|
2276
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2277
|
+
))
|
|
2278
|
+
))) ? (
|
|
2279
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2280
|
+
0
|
|
2281
|
+
)
|
|
2282
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2283
|
+
pow(u[4], 2)
|
|
2284
|
+
)
|
|
2285
|
+
: (
|
|
2286
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2287
|
+
))), -0.5)*((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2288
|
+
0
|
|
2289
|
+
)
|
|
2290
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2291
|
+
2.0*u[4]
|
|
2292
|
+
)
|
|
2293
|
+
: (
|
|
2294
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2295
|
+
)))
|
|
2296
|
+
)
|
|
2297
|
+
: (
|
|
2298
|
+
0
|
|
2299
|
+
)));
|
|
2300
|
+
out[75] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2301
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2302
|
+
)
|
|
2303
|
+
: (
|
|
2304
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2305
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2306
|
+
)
|
|
2307
|
+
: (
|
|
2308
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2309
|
+
))
|
|
2310
|
+
))) ? (
|
|
2311
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2312
|
+
0
|
|
2313
|
+
)
|
|
2314
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2315
|
+
pow(u[4], 2)
|
|
2316
|
+
)
|
|
2317
|
+
: (
|
|
2318
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2319
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2320
|
+
0
|
|
2321
|
+
)
|
|
2322
|
+
: (
|
|
2323
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2324
|
+
))
|
|
2325
|
+
)
|
|
2326
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2327
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2328
|
+
)
|
|
2329
|
+
: (
|
|
2330
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2331
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2332
|
+
)
|
|
2333
|
+
: (
|
|
2334
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2335
|
+
))
|
|
2336
|
+
))) ? (
|
|
2337
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2338
|
+
0
|
|
2339
|
+
)
|
|
2340
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2341
|
+
pow(u[4], 2)
|
|
2342
|
+
)
|
|
2343
|
+
: (
|
|
2344
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2345
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2346
|
+
0
|
|
2347
|
+
)
|
|
2348
|
+
: (
|
|
2349
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2350
|
+
))
|
|
2351
|
+
)
|
|
2352
|
+
: (
|
|
2353
|
+
0
|
|
2354
|
+
)));
|
|
2355
|
+
out[76] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2356
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2357
|
+
)
|
|
2358
|
+
: (
|
|
2359
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2360
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2361
|
+
)
|
|
2362
|
+
: (
|
|
2363
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2364
|
+
))
|
|
2365
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2366
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2367
|
+
)
|
|
2368
|
+
: (
|
|
2369
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2370
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2371
|
+
)
|
|
2372
|
+
: (
|
|
2373
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2374
|
+
))
|
|
2375
|
+
))) ? (
|
|
2376
|
+
0
|
|
2377
|
+
)
|
|
2378
|
+
: (
|
|
2379
|
+
1.0
|
|
2380
|
+
));
|
|
2381
|
+
out[77] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2382
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2383
|
+
)
|
|
2384
|
+
: (
|
|
2385
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2386
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2387
|
+
)
|
|
2388
|
+
: (
|
|
2389
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2390
|
+
))
|
|
2391
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2392
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2393
|
+
)
|
|
2394
|
+
: (
|
|
2395
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2396
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2397
|
+
)
|
|
2398
|
+
: (
|
|
2399
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2400
|
+
))
|
|
2401
|
+
))) ? (
|
|
2402
|
+
0
|
|
2403
|
+
)
|
|
2404
|
+
: (
|
|
2405
|
+
p[9]
|
|
2406
|
+
));
|
|
2407
|
+
out[124] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
2408
|
+
out[138] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
2409
|
+
out[152] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
2410
|
+
out[166] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1379
2411
|
|
|
1380
2412
|
}
|
|
1381
2413
|
|
|
1382
2414
|
void de_Gu_run_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1383
2415
|
|
|
1384
2416
|
out[0] = -1/p[0];
|
|
1385
|
-
out[
|
|
1386
|
-
out[
|
|
1387
|
-
out[
|
|
1388
|
-
out[84] = -1/p[0];
|
|
1389
|
-
out[105] = -1/p[0];
|
|
1390
|
-
out[126] = -1/p[0];
|
|
1391
|
-
out[147] = -1/p[0];
|
|
1392
|
-
out[168] = -1/p[0];
|
|
1393
|
-
out[173] = 2.0*p[21]*p[17]*u[13]/p[0];
|
|
1394
|
-
out[189] = -1/p[0];
|
|
1395
|
-
out[193] = p[17]/p[0];
|
|
1396
|
-
out[210] = cos(u[11]);
|
|
1397
|
-
out[211] = -u[10]*sin(u[11]);
|
|
1398
|
-
out[230] = sin(u[11]);
|
|
1399
|
-
out[231] = u[10]*cos(u[11]);
|
|
2417
|
+
out[15] = -1/p[0];
|
|
2418
|
+
out[30] = -1/p[0];
|
|
2419
|
+
out[45] = -1/p[0];
|
|
1400
2420
|
|
|
1401
2421
|
}
|
|
1402
2422
|
|
|
1403
2423
|
void de_Gu_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1404
2424
|
|
|
1405
|
-
out[
|
|
1406
|
-
out[
|
|
1407
|
-
out[335] = 1.0;
|
|
2425
|
+
out[108] = 1.0;
|
|
2426
|
+
out[135] = 1.0;
|
|
1408
2427
|
|
|
1409
2428
|
}
|
|
1410
2429
|
|
|
1411
2430
|
void de_Hx_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1412
2431
|
|
|
2432
|
+
out[40] = p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
1413
2433
|
|
|
1414
2434
|
}
|
|
1415
2435
|
|
|
1416
2436
|
void de_Hx_run_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1417
2437
|
|
|
2438
|
+
out[41] = p[11];
|
|
1418
2439
|
|
|
1419
2440
|
}
|
|
1420
2441
|
|
|
1421
2442
|
void de_Hx_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1422
2443
|
|
|
2444
|
+
out[50] = 1.0;
|
|
1423
2445
|
out[78] = 1.0;
|
|
1424
2446
|
|
|
1425
2447
|
}
|
|
1426
2448
|
|
|
1427
2449
|
void de_Hy_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1428
2450
|
|
|
1429
|
-
out[
|
|
1430
|
-
out[
|
|
1431
|
-
out[107] = y[0]*(p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1432
|
-
out[108] = y[2]*y[0]*(p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1]));
|
|
1433
|
-
out[126] = y[2]*(p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1])) - 2.0*y[0]*p[2];
|
|
1434
|
-
out[127] = y[2]*y[0]*(p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1435
|
-
out[128] = y[0]*(p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1]));
|
|
1436
|
-
out[129] = y[2]*y[0]*(-p[2]*sin(y[3] - y[1]) + p[1]*cos(y[3] - y[1]));
|
|
1437
|
-
out[147] = y[2]*(-p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1438
|
-
out[148] = y[2]*y[0]*(p[2]*cos(y[3] - y[1]) - p[1]*sin(y[3] - y[1]));
|
|
1439
|
-
out[149] = 2.0*y[2]*p[1] + y[0]*(-p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1440
|
-
out[150] = y[2]*y[0]*(-p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1]));
|
|
1441
|
-
out[168] = y[2]*(p[2]*cos(y[3] - y[1]) - p[1]*sin(y[3] - y[1]));
|
|
1442
|
-
out[169] = y[2]*y[0]*(p[2]*sin(y[3] - y[1]) + p[1]*cos(y[3] - y[1]));
|
|
1443
|
-
out[170] = -2.0*y[2]*p[2] + y[0]*(p[2]*cos(y[3] - y[1]) - p[1]*sin(y[3] - y[1]));
|
|
1444
|
-
out[171] = y[2]*y[0]*(-p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1445
|
-
out[193] = y[6]*(p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5])) + 2.0*y[4]*p[4];
|
|
1446
|
-
out[194] = y[6]*y[4]*(-p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1447
|
-
out[195] = y[4]*(p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1448
|
-
out[196] = y[6]*y[4]*(p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5]));
|
|
1449
|
-
out[214] = y[6]*(p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5])) - 2.0*y[4]*p[5];
|
|
1450
|
-
out[215] = y[6]*y[4]*(p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1451
|
-
out[216] = y[4]*(p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5]));
|
|
1452
|
-
out[217] = y[6]*y[4]*(-p[5]*sin(y[7] - y[5]) + p[4]*cos(y[7] - y[5]));
|
|
1453
|
-
out[235] = y[6]*(-p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1454
|
-
out[236] = y[6]*y[4]*(p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1455
|
-
out[237] = 2.0*y[6]*p[4] + y[4]*(-p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1456
|
-
out[238] = y[6]*y[4]*(-p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5]));
|
|
1457
|
-
out[256] = y[6]*(p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1458
|
-
out[257] = y[6]*y[4]*(p[5]*sin(y[7] - y[5]) + p[4]*cos(y[7] - y[5]));
|
|
1459
|
-
out[258] = -2.0*y[6]*p[5] + y[4]*(p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1460
|
-
out[259] = y[6]*y[4]*(-p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1461
|
-
out[283] = y[10]*pow(pow(y[11], 2) + pow(y[10], 2), -0.5);
|
|
1462
|
-
out[284] = y[11]*pow(pow(y[11], 2) + pow(y[10], 2), -0.5);
|
|
1463
|
-
out[317] = 2.0*p[16]*y[2]*(pow(y[11], 2) + pow(y[10], 2)) - y[11]*sin(y[3]) - y[10]*cos(y[3]);
|
|
1464
|
-
out[318] = -y[2]*y[11]*cos(y[3]) + y[2]*y[10]*sin(y[3]);
|
|
1465
|
-
out[325] = 2.0*p[16]*pow(y[2], 2)*y[10] - y[2]*cos(y[3]);
|
|
1466
|
-
out[326] = 2.0*p[16]*pow(y[2], 2)*y[11] - y[2]*sin(y[3]);
|
|
2451
|
+
out[70] = p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
2452
|
+
out[71] = p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1467
2453
|
|
|
1468
2454
|
}
|
|
1469
2455
|
|
|
@@ -1475,11 +2461,8 @@ void de_Hy_run_up_eval(double *out,double *x,double *y,double *u,double *p,doubl
|
|
|
1475
2461
|
void de_Hy_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1476
2462
|
|
|
1477
2463
|
out[0] = 1.0;
|
|
1478
|
-
out[
|
|
1479
|
-
out[
|
|
1480
|
-
out[69] = 1.0;
|
|
1481
|
-
out[92] = 1.0;
|
|
1482
|
-
out[348] = 1.0;
|
|
2464
|
+
out[16] = 1.0;
|
|
2465
|
+
out[104] = 1.0;
|
|
1483
2466
|
|
|
1484
2467
|
}
|
|
1485
2468
|
|
|
@@ -1495,9 +2478,10 @@ void de_Hu_run_up_eval(double *out,double *x,double *y,double *u,double *p,doubl
|
|
|
1495
2478
|
|
|
1496
2479
|
void de_Hu_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1497
2480
|
|
|
1498
|
-
out[
|
|
1499
|
-
out[
|
|
1500
|
-
out[
|
|
2481
|
+
out[32] = 1.0;
|
|
2482
|
+
out[47] = 1.0;
|
|
2483
|
+
out[62] = 1.0;
|
|
2484
|
+
out[120] = 1.0;
|
|
1501
2485
|
|
|
1502
2486
|
}
|
|
1503
2487
|
|
|
@@ -1508,7 +2492,7 @@ void sp_Fu_run_xy_eval(double *out,double *x,double *y,double *u,double *p,doubl
|
|
|
1508
2492
|
|
|
1509
2493
|
void sp_Fu_run_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1510
2494
|
|
|
1511
|
-
out[0] = p[
|
|
2495
|
+
out[0] = p[18];
|
|
1512
2496
|
|
|
1513
2497
|
}
|
|
1514
2498
|
|
|
@@ -1521,10 +2505,190 @@ out[2] = 1.0;
|
|
|
1521
2505
|
|
|
1522
2506
|
void sp_Gu_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1523
2507
|
|
|
1524
|
-
out[
|
|
1525
|
-
|
|
1526
|
-
|
|
1527
|
-
|
|
2508
|
+
out[4] = ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2509
|
+
0
|
|
2510
|
+
)
|
|
2511
|
+
: (
|
|
2512
|
+
1.0
|
|
2513
|
+
));
|
|
2514
|
+
out[5] = ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2515
|
+
0
|
|
2516
|
+
)
|
|
2517
|
+
: (
|
|
2518
|
+
1.0
|
|
2519
|
+
));
|
|
2520
|
+
out[6] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2521
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2522
|
+
)
|
|
2523
|
+
: (
|
|
2524
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2525
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2526
|
+
)
|
|
2527
|
+
: (
|
|
2528
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2529
|
+
))
|
|
2530
|
+
))) ? (
|
|
2531
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2532
|
+
0
|
|
2533
|
+
)
|
|
2534
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2535
|
+
pow(u[4], 2)
|
|
2536
|
+
)
|
|
2537
|
+
: (
|
|
2538
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2539
|
+
))), -0.5)*((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2540
|
+
0
|
|
2541
|
+
)
|
|
2542
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2543
|
+
2.0*u[4]
|
|
2544
|
+
)
|
|
2545
|
+
: (
|
|
2546
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2547
|
+
)))
|
|
2548
|
+
)
|
|
2549
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2550
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2551
|
+
)
|
|
2552
|
+
: (
|
|
2553
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2554
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2555
|
+
)
|
|
2556
|
+
: (
|
|
2557
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2558
|
+
))
|
|
2559
|
+
))) ? (
|
|
2560
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2561
|
+
0
|
|
2562
|
+
)
|
|
2563
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2564
|
+
pow(u[4], 2)
|
|
2565
|
+
)
|
|
2566
|
+
: (
|
|
2567
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2568
|
+
))), -0.5)*((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2569
|
+
0
|
|
2570
|
+
)
|
|
2571
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2572
|
+
2.0*u[4]
|
|
2573
|
+
)
|
|
2574
|
+
: (
|
|
2575
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2576
|
+
)))
|
|
2577
|
+
)
|
|
2578
|
+
: (
|
|
2579
|
+
0
|
|
2580
|
+
)));
|
|
2581
|
+
out[7] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2582
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2583
|
+
)
|
|
2584
|
+
: (
|
|
2585
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2586
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2587
|
+
)
|
|
2588
|
+
: (
|
|
2589
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2590
|
+
))
|
|
2591
|
+
))) ? (
|
|
2592
|
+
0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2593
|
+
0
|
|
2594
|
+
)
|
|
2595
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2596
|
+
pow(u[4], 2)
|
|
2597
|
+
)
|
|
2598
|
+
: (
|
|
2599
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2600
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2601
|
+
0
|
|
2602
|
+
)
|
|
2603
|
+
: (
|
|
2604
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2605
|
+
))
|
|
2606
|
+
)
|
|
2607
|
+
: ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2608
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2609
|
+
)
|
|
2610
|
+
: (
|
|
2611
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2612
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2613
|
+
)
|
|
2614
|
+
: (
|
|
2615
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2616
|
+
))
|
|
2617
|
+
))) ? (
|
|
2618
|
+
-0.5*pow(1.0 - ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2619
|
+
0
|
|
2620
|
+
)
|
|
2621
|
+
: ((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2622
|
+
pow(u[4], 2)
|
|
2623
|
+
)
|
|
2624
|
+
: (
|
|
2625
|
+
pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2)
|
|
2626
|
+
))), -0.5)*((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] || u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2627
|
+
0
|
|
2628
|
+
)
|
|
2629
|
+
: (
|
|
2630
|
+
2.0*u[5] - 2.0*p[8]*x[3] + 2.0*p[7]*(1.0 - x[2]) + 2.0*u[4]
|
|
2631
|
+
))
|
|
2632
|
+
)
|
|
2633
|
+
: (
|
|
2634
|
+
0
|
|
2635
|
+
)));
|
|
2636
|
+
out[8] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2637
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2638
|
+
)
|
|
2639
|
+
: (
|
|
2640
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2641
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2642
|
+
)
|
|
2643
|
+
: (
|
|
2644
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2645
|
+
))
|
|
2646
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2647
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2648
|
+
)
|
|
2649
|
+
: (
|
|
2650
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2651
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2652
|
+
)
|
|
2653
|
+
: (
|
|
2654
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2655
|
+
))
|
|
2656
|
+
))) ? (
|
|
2657
|
+
0
|
|
2658
|
+
)
|
|
2659
|
+
: (
|
|
2660
|
+
1.0
|
|
2661
|
+
));
|
|
2662
|
+
out[9] = ((((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2663
|
+
u[6] + p[9]*(-y[0] + u[7]) > 1
|
|
2664
|
+
)
|
|
2665
|
+
: (
|
|
2666
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2667
|
+
sqrt(1 - pow(u[4], 2)) < u[6] + p[9]*(-y[0] + u[7])
|
|
2668
|
+
)
|
|
2669
|
+
: (
|
|
2670
|
+
u[6] + p[9]*(-y[0] + u[7]) > sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2671
|
+
))
|
|
2672
|
+
)) || ((u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4] < 0) ? (
|
|
2673
|
+
u[6] + p[9]*(-y[0] + u[7]) < -1
|
|
2674
|
+
)
|
|
2675
|
+
: (
|
|
2676
|
+
((u[4] < u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4]) ? (
|
|
2677
|
+
sqrt(1 - pow(u[4], 2)) < -u[6] - p[9]*(-y[0] + u[7])
|
|
2678
|
+
)
|
|
2679
|
+
: (
|
|
2680
|
+
u[6] + p[9]*(-y[0] + u[7]) < -sqrt(1 - pow(u[5] - p[8]*x[3] + p[7]*(1.0 - x[2]) + u[4], 2))
|
|
2681
|
+
))
|
|
2682
|
+
))) ? (
|
|
2683
|
+
0
|
|
2684
|
+
)
|
|
2685
|
+
: (
|
|
2686
|
+
p[9]
|
|
2687
|
+
));
|
|
2688
|
+
out[11] = -y[2]*cos(x[4] + u[12] - y[3]);
|
|
2689
|
+
out[13] = y[2]*sin(x[4] + u[12] - y[3]);
|
|
2690
|
+
out[14] = y[2]*y[8]*cos(x[4] + u[12] - y[3]) - y[2]*y[9]*sin(x[4] + u[12] - y[3]);
|
|
2691
|
+
out[15] = -y[2]*y[8]*sin(x[4] + u[12] - y[3]) - y[2]*y[9]*cos(x[4] + u[12] - y[3]);
|
|
1528
2692
|
|
|
1529
2693
|
}
|
|
1530
2694
|
|
|
@@ -1534,85 +2698,39 @@ out[0] = -1/p[0];
|
|
|
1534
2698
|
out[1] = -1/p[0];
|
|
1535
2699
|
out[2] = -1/p[0];
|
|
1536
2700
|
out[3] = -1/p[0];
|
|
1537
|
-
out[4] = -1/p[0];
|
|
1538
|
-
out[5] = -1/p[0];
|
|
1539
|
-
out[6] = -1/p[0];
|
|
1540
|
-
out[7] = -1/p[0];
|
|
1541
|
-
out[8] = -1/p[0];
|
|
1542
|
-
out[9] = 2.0*p[21]*p[17]*u[13]/p[0];
|
|
1543
|
-
out[10] = -1/p[0];
|
|
1544
|
-
out[11] = p[17]/p[0];
|
|
1545
|
-
out[12] = cos(u[11]);
|
|
1546
|
-
out[13] = -u[10]*sin(u[11]);
|
|
1547
|
-
out[14] = sin(u[11]);
|
|
1548
|
-
out[15] = u[10]*cos(u[11]);
|
|
1549
2701
|
|
|
1550
2702
|
}
|
|
1551
2703
|
|
|
1552
2704
|
void sp_Gu_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1553
2705
|
|
|
1554
|
-
out[
|
|
1555
|
-
out[
|
|
1556
|
-
out[19] = 1.0;
|
|
2706
|
+
out[10] = 1.0;
|
|
2707
|
+
out[12] = 1.0;
|
|
1557
2708
|
|
|
1558
2709
|
}
|
|
1559
2710
|
|
|
1560
2711
|
void sp_Hx_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1561
2712
|
|
|
2713
|
+
out[0] = p[10]*(-y[0]*sin(y[1])*sin(x[0]) - y[0]*cos(y[1])*cos(x[0]));
|
|
1562
2714
|
|
|
1563
2715
|
}
|
|
1564
2716
|
|
|
1565
2717
|
void sp_Hx_run_up_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1566
2718
|
|
|
2719
|
+
out[1] = p[11];
|
|
1567
2720
|
|
|
1568
2721
|
}
|
|
1569
2722
|
|
|
1570
2723
|
void sp_Hx_run_num_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1571
2724
|
|
|
1572
|
-
out[
|
|
2725
|
+
out[2] = 1.0;
|
|
2726
|
+
out[3] = 1.0;
|
|
1573
2727
|
|
|
1574
2728
|
}
|
|
1575
2729
|
|
|
1576
2730
|
void sp_Hy_run_xy_eval(double *out,double *x,double *y,double *u,double *p,double Dt){
|
|
1577
2731
|
|
|
1578
|
-
out[
|
|
1579
|
-
out[
|
|
1580
|
-
out[7] = y[0]*(p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1581
|
-
out[8] = y[2]*y[0]*(p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1]));
|
|
1582
|
-
out[9] = y[2]*(p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1])) - 2.0*y[0]*p[2];
|
|
1583
|
-
out[10] = y[2]*y[0]*(p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1584
|
-
out[11] = y[0]*(p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1]));
|
|
1585
|
-
out[12] = y[2]*y[0]*(-p[2]*sin(y[3] - y[1]) + p[1]*cos(y[3] - y[1]));
|
|
1586
|
-
out[13] = y[2]*(-p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1587
|
-
out[14] = y[2]*y[0]*(p[2]*cos(y[3] - y[1]) - p[1]*sin(y[3] - y[1]));
|
|
1588
|
-
out[15] = 2.0*y[2]*p[1] + y[0]*(-p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1589
|
-
out[16] = y[2]*y[0]*(-p[2]*cos(y[3] - y[1]) + p[1]*sin(y[3] - y[1]));
|
|
1590
|
-
out[17] = y[2]*(p[2]*cos(y[3] - y[1]) - p[1]*sin(y[3] - y[1]));
|
|
1591
|
-
out[18] = y[2]*y[0]*(p[2]*sin(y[3] - y[1]) + p[1]*cos(y[3] - y[1]));
|
|
1592
|
-
out[19] = -2.0*y[2]*p[2] + y[0]*(p[2]*cos(y[3] - y[1]) - p[1]*sin(y[3] - y[1]));
|
|
1593
|
-
out[20] = y[2]*y[0]*(-p[2]*sin(y[3] - y[1]) - p[1]*cos(y[3] - y[1]));
|
|
1594
|
-
out[21] = y[6]*(p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5])) + 2.0*y[4]*p[4];
|
|
1595
|
-
out[22] = y[6]*y[4]*(-p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1596
|
-
out[23] = y[4]*(p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1597
|
-
out[24] = y[6]*y[4]*(p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5]));
|
|
1598
|
-
out[25] = y[6]*(p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5])) - 2.0*y[4]*p[5];
|
|
1599
|
-
out[26] = y[6]*y[4]*(p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1600
|
-
out[27] = y[4]*(p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5]));
|
|
1601
|
-
out[28] = y[6]*y[4]*(-p[5]*sin(y[7] - y[5]) + p[4]*cos(y[7] - y[5]));
|
|
1602
|
-
out[29] = y[6]*(-p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1603
|
-
out[30] = y[6]*y[4]*(p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1604
|
-
out[31] = 2.0*y[6]*p[4] + y[4]*(-p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1605
|
-
out[32] = y[6]*y[4]*(-p[5]*cos(y[7] - y[5]) + p[4]*sin(y[7] - y[5]));
|
|
1606
|
-
out[33] = y[6]*(p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1607
|
-
out[34] = y[6]*y[4]*(p[5]*sin(y[7] - y[5]) + p[4]*cos(y[7] - y[5]));
|
|
1608
|
-
out[35] = -2.0*y[6]*p[5] + y[4]*(p[5]*cos(y[7] - y[5]) - p[4]*sin(y[7] - y[5]));
|
|
1609
|
-
out[36] = y[6]*y[4]*(-p[5]*sin(y[7] - y[5]) - p[4]*cos(y[7] - y[5]));
|
|
1610
|
-
out[37] = y[10]*pow(pow(y[11], 2) + pow(y[10], 2), -0.5);
|
|
1611
|
-
out[38] = y[11]*pow(pow(y[11], 2) + pow(y[10], 2), -0.5);
|
|
1612
|
-
out[39] = 2.0*p[16]*y[2]*(pow(y[11], 2) + pow(y[10], 2)) - y[11]*sin(y[3]) - y[10]*cos(y[3]);
|
|
1613
|
-
out[40] = -y[2]*y[11]*cos(y[3]) + y[2]*y[10]*sin(y[3]);
|
|
1614
|
-
out[41] = 2.0*p[16]*pow(y[2], 2)*y[10] - y[2]*cos(y[3]);
|
|
1615
|
-
out[42] = 2.0*p[16]*pow(y[2], 2)*y[11] - y[2]*sin(y[3]);
|
|
2732
|
+
out[2] = p[10]*(sin(y[1])*cos(x[0]) - sin(x[0])*cos(y[1]));
|
|
2733
|
+
out[3] = p[10]*(y[0]*sin(y[1])*sin(x[0]) + y[0]*cos(y[1])*cos(x[0]));
|
|
1616
2734
|
|
|
1617
2735
|
}
|
|
1618
2736
|
|
|
@@ -1625,10 +2743,7 @@ void sp_Hy_run_num_eval(double *out,double *x,double *y,double *u,double *p,doub
|
|
|
1625
2743
|
|
|
1626
2744
|
out[0] = 1.0;
|
|
1627
2745
|
out[1] = 1.0;
|
|
1628
|
-
out[2] = 1.0;
|
|
1629
|
-
out[3] = 1.0;
|
|
1630
2746
|
out[4] = 1.0;
|
|
1631
|
-
out[43] = 1.0;
|
|
1632
2747
|
|
|
1633
2748
|
}
|
|
1634
2749
|
|
|
@@ -1647,6 +2762,7 @@ void sp_Hu_run_num_eval(double *out,double *x,double *y,double *u,double *p,doub
|
|
|
1647
2762
|
out[0] = 1.0;
|
|
1648
2763
|
out[1] = 1.0;
|
|
1649
2764
|
out[2] = 1.0;
|
|
2765
|
+
out[3] = 1.0;
|
|
1650
2766
|
|
|
1651
2767
|
}
|
|
1652
2768
|
|