pydae 0.54.0__py3-none-any.whl → 0.54.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pydae/__init__.py +1 -1
- pydae/bmapu/bmapu_builder.py +6 -0
- pydae/bmapu/docs/trafo.md +18 -0
- pydae/bmapu/vsgs/regfm_b1.ipynb +428 -0
- pydae/bmapu/vsgs/regfm_b1.py +223 -0
- pydae/bmapu/vsgs/temp.py +21 -21
- pydae/bmapu/vsgs/temp_cffi.c +613 -697
- pydae/bmapu/vsgs/vsgs.py +2 -0
- pydae/ctrl.py +15 -0
- pydae/edashboards/pv_model/pv_model_module.py +1 -0
- pydae/svg_tools/svg_tools.py +5 -4
- pydae/urisi/lines/lines.py +38 -0
- pydae/urisi/sources/ac3ph3w_ideal.py +14 -7
- pydae/urisi/transformers/Dyg11.json +19 -0
- pydae/urisi/transformers/Dyg11.py +191 -0
- pydae/urisi/transformers/Dyn11.py +8 -8
- pydae/urisi/transformers/cigre_eu_lv_ind.py +23 -23
- pydae/urisi/transformers/cigre_eu_lv_ind_ini_cffi.c +266 -454
- pydae/urisi/transformers/cigre_eu_lv_ind_run_cffi.c +266 -454
- pydae/urisi/transformers/cigre_eu_lv_ind_trap_cffi.c +214 -394
- pydae/urisi/transformers/transformers.py +8 -2
- pydae/urisi/transformers/xy_0.json +24 -24
- pydae/urisi/urisi_builder.py +1 -1
- pydae/urisi/utils/model2svg.py +98 -10
- pydae/urisi/vsc_ctrls/ctrl_3ph_4w_droop.py +13 -6
- pydae/utils/utils.py +1 -1
- {pydae-0.54.0.dist-info → pydae-0.54.2.dist-info}/METADATA +4 -5
- {pydae-0.54.0.dist-info → pydae-0.54.2.dist-info}/RECORD +31 -27
- pydae/urisi/vscs/ac3ph4wgfpidq3.json +0 -0
- {pydae-0.54.0.dist-info → pydae-0.54.2.dist-info}/COPYING +0 -0
- {pydae-0.54.0.dist-info → pydae-0.54.2.dist-info}/LICENSE +0 -0
- {pydae-0.54.0.dist-info → pydae-0.54.2.dist-info}/WHEEL +0 -0
pydae/__init__.py
CHANGED
pydae/bmapu/bmapu_builder.py
CHANGED
|
@@ -530,6 +530,12 @@ class bmapu:
|
|
|
530
530
|
self.construct(name)
|
|
531
531
|
self.compile()
|
|
532
532
|
|
|
533
|
+
def build_mkl_win(self, name =''):
|
|
534
|
+
if name == '':
|
|
535
|
+
print('Error: name is not provided.')
|
|
536
|
+
self.construct(name)
|
|
537
|
+
self.compile_mkl(name)
|
|
538
|
+
|
|
533
539
|
def checker(self):
|
|
534
540
|
|
|
535
541
|
if not 'syns' in self.data: self.data.update({'syns':[]})
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
|
|
2
|
+
|
|
3
|
+
Y_cc = g_jk + j*b_jk
|
|
4
|
+
|
|
5
|
+
Y_prim =
|
|
6
|
+
[[ Y_cc/(a_s**2+b_s**2),-Y_cc/(a_s-j*b_s)],
|
|
7
|
+
[ -Y_cc/(a_s+j*b_s), Y_cc]]
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
with:
|
|
11
|
+
|
|
12
|
+
a_s = tap*cos(ang)
|
|
13
|
+
b_s = tap*sin(ang)
|
|
14
|
+
|
|
15
|
+
tap = tap
|
|
16
|
+
ang = phase shift (can work as shift transformer)
|
|
17
|
+
|
|
18
|
+
|
|
@@ -0,0 +1,428 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": 106,
|
|
6
|
+
"metadata": {},
|
|
7
|
+
"outputs": [],
|
|
8
|
+
"source": [
|
|
9
|
+
"import numpy as np\n",
|
|
10
|
+
"import matplotlib.pyplot as plt\n",
|
|
11
|
+
"import temp\n",
|
|
12
|
+
"from pydae import ssa\n",
|
|
13
|
+
"from pydae.bmapu.lines import change_line"
|
|
14
|
+
]
|
|
15
|
+
},
|
|
16
|
+
{
|
|
17
|
+
"cell_type": "code",
|
|
18
|
+
"execution_count": 97,
|
|
19
|
+
"metadata": {},
|
|
20
|
+
"outputs": [],
|
|
21
|
+
"source": [
|
|
22
|
+
"Tfast = 50e-6\n",
|
|
23
|
+
"Ts_Control = 50e-6\n",
|
|
24
|
+
"#LPF power\n",
|
|
25
|
+
"fc= 30\n",
|
|
26
|
+
"# Filter parameter\n",
|
|
27
|
+
"Lt=2.5e-3\n",
|
|
28
|
+
"Rt=.1\n",
|
|
29
|
+
"Ls=Lt\n",
|
|
30
|
+
"Rs=Rt\n",
|
|
31
|
+
"Rd = 27\n",
|
|
32
|
+
"C = 1e-6\n",
|
|
33
|
+
"\n",
|
|
34
|
+
"# Switching frequency\n",
|
|
35
|
+
"fs = 10e3\n",
|
|
36
|
+
"#dead time\n",
|
|
37
|
+
"dt = 0.1e-6\n",
|
|
38
|
+
"\n",
|
|
39
|
+
"# PI current controller gains\n",
|
|
40
|
+
"tau_c = 1e-3\n",
|
|
41
|
+
"L = Ls + Lt\n",
|
|
42
|
+
"R = Rs + Rt\n",
|
|
43
|
+
"Kp_i = L/tau_c\n",
|
|
44
|
+
"Ki_i = R/tau_c\n",
|
|
45
|
+
"\n",
|
|
46
|
+
"#Ton contactor\n",
|
|
47
|
+
"T_on_contactor = 0.1\n",
|
|
48
|
+
"\n",
|
|
49
|
+
"#VSG\n",
|
|
50
|
+
"S_b = 20e3\n",
|
|
51
|
+
"U_b = 400\n",
|
|
52
|
+
"I_b = S_b/(np.sqrt(3)*U_b)\n",
|
|
53
|
+
"Z_b = U_b**2/S_b\n",
|
|
54
|
+
"I_bdq = I_b*np.sqrt(2)\n",
|
|
55
|
+
"U_bdq = U_b*(np.sqrt(2/3))\n",
|
|
56
|
+
"\n",
|
|
57
|
+
"H = 2.5 # desired virtual inertia \n",
|
|
58
|
+
"Kp_p = 0.01 # active power proportinal gain\n",
|
|
59
|
+
"Ki_p = 1.0/(2.0*H) #proportional gain active power control loop\n",
|
|
60
|
+
"Kp_q = 0.1\n",
|
|
61
|
+
"Ki_q = 10.0\n",
|
|
62
|
+
"Xv = 0.1\n",
|
|
63
|
+
"Rv = 0.0\n",
|
|
64
|
+
"e_o = 0.8\n",
|
|
65
|
+
"omega_base = 1.0\n",
|
|
66
|
+
"\n",
|
|
67
|
+
"#LPF VSG\n",
|
|
68
|
+
"tau_vsg = 2.4e-3\n",
|
|
69
|
+
"\n",
|
|
70
|
+
"# Swing equation\n",
|
|
71
|
+
"D_1 = 0.0;\n",
|
|
72
|
+
"D_2 =50.0;\n",
|
|
73
|
+
"Omega_d = 10.0;\n",
|
|
74
|
+
"\n",
|
|
75
|
+
"K_pv = 5.0;\n",
|
|
76
|
+
"K_iv =200.0;\n",
|
|
77
|
+
"\n",
|
|
78
|
+
"T_pf = 0.02;\n",
|
|
79
|
+
"T_qf = 0.02;\n",
|
|
80
|
+
"T_vf = 0.02;\n",
|
|
81
|
+
"\n",
|
|
82
|
+
"X_v = 2*np.pi*50*(Ls+Lt)/Z_b\n",
|
|
83
|
+
"R_v = (Rs+Rt)/Z_b"
|
|
84
|
+
]
|
|
85
|
+
},
|
|
86
|
+
{
|
|
87
|
+
"cell_type": "code",
|
|
88
|
+
"execution_count": 110,
|
|
89
|
+
"metadata": {},
|
|
90
|
+
"outputs": [
|
|
91
|
+
{
|
|
92
|
+
"name": "stdout",
|
|
93
|
+
"output_type": "stream",
|
|
94
|
+
"text": [
|
|
95
|
+
"delta_v_1 = 0.00\n",
|
|
96
|
+
"Domega_m_1 = 0.00\n",
|
|
97
|
+
"x_d2_1 = 0.00\n",
|
|
98
|
+
"xi_v_1 = 0.00\n",
|
|
99
|
+
"delta_2 = 0.00\n",
|
|
100
|
+
"Domega_2 = 0.00\n",
|
|
101
|
+
"Dv_2 = 0.00\n",
|
|
102
|
+
"xi_freq = 0.00\n",
|
|
103
|
+
"V_1 = 1.00\n",
|
|
104
|
+
"theta_1 = 0.00\n",
|
|
105
|
+
"V_2 = 1.00\n",
|
|
106
|
+
"theta_2 = 0.00\n",
|
|
107
|
+
"i_d_ref_1 = 0.00\n",
|
|
108
|
+
"i_q_ref_1 = 0.00\n",
|
|
109
|
+
"p_1 = 0.00\n",
|
|
110
|
+
"q_1 = 0.00\n",
|
|
111
|
+
"omega_2 = 1.00\n",
|
|
112
|
+
"i_d_2 = 0.00\n",
|
|
113
|
+
"i_q_2 = 0.00\n",
|
|
114
|
+
"p_s_2 = 0.00\n",
|
|
115
|
+
"q_s_2 = 0.00\n",
|
|
116
|
+
"omega_coi = 1.00\n",
|
|
117
|
+
"p_agc = 0.00\n"
|
|
118
|
+
]
|
|
119
|
+
}
|
|
120
|
+
],
|
|
121
|
+
"source": [
|
|
122
|
+
"model = temp.model()\n",
|
|
123
|
+
"params = {'H_1':2.5,'D_1_1':0,'D_2_1':50,'Omega_d_1':10,'X_v_1':X_v,'R_v_1':R_v,'K_pv_1':K_pv,'K_iv_1':K_iv} \n",
|
|
124
|
+
"change_line(model, '1', '2',X = X_v/2/3,R = 0)\n",
|
|
125
|
+
"model.ini(params,'xy_0.json')\n",
|
|
126
|
+
"\n",
|
|
127
|
+
"model.report_x()\n",
|
|
128
|
+
"model.report_y()\n"
|
|
129
|
+
]
|
|
130
|
+
},
|
|
131
|
+
{
|
|
132
|
+
"cell_type": "code",
|
|
133
|
+
"execution_count": 111,
|
|
134
|
+
"metadata": {},
|
|
135
|
+
"outputs": [
|
|
136
|
+
{
|
|
137
|
+
"name": "stdout",
|
|
138
|
+
"output_type": "stream",
|
|
139
|
+
"text": [
|
|
140
|
+
"P_1 = 0.00\n",
|
|
141
|
+
"Q_1 = 0.00\n",
|
|
142
|
+
"P_2 = 0.00\n",
|
|
143
|
+
"Q_2 = 0.00\n",
|
|
144
|
+
"p_l_1 = 0.00\n",
|
|
145
|
+
"q_l_1 = 0.00\n",
|
|
146
|
+
"p_r_1 = 0.00\n",
|
|
147
|
+
"q_r_1 = 0.00\n",
|
|
148
|
+
"v_ref_1 = 1.00\n",
|
|
149
|
+
"alpha_2 = 0.00\n",
|
|
150
|
+
"v_ref_2 = 1.00\n",
|
|
151
|
+
"omega_ref_2 = 1.00\n",
|
|
152
|
+
"delta_ref_2 = 0.00\n",
|
|
153
|
+
"phi_2 = 0.00\n",
|
|
154
|
+
"rocov_2 = 0.00\n"
|
|
155
|
+
]
|
|
156
|
+
}
|
|
157
|
+
],
|
|
158
|
+
"source": [
|
|
159
|
+
"model.report_u()"
|
|
160
|
+
]
|
|
161
|
+
},
|
|
162
|
+
{
|
|
163
|
+
"cell_type": "code",
|
|
164
|
+
"execution_count": 112,
|
|
165
|
+
"metadata": {},
|
|
166
|
+
"outputs": [
|
|
167
|
+
{
|
|
168
|
+
"data": {
|
|
169
|
+
"text/html": [
|
|
170
|
+
"<div>\n",
|
|
171
|
+
"<style scoped>\n",
|
|
172
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
|
173
|
+
" vertical-align: middle;\n",
|
|
174
|
+
" }\n",
|
|
175
|
+
"\n",
|
|
176
|
+
" .dataframe tbody tr th {\n",
|
|
177
|
+
" vertical-align: top;\n",
|
|
178
|
+
" }\n",
|
|
179
|
+
"\n",
|
|
180
|
+
" .dataframe thead th {\n",
|
|
181
|
+
" text-align: right;\n",
|
|
182
|
+
" }\n",
|
|
183
|
+
"</style>\n",
|
|
184
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
|
185
|
+
" <thead>\n",
|
|
186
|
+
" <tr style=\"text-align: right;\">\n",
|
|
187
|
+
" <th></th>\n",
|
|
188
|
+
" <th>Real</th>\n",
|
|
189
|
+
" <th>Imag</th>\n",
|
|
190
|
+
" <th>Freq.</th>\n",
|
|
191
|
+
" <th>Damp</th>\n",
|
|
192
|
+
" <th>Participation</th>\n",
|
|
193
|
+
" </tr>\n",
|
|
194
|
+
" </thead>\n",
|
|
195
|
+
" <tbody>\n",
|
|
196
|
+
" <tr>\n",
|
|
197
|
+
" <th>Mode 1</th>\n",
|
|
198
|
+
" <td>-0.000001</td>\n",
|
|
199
|
+
" <td>0.000000</td>\n",
|
|
200
|
+
" <td>0.000000</td>\n",
|
|
201
|
+
" <td>1.000000</td>\n",
|
|
202
|
+
" <td>[xi_freq]</td>\n",
|
|
203
|
+
" </tr>\n",
|
|
204
|
+
" <tr>\n",
|
|
205
|
+
" <th>Mode 2</th>\n",
|
|
206
|
+
" <td>-3.123425</td>\n",
|
|
207
|
+
" <td>14.805061</td>\n",
|
|
208
|
+
" <td>2.356299</td>\n",
|
|
209
|
+
" <td>0.206426</td>\n",
|
|
210
|
+
" <td>[delta_v_1, Domega_m_1]</td>\n",
|
|
211
|
+
" </tr>\n",
|
|
212
|
+
" <tr>\n",
|
|
213
|
+
" <th>Mode 3</th>\n",
|
|
214
|
+
" <td>-3.123425</td>\n",
|
|
215
|
+
" <td>-14.805061</td>\n",
|
|
216
|
+
" <td>2.356299</td>\n",
|
|
217
|
+
" <td>0.206426</td>\n",
|
|
218
|
+
" <td>[delta_v_1, Domega_m_1]</td>\n",
|
|
219
|
+
" </tr>\n",
|
|
220
|
+
" <tr>\n",
|
|
221
|
+
" <th>Mode 4</th>\n",
|
|
222
|
+
" <td>-13.752800</td>\n",
|
|
223
|
+
" <td>0.000000</td>\n",
|
|
224
|
+
" <td>0.000000</td>\n",
|
|
225
|
+
" <td>1.000000</td>\n",
|
|
226
|
+
" <td>[x_d2_1]</td>\n",
|
|
227
|
+
" </tr>\n",
|
|
228
|
+
" <tr>\n",
|
|
229
|
+
" <th>Mode 5</th>\n",
|
|
230
|
+
" <td>-0.022024</td>\n",
|
|
231
|
+
" <td>0.000000</td>\n",
|
|
232
|
+
" <td>0.000000</td>\n",
|
|
233
|
+
" <td>1.000000</td>\n",
|
|
234
|
+
" <td>[xi_v_1]</td>\n",
|
|
235
|
+
" </tr>\n",
|
|
236
|
+
" <tr>\n",
|
|
237
|
+
" <th>Mode 6</th>\n",
|
|
238
|
+
" <td>-0.001000</td>\n",
|
|
239
|
+
" <td>0.000000</td>\n",
|
|
240
|
+
" <td>0.000000</td>\n",
|
|
241
|
+
" <td>1.000000</td>\n",
|
|
242
|
+
" <td>[delta_2]</td>\n",
|
|
243
|
+
" </tr>\n",
|
|
244
|
+
" <tr>\n",
|
|
245
|
+
" <th>Mode 7</th>\n",
|
|
246
|
+
" <td>-0.100000</td>\n",
|
|
247
|
+
" <td>0.000000</td>\n",
|
|
248
|
+
" <td>0.000000</td>\n",
|
|
249
|
+
" <td>1.000000</td>\n",
|
|
250
|
+
" <td>[Domega_2]</td>\n",
|
|
251
|
+
" </tr>\n",
|
|
252
|
+
" <tr>\n",
|
|
253
|
+
" <th>Mode 8</th>\n",
|
|
254
|
+
" <td>-0.000001</td>\n",
|
|
255
|
+
" <td>0.000000</td>\n",
|
|
256
|
+
" <td>0.000000</td>\n",
|
|
257
|
+
" <td>1.000000</td>\n",
|
|
258
|
+
" <td>[Dv_2]</td>\n",
|
|
259
|
+
" </tr>\n",
|
|
260
|
+
" </tbody>\n",
|
|
261
|
+
"</table>\n",
|
|
262
|
+
"</div>"
|
|
263
|
+
],
|
|
264
|
+
"text/plain": [
|
|
265
|
+
" Real Imag Freq. Damp Participation\n",
|
|
266
|
+
"Mode 1 -0.000001 0.000000 0.000000 1.000000 [xi_freq]\n",
|
|
267
|
+
"Mode 2 -3.123425 14.805061 2.356299 0.206426 [delta_v_1, Domega_m_1]\n",
|
|
268
|
+
"Mode 3 -3.123425 -14.805061 2.356299 0.206426 [delta_v_1, Domega_m_1]\n",
|
|
269
|
+
"Mode 4 -13.752800 0.000000 0.000000 1.000000 [x_d2_1]\n",
|
|
270
|
+
"Mode 5 -0.022024 0.000000 0.000000 1.000000 [xi_v_1]\n",
|
|
271
|
+
"Mode 6 -0.001000 0.000000 0.000000 1.000000 [delta_2]\n",
|
|
272
|
+
"Mode 7 -0.100000 0.000000 0.000000 1.000000 [Domega_2]\n",
|
|
273
|
+
"Mode 8 -0.000001 0.000000 0.000000 1.000000 [Dv_2]"
|
|
274
|
+
]
|
|
275
|
+
},
|
|
276
|
+
"execution_count": 112,
|
|
277
|
+
"metadata": {},
|
|
278
|
+
"output_type": "execute_result"
|
|
279
|
+
}
|
|
280
|
+
],
|
|
281
|
+
"source": [
|
|
282
|
+
"ssa.A_eval(model)\n",
|
|
283
|
+
"ssa.damp_report(model)"
|
|
284
|
+
]
|
|
285
|
+
},
|
|
286
|
+
{
|
|
287
|
+
"cell_type": "code",
|
|
288
|
+
"execution_count": 125,
|
|
289
|
+
"metadata": {},
|
|
290
|
+
"outputs": [],
|
|
291
|
+
"source": [
|
|
292
|
+
"data = np.genfromtxt('HIL_240905_184236.csv',delimiter=',')"
|
|
293
|
+
]
|
|
294
|
+
},
|
|
295
|
+
{
|
|
296
|
+
"cell_type": "code",
|
|
297
|
+
"execution_count": 129,
|
|
298
|
+
"metadata": {},
|
|
299
|
+
"outputs": [
|
|
300
|
+
{
|
|
301
|
+
"data": {
|
|
302
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGiCAYAAADulWxzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsEUlEQVR4nO3deXxU9b3/8deZNXsgAbIIgbDKroJicAMVLFoqVuvS1tJe6y1XtGKu15a2t2LLlbZ6e6k/ikvrRq3F26u43ItKrAgqqKyKiMgmYUkICWRPJrOc3x8nCcQEyH4mM+/n4zGPM3PmnDOfyTdz5jPf7RimaZqIiIiIRCCH3QGIiIiIdBUlOiIiIhKxlOiIiIhIxFKiIyIiIhFLiY6IiIhELCU6IiIiErGU6IiIiEjEUqIjIiIiEUuJjoiIiEQsJToiIiISscIm0Vm7di0zZ84kMzMTwzB4+eWXmzxvmiYLFiwgMzOT2NhYpkyZwvbt2+0JVkRERHqEsEl0qqqqGD9+PEuWLGnx+d/97nf8/ve/Z8mSJWzYsIH09HSmTZtGRUVFN0cqIiIiPYURjhf1NAyDFStWMGvWLMCqzcnMzGTevHn85Cc/AcDn85GWlsZvf/tbfvSjH9kYrYiIiIQrl90BtMa+ffsoLCxk+vTpjeu8Xi+XXXYZ69atO2Wi4/P58Pl8jY9DoRDHjh0jNTUVwzC6PG4RERHpONM0qaioIDMzE4ejbY1RPSLRKSwsBCAtLa3J+rS0NPbv33/K/RYtWsQDDzzQpbGJiIhI9zhw4AD9+/dv0z49ItFp8NVaGNM0T1szM3/+fHJzcxsfl5WVkZWVxRdffEFKSkqXxSln5vf7Wb16NVOnTsXtdtsdTlRTWYQPlUX4UFmEl2PHjjF8+HASExPbvG+PSHTS09MBq2YnIyOjcX1RUVGzWp6Teb1evF5vs/UpKSmkpqZ2fqDSan6/n7i4OFJTU3USsZnKInx0aVkEA1B2ALyJEN+nc48dgfS5CE/t6XYSNqOuTic7O5v09HTy8vIa19XV1bFmzRomT55sY2QiIj3A1ufhv0bBI+fAQ0Ng2Swo2WN3VCLdImxqdCorK9m9e3fj43379rF161ZSUlLIyspi3rx5PPjggwwbNoxhw4bx4IMPEhcXx7e//W0boxYRCXPv/h7+Ud9X0eGCUAD2roYnpsKtK6D/BHvjE+liYZPobNy4kalTpzY+buhbM3v2bJ555hnuu+8+ampquOOOOzh+/DiTJk1i1apV7WqvExGJCrveOpHkXPpvcOl9VvPVijlw8CN47pvwozXQe5CtYYp0pbBJdKZMmcLppvQxDIMFCxawYMGC7gtKRKSn8lXCK3Ot+xf8M1z+C+t+6hCrJufZmXB4M/z9+3BbHjjVD0UiU4/ooyMiIm30wVKoLLRqa6b9qulz3gS4cRnE9ILDW2B9yzPSi0QCJToiIpGmtgzef8S6f8UvwR3bfJteA+Bri6z77/wGyg93X3wi3UiJjohIpNnyHNRVQJ8RMOq6U283/hbIyoFALax+sPviE+lGSnRERCJJKAQfPm7dv/Bf4HTT5RsGXFnfWXnrX6Ho866PT6SbKdEREYkkX74LpfvBmwzjbjrz9lmT4OyvgxmCtxZ0eXgi3U2JjohIJPn4b9ZyzDfBE9e6fa5cAIYTvngdDm7qstBE7KBER0QkUtRVw2evWvfPacNkqn2Gnaj9WfObzo9LxEZKdEREIsWef4C/CnplQf/z27bvpfdatTq7VqlWRyKKEh0RkUjx2SvWcuQ3rI7GbZE65KRand92blwiNlKiIyISCYJ++OJN6/6oa9t3jEvvBcMBu96EQ6rVkcigREdEJBIc+BB85RDXB86a2L5jnFyr846NtTq1ZXD0Cyg9YPU7EumAsLnWlYiIdMCuPGs59IrTz51zJpf+G3zywolanbO66ermFYXw0RNWZ+qSXU2f63s2DLkCxn0LMs/tnngkYqhGR0QkEuz+h7UcOq1jx+nuWh1fJaz6d/jDOfDuf55IcrxJ4Ki/0OjRz+GDP8ITU+Cpr8Get7s+LokYqtEREQkjO8sM1q74FMNo/e/QJH8xvzyyjRAGD2zvR9XOjzsUQx/f17mPF3DsepM/LFvOgdiRHTreqWTWfMF3Dz5Av7oDAHwZO5p3U2/gi/jzqXElgWkSFyxjaNUWxlS8y/iy1Tjz18NfrmNHwoW8ln4HRd5BXRJbKBTiWKGDydV++ibryu49mRIdEZEwsmKfg4Katl1g81vOd8ANn4SyefbjSqCyg1EYDHNfxPXOdxm96zH+y/9vHTxec9McG/kP9yN4jQAFZgo/9/8Tb9eeC8cNoLz+1mAYMIx+XMcc12vc6sxjZOUHDNv1EX8JTuO/AjdQTnynxwgO/u/TQr5/0eAuOLZ0FyU6IiJhpDZoLb8/eRDpyTGt2mfap0/DUQgMvoKfZp/dKXHUVf8roQ/f50rnFv7zghBHk0Z1ynEBBh19m2nbH8FpBvgy9RJWj3yAC9y9uKA1cZHD/1T/iAv3PEJ28Wp+4HqTm2I38MGQu/ki/Rpr1Fgn+L9PDrPtUDlVvkCnHE/so0RHRCSMBE1reePEAYzKTDrzDqEgrP8IgIlX3MjEAUM6KZIhUHMjfLKc6yueg5kvdM5hP3sV1vwUzACM/RaDZj3GD5xt/SoaAlwOe1bD6/cRV/wFl39+P5dXrYSrH4aMcR0Oc9/RCrYdKsffUCDSY6kzsohIGAnUf696XK2c8O/Ip9ZwbE8iZJ7XucFc+m9WDckXb8ChzR0/3vaX4e/fh1AAxt4Isx6DNic5JxkyFea8D9N+Be54a4j9E5fBin+Bkj0dCtXtMOhFBdR1tBlQ7KZER0QkjARD1tLtbOXp+cv3rGXWhR1LGlrSZ6iVkAC8s6hjx9q+Av7nn8AMwrib4boOJjkNXB646G64ayOMud66CvvHz8OSifD8zfD5/4G/9szHMU04tg82L4MXb+e+HdezNeZH/HjDNHj9p607hoQlNV2JiISRhpaS1ic671vLQRd3TUCX/ht8+j/WNbC2r4DR17X9GJ++BC/+0Epyxt8C1/4RHM7OjTMpE254CnLmwprfWbVQX7xu3VwxViLYbxT0HgTuWMCAmuNQftiqFTvyqfW44XD1SwdB+PBRq9Zs1tK2X1pDbKdER0QkTJim2bZEJxSC/V2c6PQZChfnwtrfwf/dC4Mugfg+rd//0xfhxdvrk5xvw7VLOj/JOdlZE+DbL1gzK29ZBtv+ByoKYO871u10HC5r/0GX8ELxQH65JZH7zz7Et/f/u1VLNORya9JC6VGU6IiIhIlgyMTEqjHwtCbRKdoOtaXgSYCM8V0X2KX/ZjUBFW2H/50HN/6ldTUbW56DV++ympPO+S5845GuTXJO1nc4TF8I035tTTiYv97qt1OaD8E6qxN3XArE94V+IyFtjDUDs9sa6VaQtxMfu/k44RK+fdlPrKa7t38Fo74BLm/3vAfpFEp0RETCxMkjfNyt6YzcpH9OF05q5/LArD/Cn6+EHa9ZTUNTfnLq7U0T1j0Ceb+0Hp97K8x8pGOXpmgvw7ASmX5tm/TQ7bT+/v5gCCb/GDY+bSVJW5+HiT/oikili6gzsohImPA39EQGXK1JChoSnYEXdVFEJ8k8F65+yLr/zoPW5SFCoebbVR+D//7eiSTnorvhG//PniSnAxqaDv3BEHjiYPJd1hMb/mwlctJj9Kz/PBGRCHZyotNQo3BKTfrnXNKFUZ1k4j/BlPnW/XcehL9ca/V7qS2zRiyt/yMsvRB2vGr1d/nab6yh3z2wA++JGp36pObc74Ar1uq0fOBDGyOTtlLTlYhImPCHrC9Vt9PAOFNyUPSZNUrIHQ+Z53R9cA2m/BQS0uD1n8C+tdbtq1KHwfV/6tFXGm+o0Qk0JJ+xvWHMN2HrX+Hj5VZzofQIqtEREQkTDTU6rRpx1VCbkzWpa/vntGTiD2Duh3DebKszL1hXGu9/AXz9v+Bf3u/RSQ60UKMDMPYGa/nZKxD02xCVtIdqdKTnC4Vg8zOw4UlrJMWYb1qdB92tu06QSLjwB07U6JzRl+9ay+7on9OSlGxrFBWPgL8GnJ7uG1HVDZr00Wkw6FIrsas6CnvXwLArbYpO2kI1OtKzmSa88VP433ustvOjO2D1f8Dz34KAz+7oRNqk1TU6oRDsX2fd76r5c9rCHRtRSQ6cKIO6kxMdpwvO/rp1/4vXbYhK2kOJjvRs2/4OHz1u3b/il9YQVk+C1W/g9fvsjU2kjRqaSVyOM9ToHP0cqkuszrGdfX0rAaxrXQHNL+o5bLq13JWn0Vc9hBId6bl8lSeGsE6ZD5f8K0yYDTcus9ZteqbljpIiYarVNToN/XMGXGDNcSOdzu1qoekKIPtSq5mudD+U7LYhMmkrJTrSc2162pravfcguPieE+uHXmENgwV48+f61SU9hj/UykSnYf6c7hpWHoUa+kkFvlqj40040S9q16pujkraQ4mO9EyhIHz0hHX/kn9tPiX71F9YTViFn8Dn/9v98Ym0Q0Mzied0nZFN86T5c2zqiBwFWuyM3GDYNGu5K68bI5L2UqIjPdOuPGs69tjeMLaFi+zFp8KkH1n33/9D98Ym0k6NTVeu05yai7+wRv24YqwLUEqXOH2iU99PZ//7VhO6hDUlOtIzbftvazn+29aIj5ZMmmO1pR/cAAc3dV9sIu10Ynj5aU7NDc1W/c/XxSW7UIvz6DRIHQq9BloXB20Y5i9hS4mO9Dx11bDzDev+mOtPvV1CvxPPb/hT18cl0kENtQenHXXV2GwVBsPKI5jb0cLw8gaGAUMut+7vU6IT7pToSM+zaxX4q6xfVGedYWjthPqrDH/2qqqYJeydcdSVaXbvhTyjWMPV41us0YETieb+97opImkvJTrS8zSMdBg588wXCxxwAfTOthIjdUqWMFcXPMPMyCV7oPKI1STbf2I3RhZ9TttHB04kmoXbrIuaSthSoiM9Syh0YqRDw8iH0zEMGH+Ldf/j5V0Xl0gnCJxpePn+k/rnnKpvmnSKxot6hk5Ro5OUASmDwQxB/gfdGJm0lRId6VkKP4GqImvoeFZO6/YZd6O13PsOlB/ustBEOurE8PJTnJrVbNVtGmrVgiGT4KmSnYZy+FLNV+FMiY70LHvfsZaDLmn9iJOUbMiaDJjwyQtdFZlIh53oo9NC09XJ/XM0f06XO7lW7ZTNV439dN7vhoikvZToSM/SUEXc1hP9+Jus5acvdW48Ip3IH6gfddVSjU7RZ9ZM4K4YGDCpmyOLPu6TRr6dsZ/O4a3gq+j6oKRdlOhIzxEKQf56637W5Lbte/ZMMJxW01fJns6PTaQT+E/XGbmhb9qgS9Q/pxu4mtTonKLpqtcA6JUFZhAOfNhNkUlb9ZhEZ8GCBRiG0eSWnp5ud1jSnY5+DrWl4I6DjHFt2zc+FQZfZt3fvqLTQxPpDKcdXr77LWvZmk740mFOh4EDK8E5ZY0OwMD65qsv1XwVrnpMogMwevRoCgoKGm/btm2zOyTpTvnrrGX/88Hpbvv+o6+zlttf7rSQRDqTP3SKGh1fxYlm26FXdnNU0ash3zxtotPQjK5+OmGrRyU6LpeL9PT0xlvfvn3tDkm6U8OJfmAbm60anP11cLjgyDYo3tV5cYl0koYv1GajrvaugZDfmhMqdYgNkUWn+jkDT910BSf66RzabM3aLmHHZXcAbbFr1y4yMzPxer1MmjSJBx98kMGDB59ye5/Ph8/na3xcXl4OgN/vx+/3d3m8cmoNf/+2lINr/zoMIJB5PmZ7ys+diHPQZTj2/oPgthcJXfyvbT9GBGpPWUjX8PkDADgMs0l5OL5YhRMIDrmCkMqpW/j9fhoq1mpq6/D7PS1vmHAWrsRMjIrDBL5cj5l9afcFGUU6cn7qMYnOpEmTWLZsGcOHD+fIkSMsXLiQyZMns337dlJTU1vcZ9GiRTzwwAPN1q9evZq4uLiuDllaIS8vr1XbxdYVM738ECGcvPFpCcEdK9v1elmBbM4FKj98jnfKR7brGJGqtWUhXefLfAfgYP++PaxcudtaaZpM2/4accCGY0kcWdm+/31pO6fDCcDqtWvZFX/q7c5zDWIAh9nz9rN8nqFLzXSF6ur215YZpmmepk4ufFVVVTFkyBDuu+8+cnNzW9ympRqdAQMGUFBQcMrkSLqH3+8nLy+PadOm4Xafub+Nsf1FXC//iFDmeQR/sKr9L1xTimvxSIyQH/+P1kGf4e0/VmcIBaCyCBxOiO8LRve3Jre1LKTr/OvfP+bVT45w75VD+NFlVhOVcWgjrme+humJJzDvc4246iZ+v5+Lf/s2x3wGf//nCzhnQK9TbmtsWYZrZS6hrByCt77WfUFGkZKSEjIyMigrKyMpKalN+/aYGp2vio+PZ+zYsezadeq+Fl6vF6+3+aRybrdbJ/Qw0eqyKPoUAMdZE3B0pOzcfWHIVNi1CvfO/4WMn7T/WO1lmrBzJWx40poALlifjHsSYcgUmDTHavc/03W8Opk+F/YLhqwyj/G4TpTF59YXpzHiatxxbTvBS8c09NExDefpPxv1IzodhzbjIAjumG6ILrp05NzUozojn8zn87Fjxw4yMjLsDkW6Q8En1rKtw8pb0jj6yoZh5qUH4NmZsPzbsOcfVpJjOK2anLoK2PEaPHMN/PlKaxKy7maa8MWb8PJcePoaeP4mWPMQHP+y+2OJQv6vXusqGIDt9ZNcNvzfSrdp6KMTON2oK7A6iMf3sz7PhzZ1fWDSJj2mRufee+9l5syZZGVlUVRUxMKFCykvL2f27Nl2hyZdzTStif4A0jsh0RlxNTjccHQHFO2Aft3UV+fgJvjbTVB1FFyxMOmf4ZzvQOowa8Kxwm2w5S+w5a9waCP86XK4eB5Mmd++4fRtVV4Ar/zoxDD+Bl+8Ae8sgok/gCsfAG9C18cSpZrNo7M7z5oNOTZFw8pt0FAMdWdKdAzDGma+fQXsX2fPJToKPobNy+DgRgjUQq+B1pxL428Gb2L3xxNGekyNzsGDB7nlllsYMWIE3/zmN/F4PHzwwQcMHDjQ7tCkq5UdhJrj1tDwzkhKYnvB0Cus+901p07hNvjLdVaSkz4W/uV9mPYr6DsCHA4rkTnrPPj6f8G8bTBqlpX8vPuf9fsVd2l4cb4juJ6eZiU57jir+ez6J+HqhyH7UiuWDX+Gxy+xEjbpEicu6llflbDxaWt5zrdbf2036TStGl7eoGGY+f5uvsCnvwZeuxsev9T6jBZstSZX3fUmrLwXFo+DLc9ZPxijVI+p0Vm+fLndIYhdGmpz+o7svJP96OusmortK2DKT7u2P0zJHvjLN8FXZl1x/Tv/c/pakcQ0uPFZK7ZX7oQv34XHL4Obn4PMczs/vlCQC/f8HsNXCH1GwLeXQ8pJ0zZccLt1MdWX74Bje+HpGXDdYzDmm50fS5RrUqNT8In1ZYUBE75va1zRytmY6JyhRgdOJDoHPoKgv3tqYWvL4Lnr4eAG6/Ho66xbTLL1/7P5WSjZDa/MtfoDfv2/orIze49JdCSKdWb/nAYjZoDTA8U7reartFGdd+yT1VXB326BqiJIGwu3LG9908/o66zkbvm34dgeeOpr8I0lMO5bnRvjsT0k+gow3XEYs1+FxBYurTJ4ilUL9fJc2Pl/8D8/gPJDMPmuzo3lTIJ+a2K2/HVWAll2AAI+CAUhtreVJPYdCZnnWDVnPazKvqHmwOUAVv+HtXL0ddBnmH1BRTGnwwSM1iU6fc+2mhhrjln96wac37XBBergrzdaSU5sb/jWM9bntMHgKXDhv8C6/wdv/xo+/pt1rvvuS9YlcaKIEh0Jf53ZP6dBTLLV52HnSqvmpKsSnZX/ZiVTCenw3RetZrO26Hc23P42vPTP1q/7l35oXcX68n+3mrw6gXHEGtFm9huF0VKS0yC2N9z0F3hjPnz0OKz6BVQUwrRfd1osLTJN62KuW/4Kn71iddpuFcOqARt6BQy5ov7SIeF9ymv4Qh148FWrxtHhgstsGBkowIkanbpAKxIdh8Oatf3z/7War7o60XlrARz4wDqXzX7NSuy/yumGS3Kh/0T4+/etZq1nroHZr0JCv66NL4yE96e+i+Qfq6bC1PA/OwUCAY7WwP6Salyu0/8b9j+0BRdQEDccX3FVp8UQn3U1fXeuxP/Jixwae3enN1/F73yRvlv/imk4OHLlEmp9CeBrT/xumPZneif+huTNf4T3fk/1wW0cnb4E09PxGouk/R+TAlQkDed4a/6+5/+SJFc/Utb9GtYvofJYIcWX/2fnV9WbIeL2rCR50xK8Rz9pXB2M6U1tZg51fUYSSByA6Y4Hw8BRexxX5WE8xZ/hOfoJrsoCOLzZuq19iJAnkZr+F1ObdRk1WVMIJGV1brxBH67yA7jLvsRV9iWuikM4a4/jqD2Ow1eKo64SzBCYIQwzhGk4MN3xhDwJjcvbymsw3WWM3rTeOuaUn1rJrtiioY/OkfJavmzFZyOpz/mk8L9U71pL0dn/3GVxxe19nX4f/NGK7YrF1LgGw+niS5yA+7qXSHv5JlxHd+D/89covO5FgvE9J9nxVfrOvNEp9NgJA9ujvLyc5ORkBsz7bxxezYzcE/SmnC0xcwAYU/tnKum8ckugmk3ef8Fr+Pma7zd8bnbeF19fSnnLey/JRjW/99/AI8HO6c9yreM9fuf+E17Dz67QWdzpv4udHYz7SfdDXOHcwi/8P+C5YOuvjP1Nx1p+534ClxFidXA8d/jvpobO+QFxoeMzfub6K+Mc+wCoMT28GpzM/wQvZaM5HLMV4yjSOMYlzm1c5viYix2f0ttoOmPtvlAam8wRfBwazLbQYPab/ThOInCqhNekF5X0N47S3yhmgFHEIOMIA41CBhpFZBrFOI1OPJ2e+12Y+Yg1maR0O7/fz7cWv8HWktbXVo42vuT/vD+jwoxlvO9PhLpgvE9vynnbey+9jUr+FLia/wh8t9X7ZhlH+JtnIWcZJewKncXNdb+ghOROj7ErTB+SwJ/+eUp0TRjYEfFeJy5vVL71sGECgYAfl8t9yq8VgPM5CMB+Mx3Dm0Tn9rhI4j3O4Qo28E3PR/w/Tn3dtLb6NX8h2ahmuzmYZa7rSXR1zpfV20xhNv15xHyIYY5DvOb5BX/g2/yVGQRp+2skUclYvgRgvyubxDPUrp0sj8v5Mb34T/P3THV+zHLHIubyU8o6UErZHOQe/spUwxrZVWnG8hxX8zwzOO5MAie0dnB7Nf14kyt4kytwEGKUuZfJfMxkPmY8X5DtOEI2R7jBufbEPqaXI6RQixc/LkI4iKeGBKpJppI44/S/KqtNL/mkk086h+lLKUmUkkAZCVQRRwAHJg5CGDgIEU8N8dQSTw1x9a8T4whx/XXfInHsNd0+aaQ0dU6KyYFaT+uaroCDDKbcjCPJqOZ870E+68RzSoOf83d6G5V8YWax1PldEtvQHHucs/gh9/OMuYBhjkMs9z7IbdzPcbpnIsokKrmELYxjFyPZR1+O0ZsKTAx8uCmhF4fox+cMYhtD+YRhjecTr7v959CorNEpLi7WJSBs5vf7WblyJVdfffXpZ7x8bzG8db813PrGZzs/kG3/Ay/eBilD4K5NnfPFsvN1+NvN1kSA/7waMsZ3/JhfVVlkjcja9ab1uO9ImPYADJ125v4ypml16N30tPX+AzWEcBD81924E9vxuTjwEfz1W1BbCr0HwfVPQf8JbTtG+WF45zf1w2CD1t9u4g/gsp9CQt+2x3QmtWWwf73VrHVokzX8v/JI6/ZNSIdeA6BXljU6reHWO9vq99CB/6FWfy6ky7W7LJ6/yepfdeUCuPiezg3q0Cb40xWACT943eoT1B4le6y+OhUFkDbG6uMTl9KpoTYKBa1z4sanYN8a67I3bdFvNAyZyrF+F5J63jdUoyMRqLALRlydbPhV4IqxRjUVbuv469SWw//VXxU9Z27XJDlgfaF++wVr+OhbD1iTHz5/o/WFO/7b1gkwbTR4k6wTS0WB9f7y11udJU+a6djsN5pNcVM5J6adv+oGXAD/9KaV7Bz/Ep6aDpfca43IOtMIs4pC+OBR+PAxa5IzgBHXWElbV440ikmGEV+zbg38tdZIsooCK5ZAnZV0eRIgJgliekHSWZreX05vyOVWorPn7c5NdEwTVt4HmDDupvYnOWDN5Dy7fhb2I5/Csm/A917t3GQnFISPl8Oa30Bp/on1/UZbI8Iyz7V+GMWlWD8O/DXWpKXH9lo/QA5usIbGF22Hou04ztre7lCU6Eh4axhant5FCYM30Zo9dMdrsO2/O57ovP1r68uy9yBrRuOuZNTPrzLqWmtiwU3PWieJ1QvPvK87Ds6+Bs7/IYH08zj8+uuc05FY+p0Nc961Ji777GXr5LbxKbjgn2HkTGtixIaajppSa16eHa9Zo6hCfmt9Vo71Kzjrwo5E0n7uGOsLIHWIPa8vkWFI/WSk+R9Y00t4TnPZ87bYudKaMd0db0022lF9hp1IdhomNP3eK20fGfpVpmnV4PzjV9YPMLBGbE74PpzzXegz9NT7po1u+riq2DpX7FlNKOUc4JV2haRER8KXr9LK6KHranTAqgHZ8ZrVbDLlZ+BpZ4fnAx/BR3+y7n/9v9p/nLaK7Q3TF1qJ1acvWZcNyP8QKgtPbOP0WLU9WTnWTMfDrzpxAvb7OymOXtZcHttXWCe54/uspGv1QuuSF/F9raHhNceb7jfgQutSF8O/pj4p0vOlDrGaNUvzrUn6hl/V8WOGQvB2/bxKk37U8lxX7dF3xIlkp2CrVbNz8/OQ3L99x9u//sSwd7BqQS/JhfNvb9/5ML4PjL0Bxt6AWVICtG8kmxIdCV9HtgOm1SeiK+d8GH7ViRPTtr/DhHZcPy1QB6/+GDBh/C1W9XV388TDebdaN7CaYuoqAeNE9XBXMwxrxuSRM62/5fYV1i+yQA2UnVR9nTLEmrRxzPXWpS9EIoVhWLU6m562mq86I9H57GWrCceb1PmTdPYbaTVbLfuGdb2sJ6bADU9ZP4ha6/AWKxHbnWc9dsXChXPgorutH2I2U6Ij4aur++c0cDitJpZVv4CPnoDzvtf2pOD9xVY1bVwqTP+PLgmzzdwx9vUncbqt6zOd820r4aoosK7z5UmA5LOsPjIikWrI5Vais/sfHT9WKGh11Ae48I6u6TScPsaamHT5d+HINnh2pvWD7Yr7ISmj5X1M06qx+vAxq98fWIMIzrvVGkRwqv1soERHwlfBx9ayM2dEPpVzvwurH7Q65n35HmRf0vp9Cz+FNb+z7n/tN1E3vfoZuWMgJdu6iUSDwZdZX/olu6ya4l4dmOtq2/9Ys6vH9IKcOzotxGZ6D4LbVsGbP4NNz1iXjPjkv60Z5IdeaTV9GwZUl1jN9Hv+YfUJBMCAcTdas3iHYR83JToSvrqrRges6tXxN1sdaN/9z9YnOkE/vHKH1aF2xNUwtpOvQyUiPU9MsjUaMX+91TF30o/ad5xgwOrYD1aTVVfXhHriYOZiOPdWWPVzK/5db56YxqLZ9glWgnPBj8J6Bm8lOhKegn7rAnTQPTU6ABfNg81/gb2rYe8a61fZmax9yKp5iulldUBWZ1oRARj5DStR2P5y+xOdT16wak3iUtt/jPboPwH+6Q04+gV8+j9Wf8lje2ns79f3bGuI+ODLesSFc5XoSHg6+jkE68CbbFWpdofeA60hkBv+BK//BH60FlyeU2//xZsnmqyu+c/OGwkhIj3fqGvhzflWslN+GJIy27Z/0A9r688vk39sT0LRdzhM/Vn3v24n68JLDot0QOP8OWO7t5Zk6s+sX09Hd1i1NadSsgdevB0w4fwfWkMgRUQaJJ9lTZ2ACZ+92vb9P15uTcAZ1wcuuL2zo4sqSnQkPHVn/5yTxaXAjPpfUWsfsubX+apje2HZteArs05kVy3q3hhFpGcYPctabl/Rtv2C/hM/tC66u/MmHYxSSnQkPDXW6HRzogNW7czEfwJM+Pv3Yd0Sa3ryQB1s/Rs8MRXKDkDqULhx2embt0Qkeo261loe+ADKDrZ+v63PQ+l+iO9n1RhLh6iPjoSfUMiakhy6v0anwYyHrJmZt/23NfrgrQVgOCBYf/XqsybCzX+FxDR74hOR8JeUCVmTIX+dlbxcdt+Z96mrPtH37+J53TfDegRTjY6En+P7rEsFOL3QZ7g9MThdcN3j8PXFkNTfGj4e9Fm/sK64H36wUp2PReTMJv7AWm582houfibv/wHKD1rnnYn/1LWxRQnV6Ej4aeifkzbKmmHXLg6HdZKa8H2rGtkMQa9B1noRkdYYdS28MR8qDlt9dcadZq6t0nxrlnWAqxaCO7ZbQox0OmNL+Gnon5PRRVcsbyvDsIa4pwxWkiMibePywqQ51v21v7Mu6dAS07QSokAtDLoERs3qthAjnc7aEn6689IPIiJdbdKPrNnXi7+wZl9vycd/s64Z5XBZl5LR5KOdRomOhBfTPGloeZjU6IiIdERMEkz9uXX/rQVQvLvp8wc3wv/eY92f8lPrIpvSaZToSHipKLSucm04oN8ou6MREekcE2+DrByoq4TnrrNqrk0TPnsF/nKd1WQ1bDpcnGt3pBFHnZElvDTU5vQZrmGVIhI5HA648S/w5DRrZOnjl4I7DvzV1vMDL4IbngaH0944I5BqdCS8HNpsLTPOsTUMEZFOl9AXbsurn0jQsJIcdxxcfA/cugK8CXZHGJFUoyPh5XB9onPWBHvjEBHpCgl9rRnVq49B5RFrRKeGkXcpJToSPkzzRI3OWefZG4uISFeKS7Fu0uXUdCXhozQfqout4ZVpGnUgIiIdp0RHwkdDs1XaGHDH2BuLiIhEBCU6Ej7UbCUiIp1MiY6Ej8NbrGWmEh0REekcSnQkPISCJxId1eiIiEgnUaIj4aF4lzVjqDse+p5tdzQiIhIhlOhIeDjwobXMPEczg4qISKdRoiPh4cv3rOXAyfbGISIiEUWJjtjPNGH/+9b9gRfZG4uIiEQUJTpiv+NfQvkha6LAARfYHY2IiEQQJTpiv72rreVZE8ATb28sIiISUZToiP2+WGUth023Nw4REYk4SnTEXv4a2PuOdX/4VbaGIiIikUeJjtjK2LsaAjWQmKkLeYqISKdToiO2cnz8vHVnzDfBMOwNRkREIk6PS3SWLl1KdnY2MTExTJgwgXfffdfukKSdYuqOYezOsx6c9z17gxERkYjUoxKdF154gXnz5vHzn/+cLVu2cMkllzBjxgzy8/PtDk3aYdTh/8Ywg5CVA31H2B2OiIhEIJfdAbTF73//e2677TZ++MMfArB48WLefPNNHn30URYtWtRse5/Ph8/na3xcVlYGQMXyf8YZ7+meoKVFZs1xkgvXUYZB8IL7MEtK7A4pavn9fqqrqykpKcHtdtsdTlRTWYQPlUV4OXbsGACmabZ9Z7OH8Pl8ptPpNF966aUm63/84x+bl156aYv73H///Sagm2666aabbrpFwG3Pnj1tzh96TI1OcXExwWCQtLS0JuvT0tIoLCxscZ/58+eTm5vb+Li0tJSBAweSn59PcnJyl8Yrp1deXs6AAQM4cOAASUlJdocT1VQW4UNlET5UFuGlrKyMrKwsUlJS2rxvj0l0GhhfGZljmmazdQ28Xi9er7fZ+uTkZP3jhomkpCSVRZhQWYQPlUX4UFmEF4ej7V2Le0xn5D59+uB0OpvV3hQVFTWr5RERERGBHpToeDweJkyYQF5eXpP1eXl5TJ482aaoREREJJz1qKar3Nxcbr31ViZOnEhOTg5PPPEE+fn5zJkzp1X7e71e7r///habs6R7qSzCh8oifKgswofKIrx0pDwM02zPWC37LF26lN/97ncUFBQwZswY/uu//otLL73U7rBEREQkDPW4REdERESktXpMHx0RERGRtlKiIyIiIhFLiY6IiIhELCU6IiIiErGiJtFZunQp2dnZxMTEMGHCBN599127Q4pKa9euZebMmWRmZmIYBi+//LLdIUWtRYsWcf7555OYmEi/fv2YNWsWO3futDusqPToo48ybty4xll4c3JyeP311+0OS7A+J4ZhMG/ePLtDiToLFizAMIwmt/T09DYfJyoSnRdeeIF58+bx85//nC1btnDJJZcwY8YM8vPz7Q4t6lRVVTF+/HiWLFlidyhRb82aNcydO5cPPviAvLw8AoEA06dPp6qqyu7Qok7//v35zW9+w8aNG9m4cSOXX3451157Ldu3b7c7tKi2YcMGnnjiCcaNG2d3KFFr9OjRFBQUNN62bdvW5mNExfDySZMmcd555/Hoo482rhs5ciSzZs1i0aJFNkYW3QzDYMWKFcyaNcvuUAQ4evQo/fr1Y82aNZqbKgykpKTw0EMPcdttt9kdSlSqrKzkvPPOY+nSpSxcuJBzzjmHxYsX2x1WVFmwYAEvv/wyW7du7dBxIr5Gp66ujk2bNjF9+vQm66dPn866detsikok/JSVlQG06+rA0nmCwSDLly+nqqqKnJwcu8OJWnPnzuWaa67hyiuvtDuUqLZr1y4yMzPJzs7m5ptvZu/evW0+Ro+6BER7FBcXEwwGm134My0trdkFQkWilWma5ObmcvHFFzNmzBi7w4lK27ZtIycnh9raWhISElixYgWjRo2yO6yotHz5cjZv3syGDRvsDiWqTZo0iWXLljF8+HCOHDnCwoULmTx5Mtu3byc1NbXVx4n4RKeBYRhNHpum2WydSLS68847+eSTT3jvvffsDiVqjRgxgq1bt1JaWsqLL77I7NmzWbNmjZKdbnbgwAHuvvtuVq1aRUxMjN3hRLUZM2Y03h87diw5OTkMGTKEZ599ltzc3FYfJ+ITnT59+uB0OpvV3hQVFTWr5RGJRnfddRevvvoqa9eupX///naHE7U8Hg9Dhw4FYOLEiWzYsIE//OEPPP744zZHFl02bdpEUVEREyZMaFwXDAZZu3YtS5Yswefz4XQ6bYwwesXHxzN27Fh27drVpv0ivo+Ox+NhwoQJ5OXlNVmfl5fH5MmTbYpKxH6maXLnnXfy0ksv8fbbb5OdnW13SHIS0zTx+Xx2hxF1rrjiCrZt28bWrVsbbxMnTuQ73/kOW7duVZJjI5/Px44dO8jIyGjTfhFfowOQm5vLrbfeysSJE8nJyeGJJ54gPz+fOXPm2B1a1KmsrGT37t2Nj/ft28fWrVtJSUkhKyvLxsiiz9y5c3n++ed55ZVXSExMbKz1TE5OJjY21uboosvPfvYzZsyYwYABA6ioqGD58uW88847vPHGG3aHFnUSExOb9VOLj48nNTVV/de62b333svMmTPJysqiqKiIhQsXUl5ezuzZs9t0nKhIdG666SZKSkpYsGABBQUFjBo1ir///e/07t2b8vJyu8OLKu+++y5f//rXGx83tLPecsstPPbYY3aFFZUapluYMmVKk/VLly7lO9/5jg0RRa8DBw7wne98h8LCQpKSkhgzZgwvvvgikyZN0jkqDAQCAXw+n8qim+3bt6/x+zs1NZVzzz2XdevWMXDgwDYdJyrm0Wlw8OBBBgwYYHcYIiIi0g4HDhxoc1/CqKjRaZCYmAhYWaLmCrGX3+9n1apVTJ8+HbfbbXc4UU1lET5UFuFDZRFejh07RnZ2duP3eFtEVaLTMJw8MTGRpKQkm6OJbn6/n7i4OJKSknQSsZnKInyoLMKHyiK8+P1+oPlUMa0R8aOuREREJHpFVY2OiIicXpUvQEFZDUUVPoor66itC2JiYpoQ43aSFOsiOdZN34QY0pNj8Lii7/eyaZoUlNWy7VAZ2w6WsauogiPlPo5W+CitrsNhGDgcBl6Xg35JXtKTYjirVyzD0hI5Oz2R4emJJMWolqi7KNEREYlS/mCIjw+Usm5PCdsOlbGzsIL8Y9Wt3t8woG+Cl8xesZzVK5bMXjFkJFvLzF6xZCTHkhrvweHo2Cz0oZBJZV2AitoAFbV+Kmut++W1fipqA1T5AgRNKxlr2L5hlI3H5cDrctQvnXjrH3vdTjxOB163w1rWP++p39ZhBqkLQklVHeW+WnYWVvB5YTmfHS5n26EyiivrWhV7UYWPTw81H611Vq9YRmcmMSozidGZyYzOTCIjOabbZ+wPhUyCpkkwVH8zTZyGQYzbibOD5RYulOiISJcLhUxKquqo9AWoqQtS4w/i8wfxh0yCoRDBEE1OtKGQSSBkNp6EG++HTEL1j4Ohk7Y76UTtD5oEQiFrGQzhD4bwh6z7gaBJXTBEMGRiGOCo/1JxGAaO+seGYfUDaHjcsK7pNgZOx4n7jpOet547cb/Fr4oWVhoYhEJB9ux3sH3VFyTEeBjcN54hfRPI7hNPjLvjE9WFQiafFZSzbk8x6/aU8NG+Y1TXBZttlxTjom+ilz4JXuK9rsZwawNBymr8lNX4OVLuoy4QoqjCR1GFj60HSlt8TY/TQUavGHrHeUiMcZHgtW4u58k1QSa1/hBVvgBVdQGqfEGqfAEqfVZCU+kLdPi9t48LPnqnxWecDoPhaYmMOyuZUZlJpCfH0C/RS+84DybW/3NNXZCiiloKy2vJP1bNzsIKdhZWUFBWy6HSGg6V1rDqsyONx+wd52Z0ZnJ98pPE8LREzuod26baH38wxLGqOoorfZRU1lFSZS2LK+soqfRZ66vq6tf58AVCpzyW22kQ43LidTuJ9TiIdTuJ9biIczuJ9Vi3OLeTOE/9ek/DfWvpdLRc29fwuawLmvgD9Z/RYIi6QP264MnrrM/s2b3bn3Qp0RGRTuULBFm3p4RNXx7n44Ol5B+rpqC0lrrgqU+ocjIH/zj8ZZM1TofB0L4JjMpMYlSGVQswMiOJlHjPaY/kCwTZXVTJ5v3HeX93CR/sK6G02t9km5R4DzmDU5kwsDcjM5I4Oz2R3mc4LljNNyVVdRSUnvjSLiit4XBZDYdLaxubv+qCIfaXVLO/pPU1RafidhokxrhJjHE1Jk2JMW4SvK4TySUnklWwvvh9gRA+f9BaBoLUBax1tf4gdfVfsL5A/RdtIEQg1HTWlUSvi6FpCZydnsTIjETGnpXMyIykViafyc3WlFX72VFYzvbD5Ww/XMZnh8vZXVTJ8Wo/7+0u5r3dxc1ev2+Sl8QYN0kxLrwuJ6ZpJfi1/hBlNX7Ka60EtKK285JCf9DEHwxQYVuieYJvSEK791WiIyKdYkdBOX96dy+rth9p8Re4YUCCx0WMx0ms20mM24HL4cDltGpNnI76W0ONiMPA5Wh4jvrnHTgNcNRv19K+LqcDt9PA7bSO7XZYj09e31Alb5oQMk1C9Uu+8jhU3xzSsK7hy6XhedO0aklCJvVNJ82f/6qWpi470eQSYu++fQzOzqbcF2TP0Up2F1VSURtg55EKdh6pYMWWQ437ZSTHMKRvAqkJnsaaF1/A+kWff6yafcVVBL/ypZ3gdXFBdgqTh6QyeUgfzk5PbFfTkmEY9Emwan3G9m/+ZQ5QFwhxpLyWgrJaymr8VPr89c1PAUInxWUCsW4ncV4n8R4X8V6rduDkZCYxxoXX5eiWpp1gyKSqxsfrb7zJN675GrEx3k49fnKcmwsHp3Lh4BNX4K71B9l1pNJKfAqsJGjvUSv5qfAFqDja+mTDYUBKvJc+CR76JHhJTfCQGm8t+zS5b9XYOQ0DhwNcDgcOh/X+a/1WImjdQtQGgtTWBamuC1LtD1JTF7Du1wWpaVj6A42Pa/zBZv97YP2vu5wGHqfVROh2WjePyzjpfv3SeWJdX4+fP7Xz761ER0Q65HBpDfe/up28k6rg05K8XDKsL+cM6MWwfglk9oolLSk6O662hd/vZ+XKPVw9Y0TjkGbTNDlS7uOzAuuX/2cFVj+RL0uqKSizkojTSYpxMbZ/MpOH9CFnSCrjzkr+SrNR1/G4HAxIiWNASly3vF5ncToMYj1OYlx0298qxu1kbP/kZkljdV2Aw6U1HK2oq2/K8+MLhHAaBhjgdTlIinWTXH/rFeumd1zH+0XFnblSr1uVlJS0e18lOiLSbiu2HOSXr2ynojaAYcA1YzP4wUWDOHdA7w6faMViGAbpydYIp8vPTmtcX+kLsKOgnAPHqjlWVUeVzxod5XE5SI33kJYUw9npSaQlebu9g6t0njiPi6H9Ehnaz+5Iei4lOiLSLv/vH7v4z7wvADhnQC8eumEcw9LaPmuptE+C18X5g1I4f5BmeRc5HSU6ItJmD7+5kyWrravQz506hHuuHN5tVfwiIm2hREdE2uS5D/Y3Jjk/u/ps/vnSITZHJCJyavoJJiKt9umhMha8uh2Af7tqhJIcEQl7SnREpFV8gSD3vLCVQMjka6PTuWOKkhwRCX9KdESkVZ5670t2FVXSJ8HLg98cq5E8ItIjKNERkTMqrvTx/97eBVj9cs40I6+ISLhQoiMiZ/TE2r1U1wUZ3z+ZWeecZXc4IiKtpkRHRE7reFUdf1m/H4B5Vw7XRIAi0qMo0RGR03ph4wFq/EFGZSQxZURfu8MREWkTJToickrBkNlYm/P9iwapA7KI9Di2JDoLFizAMIwmt/T09NPus2bNGiZMmEBMTAyDBw/mscce66ZoRaLXuj3FHCqtITnWzTfGZ9odjohIm9k2M/Lo0aN56623Gh87nc5Tbrtv3z6uvvpqbr/9dp577jnef/997rjjDvr27cv111/fHeGKRKUVmw8BMHN8BjHuU39GRUTClW2JjsvlOmMtToPHHnuMrKwsFi9eDMDIkSPZuHEjDz/88GkTHZ/Ph8/na3xcXl4OgN/vx+/3tz946bCGv7/KwX6nKouauiBvbC8E4Btj01VW3UCfi/ChsggvHSkH2xKdXbt2kZmZidfrZdKkSTz44IMMHjy4xW3Xr1/P9OnTm6y76qqrePLJJ/H7/bjd7hb3W7RoEQ888ECz9atXryYuLq7jb0I6LC8vz+4QpN5Xy2LbMYPqOicpXpPD29ZR8KlNgUUhfS7Ch8oiPFRXV7d7X1sSnUmTJrFs2TKGDx/OkSNHWLhwIZMnT2b79u2kpqY2276wsJC0tLQm69LS0ggEAhQXF5ORkdHi68yfP5/c3NzGx+Xl5QwYMICpU6e2+DrSffx+P3l5eUybNu2Uiap0j1OVxdoVnwKH+fq5A7nmmrPtCzCK6HMRPlQW4aWkpKTd+9qS6MyYMaPx/tixY8nJyWHIkCE8++yzTRKTk311tIdpmi2uP5nX68Xr9TZb73a79Y8bJlQW4ePksgiGTN7ZWQzA18ZmqIy6mT4X4UNlER46UgZhMbw8Pj6esWPHsmvXrhafT09Pp7CwsMm6oqIiXC6XamZEusCnh8ooqaojMcbF+YNS7A5HRKTdwiLR8fl87Nix45RNUDk5Oc3aSVetWsXEiROVaYt0gff3WLU5OYNTcTvD4jQhItIutpzB7r33XtasWcO+ffv48MMPueGGGygvL2f27NmA1bfme9/7XuP2c+bMYf/+/eTm5rJjxw6eeuopnnzySe699147wheJeOt2W+3hFw3tY3MkIiIdY0sfnYMHD3LLLbdQXFxM3759ufDCC/nggw8YOHAgAAUFBeTn5zdun52dzcqVK7nnnnv44x//SGZmJo888ojm0BHpArX+IBu+PAbARUPVNCwiPZstic7y5ctP+/wzzzzTbN1ll13G5s2buygiEWmw/XAZvkCIPgkehvRNsDscEZEOUeO7iDSxaf9xAM7L6q1rW4lIj6dER0Sa2Ly/FIDzBva2NxARkU6gREdEGpmmyeb8EzU6IiI9nRIdEWlUUFZLUYUPp8NgXP9ku8MREekwJToi0mj7YevCt8P6Jehq5SISEZToiEijz+oTnVGZSTZHIiLSOZToiEij7YfLABidqWYrEYkMSnREpFFD09WoDNXoiEhkUKIjIgCU1/g5VFoDqOlKRCKHEh0RAWD30SoAMpJjSI7VxXJFJDIo0RERAPYcrQRgaD9d9kFEIocSHREBYHeRVaOjREdEIokSHREBYHd9jc6wfok2RyIi0nmU6IgIAHuOqkZHRCKPEh0RwReEQ6W1gBIdEYksSnREhGIrx6FXnJuUeI+9wYiIdCIlOiJCca0BwMCUOJsjERHpXEp0RKSxRicrNd7eQEREOpkSHRGh2KcaHRGJTEp0RKSxRmdgqhIdEYksSnRE5EQfHTVdiUiEUaIjEuX8wRDHfdZ91eiISKRRoiMS5arrgphYNTq94zS0XEQiixIdkSjnD4Ya77udho2RiIh0PiU6IlHOHzQBK8kxDCU6IhJZlOiIRLmGGh2XQ0mOiEQeJToiUS7QWKOj04GIRB5bzmyLFi3i/PPPJzExkX79+jFr1ix27tx52n3eeecdDMNodvv888+7KWqRyNRYo6P+OSISgWxJdNasWcPcuXP54IMPyMvLIxAIMH36dKqqqs64786dOykoKGi8DRs2rBsiFolcgZBqdEQkcrnseNE33nijyeOnn36afv36sWnTJi699NLT7tuvXz969erVqtfx+Xz4fL7Gx+Xl5QD4/X78fn/bgpZO1fD3VznYr8ZXB1h9dFQe9tLnInyoLMJLR8rBlkTnq8rKygBISUk547bnnnsutbW1jBo1il/84hdMnTr1lNsuWrSIBx54oNn61atXExenidHCQV5ent0hRL095QAu/LU1rFy50u5wBH0uwonKIjxUV1e3e1/DNE2zE2NpM9M0ufbaazl+/DjvvvvuKbfbuXMna9euZcKECfh8Pv7yl7/w2GOP8c4775yyFqilGp0BAwZQUFBAampqp78XaT2/309eXh7Tpk3D7XbbHU5UW7vzCLc99zFD+8bz+o8vsjucqKbPRfhQWYSXkpISMjIyKCsrIykpqU372l6jc+edd/LJJ5/w3nvvnXa7ESNGMGLEiMbHOTk5HDhwgIcffviUiY7X68Xr9TZb73a79Y8bJlQWYcDhBMDjcqgswoQ+F+FDZREeOlIGtvY+vOuuu3j11VdZvXo1/fv3b/P+F154Ibt27eqCyESihz+gUVciErlsqdExTZO77rqLFStW8M4775Cdnd2u42zZsoWMjIxOjk4kuvjrR115NOpKRCKQLYnO3Llzef7553nllVdITEyksLAQgOTkZGJjYwGYP38+hw4dYtmyZQAsXryYQYMGMXr0aOrq6njuued48cUXefHFF+14CyIRQzMji0gksyXRefTRRwGYMmVKk/VPP/003//+9wEoKCggPz+/8bm6ujruvfdeDh06RGxsLKNHj+b//u//uPrqq7srbJGIpJmRRSSS2dZ0dSbPPPNMk8f33Xcf9913XxdFJBK9NDOyiEQy/YQTiXJ+zYwsIhFMZzaRKNdQo+N26HQgIpFHZzaRKHeij46arkQk8ijREYlyJ/ro6HQgIpFHZzaRKKcaHRGJZEp0RKKcanREJJLpzCYS5U7MjKwaHRGJPEp0RKLciZmRdToQkcijM5tIlFMfHRGJZEp0RKKc+uiISCTTmU0kyp2YGVk1OiISeZToiEQ5f6B+ZmTV6IhIBNKZTSTKBVSjIyIRTImOSJTTqCsRiWQ6s4lEOY26EpFIpkRHJMpp1JWIRDKd2USinGZGFpFIpkRHJMqpj46IRDKd2USiXGMfHZdqdEQk8ijREYlyqtERkUimM5tIlPNr1JWIRDAlOiJRrqFGRzMji0gk0plNJMppZmQRiWRKdESinProiEgk05lNJMppZmQRiWRKdESinProiEgk05lNJMo1zIzsUo2OiEQgl50vvnTpUh566CEKCgoYPXo0ixcv5pJLLjnl9mvWrCE3N5ft27eTmZnJfffdx5w5c7oxYunpgiGTvUcr+eJIJUcrajlW7aesug7DMHA5DDwuBynxHvomeumb6GVQajzpSTE4HJGbBKhGR0QimW2JzgsvvMC8efNYunQpF110EY8//jgzZszgs88+Iysrq9n2+/bt4+qrr+b222/nueee4/333+eOO+6gb9++XH/99Ta8A+kJTNNkR0EFqz4rZO0XR/msoJxaf6hNx4hxOxiUGk92nxO3wX3jye6TQO84N4bRdUlQrT/I8eo6jlf5qfQF8AWC1AVC1i0YImSauBwOXA4Dl9OBy1mfsDkdxHqcxHmcxLidxLqdxHqcxLicTZK2YMjEtCp0cEVwMici0cu2ROf3v/89t912Gz/84Q8BWLx4MW+++SaPPvooixYtarb9Y489RlZWFosXLwZg5MiRbNy4kYcffviUiY7P58Pn8zU+Li8vB+BHf9mMJz6hxX0MTn+yP9N32umePvO+7T/4mb6iOvLaHXnP1v7NtwiFQhw96mC9/1OGpSUx7qwkxmQmdcoVtAPBEJvyS8nbUcQ/dhRxsLS2yfNxHifD0xJIS/SSEu+hV6wbsJpwfIEQx6rqKK70caTcx8HjNdT6Q3xeWMHnhRXNXis51sWg1HgGpsSRlmTVAvVN8JAS7yHW7cTrduB1OXE5DOoCIXyBEL5AkOq6IMer/VYSU78srfbX3/dTWl1HaY2/zUlZa3hdDmLdTmLc1rKBYQbx+/2d/nrSeg1/f5WD/VQW4aUj5WBLolNXV8emTZv46U9/2mT99OnTWbduXYv7rF+/nunTpzdZd9VVV/Hkk0/i9/txu93N9lm0aBEPPPBAs/Uf7S/F4a3rwDuQzuHgk2OHgcMAxDhNhiaZDE82GZZkkh4Hra1kqA7ArjKDbccNth83qA6c2NFtmJzdy2RMikl2oknfmAAO40QCzMmfHwNIqL+lQ9CEY7VQVGtwtBaKaqzl0RqD43UGZTUBPj5YxscHyzr4tzg1h2ES54JYJ7gc4DIaliaGASETgqZRv7QeB0JQFwJ/COqC4DdP/D189QkXNSdeI8Fl8t6a1aibTnjIy8uzOwSpp7IID9XV1e3e15ZEp7i4mGAwSFpaWpP1aWlpFBYWtrhPYWFhi9sHAgGKi4vJyMhots/8+fPJzc1tfFxeXs6AAQN4YOZwEpN6txxcQz3+KZz+2TPuXn+MM7zGGY7RipdoRRwdi6E1cZzuGMFgkO2ffUZyRjZ7SqrZtL+U8toAnx43+PS4tU2vWDcTB/ZidGYSQ/rG0y/RS2KMC3/QpNIX4MDxGnYXVfLRl8fZfric0Emv1zvOzdQRfbny7H5cNDSFOE/n/6vX1AXZf6yafcVV5B+robjSx9GKOooqfRyvqqO2vonJFwgSCJp4XA68LquGJ9btoFecm95xHnrH1y/j3PRqWMa66593k+B1dbh5LBQyqQ0EqfGHqPUHqakLUuO3bhXVdRzZuZmvTZ/W4g8G6T5+v5+8vDymTVNZ2E1lEV5KSkrava+tnZG/evI2TfO0J/SWtm9pfQOv14vX6222/hvj+5OamtrWcKUT+f1+Vh7bztUzzsbtdhMMmWw/XMb7u0tYt6eYjV8ep7TGz1ufH+Wtz4+26piD+8Qz9ex+TB+VxoSBvTulGex03G43Y+NjGDsgpUtfp7N4vZDcwnq/38/KL633oxN6eFBZhA+VRXjoSBnYkuj06dMHp9PZrPamqKioWa1Ng/T09Ba3d7lcSloigNNhMK5/L8b178W/TBmCPxji00NlbPjyGDsLK9lbXMnxqjrKawO4nQbxHheZvWIZ3Deec7N6kTO4D+nJMXa/DRERCTO2JDoej4cJEyaQl5fHdddd17g+Ly+Pa6+9tsV9cnJyeO2115qsW7VqFRMnTlS2HYHcTgfnZvXm3KxTNDGKiIi0gm0TZ+Tm5vLnP/+Zp556ih07dnDPPfeQn5/fOC/O/Pnz+d73vte4/Zw5c9i/fz+5ubns2LGDp556iieffJJ7773XrrcgIiIiYc62Pjo33XQTJSUl/OpXv6KgoIAxY8awcuVKBg4cCEBBQQH5+fmN22dnZ7Ny5Uruuece/vjHP5KZmckjjzyiOXRERETklGztjHzHHXdwxx13tPjcM88802zdZZddxubNm9v9eg2dlysqKtTcZTO/3091dTXl5eUqC5upLMKHyiJ8qCzCS0WFNY+Z2ZohwV9ha6LT3RqGp2VnZ9sciYiIiLRVSUkJycktjR89tahKdFJSrGHA+fn5bf5DSedqmNPowIEDJCUl2R1OVFNZhA+VRfhQWYSXsrIysrKyGr/H2yKqEh2Hw+p7nZycrH/cMJGUlKSyCBMqi/ChsggfKovw0vA93qZ9uiAOERERkbCgREdEREQiVlQlOl6vl/vvv7/Fy0JI91JZhA+VRfhQWYQPlUV46Uh5GGZ7xmqJiIiI9ABRVaMjIiIi0UWJjoiIiEQsJToiIiISsZToiIiISMSKmkRn6dKlZGdnExMTw4QJE3j33XftDikqrV27lpkzZ5KZmYlhGLz88st2hxS1Fi1axPnnn09iYiL9+vVj1qxZ7Ny50+6wotKjjz7KuHHjGieny8nJ4fXXX7c7LMH6nBiGwbx58+wOJeosWLAAwzCa3NLT09t8nKhIdF544QXmzZvHz3/+c7Zs2cIll1zCjBkzmlwdXbpHVVUV48ePZ8mSJXaHEvXWrFnD3Llz+eCDD8jLyyMQCDB9+nSqqqrsDi3q9O/fn9/85jds3LiRjRs3cvnll3Pttdeyfft2u0OLahs2bOCJJ55g3LhxdocStUaPHk1BQUHjbdu2bW0+RlQML580aRLnnXcejz76aOO6kSNHMmvWLBYtWmRjZNHNMAxWrFjBrFmz7A5FgKNHj9KvXz/WrFnDpZdeanc4US8lJYWHHnqI2267ze5QolJlZSXnnXceS5cuZeHChZxzzjksXrzY7rCiyoIFC3j55ZfZunVrh44T8TU6dXV1bNq0ienTpzdZP336dNatW2dTVCLhp6ysDKBdF82TzhMMBlm+fDlVVVXk5OTYHU7Umjt3Ltdccw1XXnml3aFEtV27dpGZmUl2djY333wze/fubfMxIv6insXFxQSDQdLS0pqsT0tLo7Cw0KaoRMKLaZrk5uZy8cUXM2bMGLvDiUrbtm0jJyeH2tpaEhISWLFiBaNGjbI7rKi0fPlyNm/ezIYNG+wOJapNmjSJZcuWMXz4cI4cOcLChQuZPHky27dvJzU1tdXHifhEp4FhGE0em6bZbJ1ItLrzzjv55JNPeO+99+wOJWqNGDGCrVu3Ulpayosvvsjs2bNZs2aNkp1uduDAAe6++25WrVpFTEyM3eFEtRkzZjTeHzt2LDk5OQwZMoRnn32W3NzcVh8n4hOdPn364HQ6m9XeFBUVNavlEYlGd911F6+++ipr166lf//+docTtTweD0OHDgVg4sSJbNiwgT/84Q88/vjjNkcWXTZt2kRRURETJkxoXBcMBlm7di1LlizB5/PhdDptjDB6xcfHM3bsWHbt2tWm/SK+j47H42HChAnk5eU1WZ+Xl8fkyZNtikrEfqZpcuedd/LSSy/x9ttvk52dbXdIchLTNPH5fHaHEXWuuOIKtm3bxtatWxtvEydO5Dvf+Q5bt25VkmMjn8/Hjh07yMjIaNN+EV+jA5Cbm8utt97KxIkTycnJ4YknniA/P585c+bYHVrUqaysZPfu3Y2P9+3bx9atW0lJSSErK8vGyKLP3Llzef7553nllVdITExsrPVMTk4mNjbW5uiiy89+9jNmzJjBgAEDqKioYPny5bzzzju88cYbdocWdRITE5v1U4uPjyc1NVX917rZvffey8yZM8nKyqKoqIiFCxdSXl7O7Nmz23ScqEh0brrpJkpKSvjVr35FQUEBY8aMYeXKlQwcONDu0KLOxo0bmTp1auPjhnbW2bNn88wzz9gUVXRqmG5hypQpTdY//fTTfP/73+/+gKLYkSNHuPXWWykoKCA5OZlx48bxxhtvMG3aNLtDE7HNwYMHueWWWyguLqZv375ceOGFfPDBB23+7o6KeXQahEIhDh8+TGJiojoii4iI9BCmaVJRUUFmZiYOR9t63URFjU6Dw4cPM2DAALvDEBERkXY4cOBAmwdNRFWik5iYCFj9QjQpmr38fj+rVq1i+vTpuN1uu8OJaiqL8KGyCB8qi/By7NgxsrOzG7/H2yKqEp2G5qrExESSkpJsjia6+f1+4uLiSEpK0knEZiqL8KGyCB8qi/Di9/uB5nPitUabh5e35+rTa9asYcKECcTExDB48GAee+yxJs9v376d66+/nkGDBmEYximvJ6IrkIuISLgpra5jw5fHeHHTQf60di+/X7WT/1y1kz+8tYu/fLCf17cVsGn/ccpq/HaHGpXaXKPTcPXpH/zgB1x//fVn3H7fvn1cffXV3H777Tz33HO8//773HHHHfTt27dx/+rqagYPHsy3vvUt7rnnnhaP03AF8qVLl3LRRRfx+OOPM2PGDD777DMNSxYR6UTVdQH2Hq3iaIWPsho/5bV+AkETt8uB22GQFOumT4KXPgke+iZ6SfC6omqAx8Hj1Xy49xgf7ivhw33H2F9S3ep905K8DE9LZHhaIqMykhiVmcTQfgm4nRE/rZ1t2pzozJgxo8m0zGfy2GOPkZWV1VhLM3LkSDZu3MjDDz/cmOicf/75nH/++QD89Kc/bfE4v//977ntttv44Q9/CMDixYt58803efTRR3UFcpEoEwqZhEyToGlimhCsfxwKgT8Uwh8M4Q+Y1AVDBEIn7vvrb4GgNdjUMKyqcKPhPgYOAzDAYRj1N2sbhwFOh7XOqH/eetzwvIGz4bn69U7roFivYL0G1uEbNSQIBuAP+KnyQ2m1n8Q4BzHurp+czjRN9hyt4r1dR3lvdwk7Cso5VFrTpmPEeZxk9oolIzmGzORYMnrFkNkr9sT95FhiPe1/L6ZpUusPUVbjp6LWT4UvQEVtwLpfG6DKF7DKOmgSCJkEgiGCponTMHA5reTM5XTgdhq4HAZetxOP04HH5cDralg6Gx97XQ4chCj1QUFZLUWVFXxxpJINXx7jo33HWvz7nNUrluw+8fRJ8JAU68YA6oIhjlXVUVJZx6HSGgrKajlS7uNIuY93dxU37utxOhiensDojGRGZVrJz8iMJBK8ndO7xDRNymr8HK3wcbTSx9EKH8WVdRyt8FHlC+APhqgLhKgLhhrjcTkN3E4Hbqf194hxO4lxO4l1W/djPU68LmsZ43JYS7eTWLcTr9tBbP32Z0rgQqH6MgudiKEu0PS+PxjCrK1q9/vv8j4669evb3bl8Kuuuoonn3wSv9/fqrbPhiuQfzUJOtMVyH0+X5OZRcvLywGrra+hvU/s0fD3VznYryvKwjRNCspq+eRQOfnHqiksq6WgrJZKX4AafwifP0htIEQgGCJk0jxhMU1C5skJjXVM6/lOCzNMufjZxtUAnNUrhuFpCUzI6s2Egb0Ye1YyXlfHf/mXVPp4f88x1u0t4f3dJRSWN5+BOSXeTUZyDMkxbhJjXLgcjsYksrwmQHFlHcWVPqrqglTXBdldVMnuospTvmavWOt4GckxJMa4TiQZTgdB06z/QjPxBYJU1AYorw1YtUk1fkpr/PiDdhS8i/s3r2221ukwGJOZxAWDenNBdm8mZPUiMebM32UVtQF2H7X+Tp8XVrKjsIIdBRVU+gJ8eqicTw+VN9l+YEocw9MSSE+OIT3JS98EL/FeJ3EeFx6XQTBkEgxBTV2Q0ho/pTV1lFb7OVblp7jS11hGJVV1Nv39wOUw6pMkh/VZDpkEgib++oS0tZ/nq4bEtz+Gdu/ZSoWFhS1eOTwQCFBcXNyqqZzbewXyRYsW8cADDzRbv3r1auLi4lr5DqQrffXSHGKfjpaFacK+CthS4uCTYwaldfY1ZTgNE6cBLgOcDprdd9aHZtbH3Xj/q49NaxkyTzwOnbT+q49b3q79f4dDpbUcKq1l9U7r17/LMMlKgOxEs/GW0Ip+spV+2FthsKfcYFeZwaHqpjG5DJPBSSYjkq1jpsdCvDsAnLlmxxeEsjo47jM4XgelPiitMzjug+N1BqU+8IWM+i9iPzsKK9rzpwDAwCTWCTEurKUTYl0mXmd9+dbfHPU3K4lufguE6m8mBEIGARP8oabr/fVL04TeXugTY5KdCEMSTQYlmnidJRAsoXo3vLv7zLGfLB6YYMCEDDDTocQHh6oMDlUZHKy27pfWGew/Vs3+Y61vFjuTWKdJkgcS3ZDoNkl0W39Hl8PE5TjxuWj8W4UgaBr4Q1AXsv4mDTfrsUFdkBafb/i/D4RMKn0BKttwNROXYcXjMmhclh870u733S2jrlq6cnhL69tznNMdY/78+U2ucFpeXs6AAQOYOnVqmy7xLp3P7/eTl5fHtGnTNKLBZp1RFmt3FbNk9R62HChrXOd0GIxIS2Bo3wQye8WQnhxDcoyrvmrb+oXnchiNzUENzUSO+sdOh/WZd351fX1T0cnNRidv43IYYd9f5OR5Wk+esrXO7+ett97iyiuvpCoAe49W8enhcjbtP87G/aWUVNWxt8JKWhpkJscwICWW/r1j6RPvxe00CISsporDZbXsPVrFgePNE5az0xO5aEgKFw1NZWJW7w41LZ3pvVbUBjhcX6tXWF5LdV2QukAIX30ThdNh4KlvWvK4HCR4XSTFukmOdZEc6yY51k1SjJsEr7Pbyrbhc3HllVfi8Xi65TVPdqyqjh2FFXxZXEVBmY+CslqOVddRXRdsbG5yOqz/fa/bSa84N71i3fSKc9M7zkPfBA+pCR761velSk3wdkptYGuY9TV0tYEQNf4gPr+1tJp/65vF6j/7DU2LTodV9qf6/JaUlLC85Z4tZ9TliU56enqLVw53uVytTjbaewVyr9eL1+tttt7tduvLNUyoLMJHe8qirNrPL1/9lFe2HgbA43Lw9XEZXDM2g8lD+nTZl2ekaujbE+P1kJjgJr1XPJOH9QOsL48vS6rZ+OUxNucfZ9P+43xxpJLDZbUcLqvlw33HT3vsYf0SOD87hUnZKVw0tA99EpqfG7tKqsdDalIcY3vgfK0ej8eWc1RaLzdpvdrfXGM3jwcSOvF4HSmDLk90cnJyeO2115qsW7VqFRMnTmx14Cdfgfy6665rXJ+Xl8e1117bqfGKSOvsLqrg1ic/oqCsFocBP7gomx9dNph+iTF2hxaRDMMgu0882X3i+dZEK2Moq/az+2gFB47VcOBYNceq6wgETZwOg+RYN/2SvAzuk8CI9ERS4ru/VkIkHLQ50TnT1afnz5/PoUOHWLZsGQBz5sxhyZIl5Obmcvvtt7N+/XqefPJJ/va3vzUeo66ujs8++6zx/qFDh9i6dSsJCQkMHToU0BXIRcLJZ4fLufXJDympqiO7Tzy/v3E852b1tjusqJMc52bCwBQm6PrEIqfU5kTnTFefLigoID8/v/H57OxsVq5cyT333MMf//hHMjMzeeSRR5rMwXP48GHOPffcxscPP/wwDz/8MJdddhnvvPMOoCuQi4SLvUcr+fafP6C02s/Ys5JZ9k8X0Fu1BSISptqc6EyZMoXTXfD8mWeeabbusssuY/PmzafcZ9CgQac9ZoM77riDO+64o1Vxikjnq/IFuH3ZRkqr/Ywf0Iu/3HYBSa0YVisiYhdNxSgirfYfK3ew52gVaUle/vS9CUpyRCTsKdERkVb5cG8Jz39oNUv//sZz1OlYRHoEJToickbBkMmC16wBA7dckMVFQ/vYHJGISOso0RGRM/rfTw6zo6CcpBgX/3bVCLvDERFpNSU6InJawZDJH/6xC4AfXTZE87GISI+iREdETuvtz4vYe7SK5Fg338vRdA4i0rMo0RGR03pm3T4Abr5gQKuu0CwiEk6U6IjIKe0rruL93SU4DLj1QtXmiEjPo0RHRE5pxeaDAFwyrC/9e8fZHI2ISNsp0RGRFpmmyYqthwD45nln2RyNiEj7KNERkRZ9crCMA8dqiPM4mT4q3e5wRETaRYmOiLRo1WeFAEwd0Y9Yj9PmaERE2keJjoi0KO+zIwBMG5VmcyQiIu2nREdEmjlwrJovjlTidBhMHdHP7nBERNpNiY6INPP+7mIAzh3Qi+Q4zZ0jIj2XEh0Raea9+kRHF+8UkZ5OiY6INBEKmazfUwLAxcOU6IhIz6ZER0Sa2HO0kpKqOmLdTsb372V3OCIiHaJER0Sa2LT/OADjByTjcekUISI9m85iItJEQ6IzYWBvmyMREek4JToi0sTmfCU6IhI5lOiISKOyaj97jlYBcO4AJToi0vMp0RGRRtsPlwEwICWW3vEem6MREek4JToi0mj74XIARmck2xyJiEjnUKIjIo0aanRGZybZHImISOdQoiMijRprdM5SoiMikUGJjogAUOsPsudoJQCjM9V0JSKRQYmOiACw52gVIRN6xbnpl+i1OxwRkU6hREdEANhdP6x8eL9EDMOwORoRkc6hREdEANhTZDVbDU1LsDkSEZHOo0RHRIATNTrD+inREZHIoURHRAAaOyIPVaIjIhFEiY6IEAjB/mM1AAzrl2hzNCIinUeJjohQ4oNgyCTO4yQtSSOuRCRyKNEREYprrVFWA1PjNeJKRCKKEh0R4WittRyYEmdvICIinazNic7atWuZOXMmmZmZGIbByy+/fMZ91qxZw4QJE4iJiWHw4ME89thjzbZ58cUXGTVqFF6vl1GjRrFixYomzy9YsADDMJrc0tPT2xq+iLSgpLFGR4mOiESWNic6VVVVjB8/niVLlrRq+3379nH11VdzySWXsGXLFn72s5/x4x//mBdffLFxm/Xr13PTTTdx66238vHHH3Prrbdy44038uGHHzY51ujRoykoKGi8bdu2ra3hi0gLihtqdFLj7Q1ERKSTudq6w4wZM5gxY0art3/sscfIyspi8eLFAIwcOZKNGzfy8MMPc/311wOwePFipk2bxvz58wGYP38+a9asYfHixfztb387EazLpVockS5QrBodEYlQbU502mr9+vVMnz69ybqrrrqKJ598Er/fj9vtZv369dxzzz3NtmlIjhrs2rWLzMxMvF4vkyZN4sEHH2Tw4MGnfG2fz4fP52t8XF5uXZnZ7/fj9/s7+M6kIxr+/ioH+9X66iip/5iclexRmdhIn4vwobIILx0phy5PdAoLC0lLS2uyLi0tjUAgQHFxMRkZGafcprCwsPHxpEmTWLZsGcOHD+fIkSMsXLiQyZMns337dlJTU1t87UWLFvHAAw80W7969Wri4vTLNRzk5eXZHULUqw5A0LROBZveW83HGqJgO30uwofKIjxUV1e3e98uT3SAZsNVTdNstr6lbU5ed3Jz2dixY8nJyWHIkCE8++yz5Obmtvi68+fPb/JceXk5AwYMYOrUqadMjqR7+P1+8vLymDZtGm632+5wolphaRVseB+AmdfM0PByG+lzET5UFuGlpKSk3ft2eaKTnp7epGYGoKioCJfL1ZhsnGqbr9bynCw+Pp6xY8eya9euU27j9XrxeptPfuZ2u/WPGyZUFmHA4QTA5TDweDw2ByOgz0U4UVmEh46UQZdXUufk5DSr+lu1ahUTJ05sDPxU20yePPmUx/X5fOzYsYOMjIzOD1okiviDIQDcTtXkiEjkaXOiU1lZydatW9m6dStgDR/funUr+fn5gNVc9L3vfa9x+zlz5rB//35yc3PZsWMHTz31FE8++ST33ntv4zZ33303q1at4re//S2ff/45v/3tb3nrrbeYN29e4zb33nsva9asYd++fXz44YfccMMNlJeXM3v27Ha+dREBCAStpmSXU51zRCTytPnMtnHjRs4991zOPfdcAHJzczn33HP55S9/CUBBQUFj0gOQnZ3NypUreeeddzjnnHP49a9/zSOPPNI4tBxg8uTJLF++nKeffppx48bxzDPP8MILLzBp0qTGbQ4ePMgtt9zCiBEj+OY3v4nH4+GDDz5g4MCB7X7zInKiRsflUI2OiESeNvfRmTJlSmNn4pY888wzzdZddtllbN68+bTHveGGG7jhhhtO+fzy5ctbHaOItJ6/vkbHoxodEYlAOrOJRLnGGh310RGRCKRERyTKBUJWjY5bNToiEoF0ZhOJcuqjIyKRTImOSJRrGHWlGh0RiUQ6s4lEuTrNoyMiEUyJjkiUU42OiEQyndlEopxGXYlIJFOiIxLlNOpKRCKZzmwiUU6jrkQkkinREYlyfvXREZEIpjObSJTT1ctFJJIp0RGJcuqjIyKRTGc2kSjnD2jUlYhELiU6IlHOrxodEYlgOrOJRLnGCQM16kpEIpASHZEod6Izsk4HIhJ5dGYTiXINnZHVR0dEIpESHZEopxodEYlkOrOJRLmGCQM1M7KIRCIlOiJRTjU6IhLJdGYTiXKNo67UR0dEIpASHZEopxodEYlkOrOJRDmNuhKRSKZERyTK1dXX6LgcOh2ISOTRmU0kyjX00fGoRkdEIpASHZEo19BHx6U+OiISgXRmE4lygZBGXYlI5FKiIxLlVKMjIpFMZzaRKOfXPDoiEsGU6IhEucZ5dDTqSkQikM5sIlFOMyOLSCRToiMS5dRHR0Qimc5sIlFOo65EJJIp0RGJcuqjIyKRTGc2kSjXOOrKpRodEYk8SnREopxf17oSkQjW5jPb2rVrmTlzJpmZmRiGwcsvv3zGfdasWcOECROIiYlh8ODBPPbYY822efHFFxk1ahRer5dRo0axYsWKZtssXbqU7OxsYmJimDBhAu+++25bwxcBoKYuyK4jFbyzs4jXtxXw0uaDvLAhn1c/PszqnUVszj/OkfJaQvX9VyKZ+uiISCRztXWHqqoqxo8fzw9+8AOuv/76M26/b98+rr76am6//Xaee+453n//fe644w769u3buP/69eu56aab+PWvf811113HihUruPHGG3nvvfeYNGkSAC+88ALz5s1j6dKlXHTRRTz++OPMmDGDzz77jKysrLa+DYkypdV1rN5ZxMYvj7Np/3F2HqnAbEUO43E56N8rlgEpcWT3iWdw33gG90lgcN940pNicDi6PzkIhkwqav1U1wUBMOpDMDBwOgxiPU5i3U6crYgtFDIJ1ic6GnUlIpHIMM3WnO5PsbNhsGLFCmbNmnXKbX7yk5/w6quvsmPHjsZ1c+bM4eOPP2b9+vUA3HTTTZSXl/P66683bvO1r32N3r1787e//Q2ASZMmcd555/Hoo482bjNy5EhmzZrFokWLWnxtn8+Hz+drfFxeXs6AAQP47h//QUx8Yjvf8xmeP+2+p9/5TF9Lp9vdONPeHYr7TPue4X218HQoFKKwoIBxwwcxPD2R8f17MbhP3Bn/Rm1RXuPnrc+LWLntCO/vKWmsuWiQ4HXRv1cMCTEuYtxO3E6D6rogFbUBSqv9HKnwNSYBLYl1OxiYGs/gPnEMql9mpcbRJ8FD7zgP8R7nad+PPxii0hegrMZPabWf0ho/ZQ3Lk9fVWMvSaut+eW2gVUma22kQ67aSnliPkxi3k1i3g1h3/X2PE6/LwUtbDgPw4X2XkJIY27o/rnQJv99PXl4e06ZNw+122x1OVFNZhJeSkhIyMjIoKysjKSmpTfu2uUanrdavX8/06dObrLvqqqt48skn8fv9uN1u1q9fzz333NNsm8WLFwNQV1fHpk2b+OlPf9pkm+nTp7Nu3bpTvvaiRYt44IEHmq1fs6sEh7emne9IOo+DDcX5jY+SPSYjkk3O7mVydrJJfDvOLTUB2H7cYEuJwY5Sg6B5ItHIjLOOn51oMijRJMkdwDBqT3msYAhK66DEZ1BcC0drDIpqoajGoNgHNf4QnxdW8HlhRYv7uwyTWBc4DKuN2GGACfiC1i1gdiypcxrNs52T368/aOIPBiivDZzxWG7D5L01q3GpUics5OXl2R2C1FNZhIfq6up279vliU5hYSFpaWlN1qWlpREIBCguLiYjI+OU2xQWFgJQXFxMMBg87TYtmT9/Prm5uY2PG2p0fnrVUBKSklvc50y/lM/4Q7oVP7XPtEWHYwDOVFHX0Rha43QxBINBPt/5BQlpWew6Ws3HB8soqwvx0VGDj45aScG4/slcOqwPFwzqzZjMJOK9zf9dgyGT3UWVbNx/nLc+P8qH+441jiICGNYvnqvHpHP1mHQG943v+Juq5w+GOHi8hn0l1ewrrmJfsbU8cLyGY1V1+AIhAqZBhf/Mx0rwuugV6yI5zk1yrJvesR6S41wkx7rpFeumV/36XrH1z8e5SYp1426hqck0TXyBEDX+ILX+EDV1wfr7QWpOetx4qwtSWeuH4r3MuEq/XO2mWoTwobIILyUlJe3et8sTHWjeZNPwBXjy+pa2+eq61mxzMq/Xi9frbbb+pvOzSE1NbV3w0iX8fj8rK3dy9dWjcbvd1PqDbPzyOO/uOsqaL47yeWEFWw+UsfVAGWAlPulJMaQnxxDjdmKacLTSx6HjNdT4g02OPbRfAlePSefr4zMZnta+JsozcbtheIaX4Rm9Wny+pi5ISZWP8poAIdPqBxM0TQwg3usi3usiweMizutsMWHpCI8H2vKu/X4/K1fuwe1264QeJlQW4UNlER46UgZdnuikp6c3q3UpKirC5XI1Jhun2qahBqdPnz44nc7TbiM9W4zbycXD+nDxsD7Mv3okBWU1rNl5lLW7jrI1v5TDZbWNt6+K8zgZ378Xlw7vy/TRaQzpm2DDO2gq1uOkvycOetsdiYhIdOvyRCcnJ4fXXnutybpVq1YxceLExgwtJyeHvLy8Jv10Vq1axeTJkwHweDxMmDCBvLw8rrvuusZt8vLyuPbaa7v6LYgNMpJjufmCLG6+wBpRV1zp48CxagrLaqmrn/elT4KXjOQYslLiNGJIRERa1OZEp7Kykt27dzc+3rdvH1u3biUlJYWsrCzmz5/PoUOHWLZsGWCNsFqyZAm5ubncfvvtrF+/nieffLJxNBXA3XffzaWXXspvf/tbrr32Wl555RXeeust3nvvvcZtcnNzufXWW5k4cSI5OTk88cQT5OfnM2fOnI68f+kh+iR46ZPQvBlSRETkdNqc6GzcuJGpU6c2Pm7o7Dt79myeeeYZCgoKyM8/MZImOzublStXcs899/DHP/6RzMxMHnnkkSZz8EyePJnly5fzi1/8gn//939nyJAhvPDCC41z6IA1BL2kpIRf/epXFBQUMGbMGFauXMnAgQPb9cZFREQk8nVoHp2epqysjF69erFv3z5SUlLsDieq+f1+Vq1axfTp09XRz2Yqi/ChsggfKovwcuzYMbKzsyktLSU5ueVR06fSLaOuwkXD8LTs7GybIxEREZG2KikpUaJzOg21OPn5+W3+Q0nnapjT6MCBA22e5VI6l8oifKgswofKIryUlZWRlZXVrtaYqEp0HPVXZ05OTtY/bphISkpSWYQJlUX4UFmED5VFeGn4Hm/TPl0Qh4iIiEhYUKIjIiIiESuqEh2v18v999/f4mUhpHupLMKHyiJ8qCzCh8oivHSkPKJqeLmIiIhEl6iq0REREZHookRHREREIpYSHREREYlYSnREREQkYinRERERkYgVNYnO0qVLyc7OJiYmhgkTJvDuu+/aHVJUWrt2LTNnziQzMxPDMHj55ZftDilqLVq0iPPPP5/ExET69evHrFmz2Llzp91hRaVHH32UcePGNc7Cm5OTw+uvv253WIL1OTEMg3nz5tkdStRZsGABhmE0uaWnp7f5OFGR6LzwwgvMmzePn//852zZsoVLLrmEGTNmkJ+fb3doUaeqqorx48ezZMkSu0OJemvWrGHu3Ll88MEH5OXlEQgEmD59OlVVVXaHFnX69+/Pb37zGzZu3MjGjRu5/PLLufbaa9m+fbvdoUW1DRs28MQTTzBu3Di7Q4lao0ePpqCgoPG2bdu2Nh8jKubRmTRpEueddx6PPvpo47qRI0cya9YsFi1aZGNk0c0wDFasWMGsWbPsDkWAo0eP0q9fP9asWcOll15qdzhRLyUlhYceeojbbrvN7lCiUmVlJeeddx5Lly5l4cKFnHPOOSxevNjusKLKggULePnll9m6dWuHjhPxNTp1dXVs2rSJ6dOnN1k/ffp01q1bZ1NUIuGnrKwMoF1XB5bOEwwGWb58OVVVVeTk5NgdTtSaO3cu11xzDVdeeaXdoUS1Xbt2kZmZSXZ2NjfffDN79+5t8zEi/urlxcXFBINB0tLSmqxPS0ujsLDQpqhEwotpmuTm5nLxxRczZswYu8OJStu2bSMnJ4fa2loSEhJYsWIFo0aNsjusqLR8+XI2b97Mhg0b7A4lqk2aNIlly5YxfPhwjhw5wsKFC5k8eTLbt28nNTW11ceJ+ESngWEYTR6bptlsnUi0uvPOO/nkk09477337A4lao0YMYKtW7dSWlrKiy++yOzZs1mzZo2SnW524MAB7r77blatWkVMTIzd4US1GTNmNN4fO3YsOTk5DBkyhGeffZbc3NxWHyfiE50+ffrgdDqb1d4UFRU1q+URiUZ33XUXr776KmvXrqV///52hxO1PB4PQ4cOBWDixIls2LCBP/zhDzz++OM2RxZdNm3aRFFRERMmTGhcFwwGWbt2LUuWLMHn8+F0Om2MMHrFx8czduxYdu3a1ab9Ir6PjsfjYcKECeTl5TVZn5eXx+TJk22KSsR+pmly55138tJLL/H222+TnZ1td0hyEtM08fl8docRda644gq2bdvG1q1bG28TJ07kO9/5Dlu3blWSYyOfz8eOHTvIyMho034RX6MDkJuby6233srEiRPJycnhiSeeID8/nzlz5tgdWtSprKxk9+7djY/37dvH1q1bSUlJISsry8bIos/cuXN5/vnneeWVV0hMTGys9UxOTiY2Ntbm6KLLz372M2bMmMGAAQOoqKhg+fLlvPPOO7zxxht2hxZ1EhMTm/VTi4+PJzU1Vf3Xutm9997LzJkzycrKoqioiIULF1JeXs7s2bPbdJyoSHRuuukmSkpK+NWvfkVBQQFjxoxh5cqVDBw40O7Qos7GjRuZOnVq4+OGdtbZs2fzzDPP2BRVdGqYbmHKlClN1j/99NN8//vf7/6AotiRI0e49dZbKSgoIDk5mXHjxvHGG28wbdo0u0MTsc3Bgwe55ZZbKC4upm/fvlx44YV88MEHbf7ujop5dERERCQ6RXwfHREREYleSnREREQkYinRERERkYilREdEREQilhIdERERiVhKdERERCRiKdERERGRiKVER0RERCKWEh0RERGJWEp0REREJGIp0REREZGI9f8BcuD7AWhYQJkAAAAASUVORK5CYII=",
|
|
303
|
+
"text/plain": [
|
|
304
|
+
"<Figure size 640x480 with 3 Axes>"
|
|
305
|
+
]
|
|
306
|
+
},
|
|
307
|
+
"metadata": {},
|
|
308
|
+
"output_type": "display_data"
|
|
309
|
+
}
|
|
310
|
+
],
|
|
311
|
+
"source": [
|
|
312
|
+
"model = temp.model()\n",
|
|
313
|
+
"change_line(model, '1', '2', X_pu=X_v/2/3, R_pu=0.0, S_mva=0.02)\n",
|
|
314
|
+
"model.ini(params,'xy_0.json')\n",
|
|
315
|
+
"model.run(1,{})\n",
|
|
316
|
+
"model.run(2,{'p_l_1':0.2})\n",
|
|
317
|
+
"model.run(3,{'v_ref_1':1.01})\n",
|
|
318
|
+
"model.run(4,{'alpha_2':-0.02})\n",
|
|
319
|
+
"model.run(5,{'alpha_2': 0.0})\n",
|
|
320
|
+
"model.post();\n",
|
|
321
|
+
"\n",
|
|
322
|
+
"fig,axes = plt.subplots(nrows=3)\n",
|
|
323
|
+
"\n",
|
|
324
|
+
"axes[0].plot(model.Time,(-2*5*model.get_values('alpha_2')+0.2)*20)\n",
|
|
325
|
+
"axes[0].plot(model.Time,model.get_values('p_1')*20)\n",
|
|
326
|
+
"#axes[0].plot(data[:,0],data[:,1]/1000)\n",
|
|
327
|
+
"\n",
|
|
328
|
+
"axes[1].plot(model.Time,model.get_values('q_1')*20)\n",
|
|
329
|
+
"axes[2].plot(model.Time,model.get_values('V_1'))\n",
|
|
330
|
+
"\n",
|
|
331
|
+
"axes[0].set_ylim(0,10)\n",
|
|
332
|
+
"for ax in axes:\n",
|
|
333
|
+
" ax.grid()\n",
|
|
334
|
+
" ax.set_xlim([0,5])"
|
|
335
|
+
]
|
|
336
|
+
},
|
|
337
|
+
{
|
|
338
|
+
"cell_type": "code",
|
|
339
|
+
"execution_count": 128,
|
|
340
|
+
"metadata": {},
|
|
341
|
+
"outputs": [
|
|
342
|
+
{
|
|
343
|
+
"data": {
|
|
344
|
+
"text/plain": [
|
|
345
|
+
"326.5986323710904"
|
|
346
|
+
]
|
|
347
|
+
},
|
|
348
|
+
"execution_count": 128,
|
|
349
|
+
"metadata": {},
|
|
350
|
+
"output_type": "execute_result"
|
|
351
|
+
}
|
|
352
|
+
],
|
|
353
|
+
"source": [
|
|
354
|
+
"400*np.sqrt(2/3)"
|
|
355
|
+
]
|
|
356
|
+
},
|
|
357
|
+
{
|
|
358
|
+
"cell_type": "code",
|
|
359
|
+
"execution_count": null,
|
|
360
|
+
"metadata": {},
|
|
361
|
+
"outputs": [],
|
|
362
|
+
"source": []
|
|
363
|
+
},
|
|
364
|
+
{
|
|
365
|
+
"cell_type": "code",
|
|
366
|
+
"execution_count": 71,
|
|
367
|
+
"metadata": {},
|
|
368
|
+
"outputs": [
|
|
369
|
+
{
|
|
370
|
+
"data": {
|
|
371
|
+
"text/plain": [
|
|
372
|
+
"[<matplotlib.lines.Line2D at 0x244b0121f90>]"
|
|
373
|
+
]
|
|
374
|
+
},
|
|
375
|
+
"execution_count": 71,
|
|
376
|
+
"metadata": {},
|
|
377
|
+
"output_type": "execute_result"
|
|
378
|
+
},
|
|
379
|
+
{
|
|
380
|
+
"data": {
|
|
381
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpBElEQVR4nO3deXxU1f3/8dfMZLKQDUhCIBAgomyyKEEhIO5GoyK4VLQtYKutVGgF6teK6K9I1djaWmwFKioqbtAWxKW4xIVNUCQQRQyLsoQlISRAEhLIMnN/f9zMQMhCAkluZvJ+Ph7zuDN37r3zmYFk3jnn3HNthmEYiIiIiPg4u9UFiIiIiDQGhRoRERHxCwo1IiIi4hcUakRERMQvKNSIiIiIX1CoEREREb+gUCMiIiJ+QaFGRERE/EKA1QU0J7fbzf79+wkPD8dms1ldjoiIiNSDYRgUFRURFxeH3V57e0yrCjX79+8nPj7e6jJERETkDOzZs4cuXbrU+nyrCjXh4eGA+aFERERYXI2IiIjUR2FhIfHx8d7v8dq0qlDj6XKKiIhQqBEREfExpxs6YulA4Tlz5pCQkEBwcDCJiYmsWrWqXvt98cUXBAQEcMEFFzRtgSIiIuIzLAs1ixYtYvLkyUyfPp2NGzcyYsQIUlJSyMrKqnO/goICxo0bx1VXXdVMlYqIiIgvsBmGYVjxwkOGDGHQoEHMnTvXu65Pnz6MHj2a1NTUWve74447OO+883A4HCxdupSMjIx6v2ZhYSGRkZEUFBSo+0lERMRH1Pf725IxNWVlZaSnp/PQQw9VWZ+cnMyaNWtq3e/ll1/mxx9/5PXXX+fxxx8/7euUlpZSWlrqfVxYWHjmRYuINIHF6XtZmrHP6jL8XlCAnfuv6kn/LpFWlyJNyJJQk5eXh8vlIjY2tsr62NhYcnJyatxn+/btPPTQQ6xatYqAgPqVnZqaymOPPXbW9YqINJW/fLSFA4Wlp99Qzlq7NoE8/ZOBVpchTcjSs59OHcVsGEaNI5tdLhc//elPeeyxx+jZs2e9jz9t2jSmTp3qfew5JUxEpKUorXAD8FBKbzpGBFtcjX9ase0gb2/c5/2sxX9ZEmqio6NxOBzVWmVyc3Ortd4AFBUVsX79ejZu3MikSZMAc3ZgwzAICAjg448/5sorr6y2X1BQEEFBQU3zJkREGoHLbQ5rvKZvLD1iwiyuxj8dLinj7Y37cFkzhFSakSVnPwUGBpKYmEhaWlqV9WlpaQwbNqza9hEREWzatImMjAzvbcKECfTq1YuMjAyGDBnSXKWLiDQqd2WoCbDr0i1NxfPZej5r8V+WdT9NnTqVsWPHMnjwYJKSkpg3bx5ZWVlMmDABMLuO9u3bx4IFC7Db7fTr16/K/h06dCA4OLjaehERX+JpPbDrenRNxl4ZalwKNX7PslAzZswY8vPzmTlzJtnZ2fTr149ly5bRrVs3ALKzs087Z42IiK9zVw7zcKilpsk4KgOjW91Pfs+yeWqsoHlqRKSl6fHwMlxug68evopYDRRuEv9ev4cH//stV/SK4eVfXGx1OXIG6vv9bellEkREWjtPl4i6n5qOp6XG1Wr+hG+9FGpERCxy8sBVdT81HYcGCrcaCjUiIhY5+RRjh1pqmowGCrceCjUiIhY5+UvWrt/GTeZE95NCjb/Tj5GIiEVOPhtH3U9Nx1H5TafuJ/+nUCMiYpEqLTXqfmoydrXUtBoKNSIiFnGfdCkitdQ0HQ0Ubj0UakRELKKBws3DO1BYLTV+T6FGRMQiVQcKK9Q0Fe9AYV2k2+8p1IiIWMQzUFhdT01L3U+th0KNiIhFPC016npqWhoo3Hoo1IiIWMR7iQT9Jm5SaqlpPfSjJCJiEW/3k1pqmpRnnhq11Pg/hRoREYucaKlRqGlK3u4ntdT4PYUaERGLaKBw81D3U+uhUCP+JfsbeOFK2LHC6kpETstzirG6n5qWBgq3Hgo14l/+93vYlw4Lbqo6XatIC6Tup+bhsGuemtZCoUb8h6sC9m048Xjbh9bVIlIPOqW7eZwINUo1/k6hRvzHnq/AcJ14vGu1dbWI1INLY2qahQYKtx4KNeI/9m+o+vjQDmvqEKknzVPTPLwDhZVp/J5+lMR/FO43lx37m8tDP1pXi0g9aJ6a5uFQS02roVAj/qNwn7nsfqm5PLwL3K5aNxexmgYKNw+7Jt9rNRRqxH8UVIaa+IvBEQiuMijYa21NInVwa6Bws9A8Na2HQo34D0/3U9t4aNfdvK8uKGnBNFC4eTg0T02roVAj/sFVAUdzzPsRnaH9Oeb9w7ssK0nkdLzdT2qpaVKe7j3DAEPBxq8p1Ih/OJoDhhvsARAaA2GxlesPWluXSB10mYTmcXL3ngYL+zeFGvEPnq6n8DiwO04KNQesq0nkNDwz3GqgcNM6+fNVF5R/szTUzJkzh4SEBIKDg0lMTGTVqlW1brt69WqGDx9OVFQUISEh9O7dm7///e/NWK20aEXZ5jK8o7kM62AuFWqkBTsxo7DFhfi5k1vCNKmwfwuw6oUXLVrE5MmTmTNnDsOHD+f5558nJSWF77//nq5du1bbPjQ0lEmTJjFgwABCQ0NZvXo19957L6Ghofz617+24B1Ii3LssLls095celtqcq2pR6Qe1P3UPKp0P6mlxq9Z1lLzzDPPcPfdd3PPPffQp08fZs2aRXx8PHPnzq1x+wsvvJA777yT888/n+7du/Pzn/+ca6+9ts7WHWlFPKEmpJ259ISaYoUaabk0ULh5nDxjs8bU+DdLQk1ZWRnp6ekkJydXWZ+cnMyaNWvqdYyNGzeyZs0aLrvsslq3KS0tpbCwsMpN/FS1UOPpfso1T3kQaYHq3VJTnAffLYG8H878xfJ+gM8ehw8fhh3Lz/w4PujklhrNVePfLOl+ysvLw+VyERsbW2V9bGwsOTk5de7bpUsXDh48SEVFBTNmzOCee+6pddvU1FQee+yxRqlZWrjaQk15CZQdhaBwa+oSqYN3TE1doebwLnjhKijJA5sD7ngDeqU07IW+Wwxv/wZcpebjL2dD/5/AqNkQENSwYxkGHD8CzlAICGzYvhZxaKBwq2HpQGHbKU2uhmFUW3eqVatWsX79ev71r38xa9Ys3nrrrVq3nTZtGgUFBd7bnj17GqVuaYFODTWBoRAYZt7XuBppoerV/fTOJDPQgHkV+sX3NOz/9J51sOReM9B0HwEDf2qGo03/gX+Ph4qy+h3n0A74792QGg9/7g5PdIR5V8C6F+DYkfrXYwGbzYbnI1ZLjX+zpKUmOjoah8NRrVUmNze3WuvNqRISEgDo378/Bw4cYMaMGdx55501bhsUFERQUAP/ChHf5Pml6gk1YLbWHDpqngEV1cOSskTqctrup9wtsGuVGUImfW0Gmv0bYMVf4Ia/nv4FKkrhnYngLoc+N8FPXjUHmAz4Cbx1J2z7AP77C/jJK+Bw1nwMw4D18+HjR6G8+KT1LrOW/Rsg7Y+QOB6G/gbaVj/Rw6ylDLK/gay1sG89lBwyL2XSJsqcMLNDH4jtZy6DI07/3hrIYbNRYRhqqfFzloSawMBAEhMTSUtL4+abb/auT0tLY9SoUfU+jmEYlJaWNkWJ4mu8oabtiXWhMeZfl8WagE9aJs88NbWGmg0LzGXP68xgfvUMWHATbHgVLn8IQqPrfoGvX4S8bebPwk3/ODFitseVZjfWWz+FLe/D2xPglnnmHE8nK8yGdyfBD5+Yj7uPMGuI7We2HmW+D+kvw8Et8OUc+Op5OOcySLjM/KPCXQEHt8L+DDPIVByv3wfTtutJASfSDHWlhebP+fEjcLwQSougrAhsdggINm9tosz3GupZem7RhNtLOewO1EBhP2fZKd1Tp05l7NixDB48mKSkJObNm0dWVhYTJkwAzK6jffv2sWCB+UM9e/ZsunbtSu/evQFz3pq//vWv/Pa3v7XqLUhLcmr3E0BI+6rPibQw3ms/1db9tO1Dc3lBZWt0wqXQ6QLIzjADz4iptR+8/Bh88ax5/8pHq/5sAJx7Ndy+ABb9DL77r9nyctM/zfFnhgHf/hs+eNAMEY4gM8wMmXAiGEV2gaETYMi98OOn8MU/YOcK+PEz81aTNlEQPxS6DjFbZxyB5h8dR3bDge/hwGYo2g9Hsszb1mWn+QTrL91h499chrssCWjTaMeVlsWyUDNmzBjy8/OZOXMm2dnZ9OvXj2XLltGtWzcAsrOzycrK8m7vdruZNm0aO3fuJCAggB49evDUU09x7733WvUWpCWpKdS0UaiRls1d10DhI1nmBVltDjPMANhscPGvzC6l9S/D8Purt654pL9idr1GdoWBNXfR0+s6uPUlWHw3bH4bdq6Erklm60r+dnObThfAzc9Dh941H8NmMwPSuVfDwW1mq86er8wB+gBR50Ls+eZxo86F052+XnIIcr83Q87BLeZgf3cFBEWYLbHBbc3uqaCIEwGs4ri5XUm+eaZY8cGTlgehJB972VHuCFjOkXV/h5F/qrsG8VmWhRqA++67j/vuu6/G51555ZUqj3/729+qVUZqVlF6oq+/SktN5f2SQ81fk0g9eAcK1xRqdqwwl50TzS4Yj363wsePQEEWbPsIel9ffd/y47B6lnl/xNS6z1I6f7Q5r9M795ndtVveN9c7Q819h99f+3ibU8X0NG9JNf9er5c27aH7JeatEU2fMZ0neI6w79+AlEd95swtaRhd+0l8n/fMCxsEnfTL3xNqjinUSMvkHShcU+PF7i/M5TmnzMXlDIELx5r3v36h5gNveNW8yGtEF7jgp6cvpFsSTFwHP18M1/0ZbnsZfp8Jlz5Q/0DTwn1sH8EBoy0Bx/JPdOuJ31GoEd/n7XpqW3XqUG+oOdLcFYnUS50tNfvSzWWXi6o/d9HdgM0cu3LqhHzlx2DVM+b9EVPrPw+Nw2l2IQ2dAP1uqdo65AcMewDvuZLMB56Bz+J3FGrE9x0vMJen/hL2jKlR95O0ULUOFD5eCHmVY1riBlXfsV13OK9yRvav/lX1ufSTWmk8LTqCww5r3X3NB55WMPE7CjXi+zwDEgNPmTXYe/aTQo20TLUOFM7OAAxzkG9YTM07J000lxteNQcVg9kqubqylebS32vcyEkcNhtfu3tjYIP8H6Co7tnrxTcp1Ijv84aa0Krrvd1POvtJWqaK2rqf9m80l50vrH3ncy4zz4pylcG7vzUHzP9vqnnGU/tz4IKfN1HVvslut1FIKMeiPK019bvOoPgWhRrxfWWVZz6dGmpO7n7SLKLSAnlbak7tfjqw2Vx27F/3AVKeBmcb8wKVj3cwr/Fks8Pof6mV5hSe1rCj0ReYK7K/sa4YaTIKNeL7ags1npYad/mJ1hyRFsRV22USDnxvLjucX/cBOvQ255nxjCcLCIbb5puT20kVnuB4tF1lS41CjV+ydJ4akUbhCSynXonb2cacCdVVanZB6Urd0sJ4LpNQ5YKWrgrI22re79Dn9AfpfT3c/w3kZkJM7xMtlFKFp4uvqH1lqMn51mzBPd1kgOJT1FIjvq+0ljE1NpvOgJIW7cQFLU9aeehHc5yMMxTadqvfgULaQbdhCjR18LbURPQCe4A5+3DhPourksamUCO+r7buJ9BgYWnRapynJtfT9dS76rxLclY8n3GFPdBs0QLI2WRhRdIU9BMjvq+2s5/gzE/rdrth64fmJF2u8rOrT6QWrpoGCnvH0/S1oCL/5WkNc7uNE5+tJ0CK31CoEd/nbampYcxMSFtz2dDupy/nwFtj4PVb4dOZZ1WeSG3cNQ0UzlWoaQqe4OhyGyfGKuVmWliRNAWFGvF9dbXUeK/UfaT+xys/Dmv+ceLxuhfg6MEzLk+kNt7uJ1sNoSZWoaYxebqfXMbJLTUKNf5GoUZ8X51jas6g+2nrMnMCs4gu5jwhFcdg42tnX6fIKaq11JSVwKGd5n211DQqT0uN222cCIwHt6p72c8o1Ijv87bUhFV/zjNQuCHdT56ZRvuMhEHjzfs/fnbm9YnUwnXqZRIObgEMaBMNYR2sK8wPVWmpiYw3f1+4yyH/R4srk8akUCO+z9NSE1RDqPF2PzXg7KesL81l16HQ48oT60o1gZ80rmrz1HhmElbXU6OrMqbGZjtpXI0GC/sThRrxfbXNUwMN7346XgAHvjPvdx1qXkOnbTfzLzpd2VcaWbV5ajz/92JPc3kEaTBPa5jnM1eo8U8KNeL7vGNqGqH7aX8GYJhBJryj+Rddt+Hmc/vSz7ZSkSqqDRT2ttSc5vII0mDe7qfK1jHvJSg0WNivKNSIbzOMep79VM/up4OV09PH9juxLu4Cc6lrxUgjq3LtJ8M4MRlcx3517CVnwlGZGz0XEVVLjX9SqBHfVn4MqPwlVVdLzfEj5oR6p3Nwi7mM6XliXaeB5lKhRhqZ++SBwoX7zP+n9oATM95Ko3GcPFAYTpxddminedaZ+AWFGvFtJ19929mm+vOeMTWG2/zCOJ28beYyuteJdbH9ABsUZUPRgTOtVKSaKt1POZXjaaJ7QkCQhVX5J/vJA4UBwmLMs8wwTvwxIz5PoUZ8myfUOENrvk5OQOCJFpz6dEF5up9iTgo1QWHmFw2otUYaVZV5ag5Udj3FquupKVQbKAwnzjLTuBq/oVAjvq2u07k96nul7pJDUJxr3o/uWfW5s+2COvkXqUilKtd+8rTUaJBwkzgxUPikn8UzuQaUq1w/zy2YQo34trpmE/bwdEGV5Nd9rMOVM7mGdawekryhJqNh9R3aAfOvg8c7wBu3Q8G+hu0vfs1V+d1ot9tOnM6tQcJNwnFq9xM0bLBw+TF4bzI80RH+eh5s0CzjLZFCjfi2uuao8WgTZS5PN1fNkT3msl236s+dyRlQx47Aa7dA1lpwlcH2j+CN26C0qP7HsNLxAvjgIfM9fLfY6mr8kmegcKC75MTMtpqjpknU2P3kaak5cJpQYxjw/hRIfxncFVB8EN6dBBvfaKJq5Uwp1Ihvq+sSCR5t6tlScyTLXEbGV3+uY+UXTcEeKD7NcTy+eNZs/WnbFW5/DcJizb8IP/1T/fa3ktsNS+6Fr+bCj5/Cf38J6a9YXZXf8bQaRB3ZBBgQHgfhsdYW5adODBQ+aWWHvoANjubUfRLAto/gm7fA5oCfvAJD7zPXf/CHE38MSYugUCO+ra6J9zw8LTWnG1NTUPnLqW3X6s8FR5qzCwPk1KO1puQQfPUv8/51T0Hfm+Dm583HX78IuS38bIustbDtA3AEQvxQc91Hj0Dhfmvr8jOe04tj8r82V3S/xMJq/Jtn1uYqLTVBYSdOCti/oeYd3W749DHzftJEOP9mSH4c4odAWRGseKrpipYGU6gR31bXxHse9R1T42mpaVtDSw1AxwHmMvvb09f17b+hvMTsSuh1vbmuxxXQ+0YwXPD5E6c/xqlKDpkX1tyzDirKGr5/Q3gmgTsvGX6xDDoPNn+Br57VsOO43bDpv/D+VPh0ps4yOYWn+yk6zxNqhltYjX9z1DRQGCBukLncv7HmHbd/bLawBkXCiKnmOrsDkit/hr9ZCId3NX7BckYsDTVz5swhISGB4OBgEhMTWbVqVa3bLlmyhGuuuYaYmBgiIiJISkrio48+asZqpUVq1O6nOlpqADpVhpqceoSaja+by0HjzEsteFz5CGCDzHfrF44AKkrhw4fhrz3htZvhpWvgmT7w5Vxwu+p3jIbKqzy1Pbqn+Qv8ykfMxxtfr//szMeOwKs3wuK7Yf1LsOpvMCcJPnms6er2MS7DIIKjtD1U2frXTS01TaXaPDUenStDzb5aWmo8La6J405M5gkQf5F5wVt3hfl/W1oEy0LNokWLmDx5MtOnT2fjxo2MGDGClJQUsrKyatx+5cqVXHPNNSxbtoz09HSuuOIKRo4cycaNtaRraR3qc/aTd6BwHV/GhnHSmJpaQk1HzxlQpwkjB7eac47YndD/tqrPdegD/W4173/+ZN3HAfOMi9duhi9nmxfVbNfdnDCsJA8+fAheubFhffplxbD1Q1jzT1g72wwp2d9WDxkHKych9DTNn3O5OX9KeXH9xta4KuCtO82LgAaGwZDfQM8UwIDVz8B/f2GGtfooPQrfLIJ3f2ce8+0JZheeH4xlcLkNbnZ8gd1dbn6+UT2sLslv1dpS4wk1e9fV8HOwFXZ8DjY7XPSr6ge97CFzmfEmHN7dyBXLmQiw6oWfeeYZ7r77bu655x4AZs2axUcffcTcuXNJTU2ttv2sWbOqPH7yySd55513eO+997jwwgubo+RaLduUzfFy/eVphQF7D3AusOWwwfcb9ta4TcxBNyOAwkM5fFLLNs6yAkaWmWclLd1lx72n+nZBx6O5ATDyf+DddVtxBdQcpHpuf5N+wIGoi/liSwlQdQr2sA53cQ1LsG37gM8/XcbhdgNqfnOGwUUbHiR+3xeUBYSzftBT5HS8HJu7gu5ZS+i3+WmcWWsomz2MDQMfY39ccs3HASILMum5/SXicj7D4a4eJsoCwjkYM5ScDiM40OESrszJJBj4LL8tRyo/s66d7mTwgekcWz2HD4NHYdgDa3298354mf5ZaygPCGNl0isURPaBWOgSdjmJGY/g+P4dDhw8yJcXzar1c7S5y+mx4w16bZ9HUHlB1Se/eQv4PfntBrKny0j2xl1HWVC76gcxDMKKdxN1aCPtD20k/OgOgo/nYXeX43IEcTy4A8WhXTkaGk9xaFeOBcdyLCSWMmcENsBmuHBUHMNZXoSzvJDAiiKcZYU4Kwor15n/ZyoCQqkIaFO5DMVlD8blCMRtD8Kw2XC4yrC7y7C7yyuXZTjc5Vx1ZA+3B7xn1pp4V9VWPWlUnpaazOxClpz0e8DmjuKGgHACjxfw2fI0jrQ9cUr9wG+foQewP/ZyvtzpgJ2n/l7ozPDoJGLz1rJj6eNkDPzjaeuwucuJy/6U9oe/xeUIIjdmGHlRg/3q3/76/p0IdjoseW1LQk1ZWRnp6ek89NBDVdYnJyezZs2aeh3D7XZTVFRE+/bta92mtLSU0tITv8ALCwvPrODTmPHuZnKL6vlXpzSqvwTs4dwAePf7AuZsqnkAbx9bLh8EQWlhHlP/XfM259t2MTIIDhoRTF68tdbXSwxqR0fbYV59exkbjJ41brM48H9gh3/u78nrtbze35zDudWxCtvyp5ha/ocat7nP8Q63OJdRbjgYWzyZr1a2AzzH60VX2xP8w/kcF5T/yND1U3iz4gr+VDGWYwQDYMNNkv177nEs40pHhve4e41oNrjPw42NKAq5wP4j4RVFdM5Oo3N2WpUaJn1cTEnlazqJZ3VQW2KP57JqyfMscV9aY93dbDl8FPgs2ODhYz/lPx+VnVR3PMPtDzDP+QyxB9fQ7f07uavsQY4QXuUYg2zbeNz5Mn3t5l+/u9yxLHMPYa8RQzQFXOLYRKJtG1GHvyHq8Dec/20qa9192WrEU2S0IdxWQk/bXvrZdxJlq/0U+vDi3ScG6VrgQgAbHAvrSsiAMZbV0Rp4vmQ/3ZLLp1tyqzwX6uxJsiOdrz99m7ku8w/UCIpZG/Q22OD3WUms3VXzz/LFtqv5d9BaOu9awk+3jiCHqFprON+2i384/0kPe7Z3Xe/t81jn7sW08nv40eh8tm+zRbjkvOjWFWry8vJwuVzExlY9dTE2NpacnJx6HeNvf/sbxcXF3H777bVuk5qaymOPPXZWtdbH0HOiOHKsvMlfR6rrlmdACXTqEM2l4TE1btOuAtgP7W1FXHpedI1/EQ0q2QZ5UBgUx6Xdaj4OQE5uTzoe/4rRHQ8SFl59UGeE6zAX7vsBgKJuyVwaEF3jcdaW38Po7C+43PENv4zL5YegqrPIXliyhvvz/g3A6+0nERR+KdUjRAzPGs9xS8Gr3FC4iJ8GfM71gRlsDh6E22anZ+l3xFaYvzzd2PmyzeV8EHEbu53nVvkMbIaLhLLtDDj+NQOOrePcMvPMrN3Ocxjcteqg6eWFtzLmyEtMCf2QvI63VP8sDYOHcv9McGk5m4Mu5ED8bVxa7fO+kqdLO/HAwelcwI98EPYn3mw3ga1B/Ymt2Md1hYsZXvIpAEft4Sxs+ytWhSZj2MxfknuBDCDSdYihxZ8zvPgTupf/wKWOTVzKpmqfUhlOdgb1YntgX3YF9uSII4pym5NAo5T2roPEVuwntnwfHSqyaefKo60rnwBOtLy6sFNsD6fEHkqJPcy82UIptodzzB6KgY1go4QQdwnBRgnB7mMEGmU4K282DMptTioqb+VULm2BVNiclIbGkTTuCQiOqPH/ijSO2wd3IetQMUdLq7eq5xQNhcPpjArbzObYuwG4tnAloUdK2evsjjP+shr+H3vEsOVAf3qXbmJm9Ke83n5ijVv1Pv4Nvz84kyDjOAX2tqxrcxnBRgkXl6zkYvtWlgU/whvtfsPy0Ovr12pjGHSs2EuYuxCwcTCgIwWO2v/Ib06BDuuG69oMo/nne96/fz+dO3dmzZo1JCUledc/8cQTvPbaa2zZUvfprm+99Rb33HMP77zzDldffXWt29XUUhMfH09BQQEREfoF4hdevw1+SINRs+HCn9e8TfkxcxZQgD/shpC21bdZOwc+mgZ9R8Ptr9b+ep89DiufNl9r1Ozqz6e/Cu/9DuIuhF8vr7v2d38LGxZAt+Ew/v0T16468L05GLjsKFx0D9xQj0GIO1bA0vug8JTm8cBwGHC7eSpqfcdrlBwyz/aI7mVe9O9kx47A3883a/vZf+G8a6o+n/4KvHe/eXHR36yB9gm1v05upjmxX1Etp4lf8HO45jEIrTkYVj3WFshaA3nbzX/vwFDztTtdaM7Q25ALRLrdUHHMHEdhs5untftR14DUoGAvzOpvXvj2txsgIg7+Odj8ebrx7zD4l3Xv/+Pn8NpocATBxK+q/7/fuQrevN08I/KcK+AnL58YdFywF96ZCDuWm4973wg3/fPECQ4nMwzY+zV8/ZJ5VtapE4qGx5ln0J1zuXmL7FJ7zaVHzXm0Du0wb8cLzf/vIW3NWdXDY81lWAwEt63+M+B2m2dElhaZ+5YWQWmheetzEzicdX9mDVRYWEhkZORpv78taamJjo7G4XBUa5XJzc2t1npzqkWLFnH33Xfzn//8p85AAxAUFERQkK5269fqM0+NM8T8ki0vMX8J1BRq6pqj5mSnO6176zJz6TmNuy6X/p85AHb3F7D8Sbhiunm14NduNkND9xHmHDf1cc5lcH+G+Ysx+xvAMEPJuVfVPYi6Jm3a1z5fSkhbc+zH2ufM07tPDjWF++HjR837Vz5Sd6ABc9D0b76AlX+FbxeZg5+doWbNl0yGzon1r7lDb/PWGOz2hn9m4tsiu8C5V5tBYe1sCI0xA01EFxh45+n3P+dySLgUdq6E//3eDPyeP1J++BQW/swMyj2ugjveBGdw1df++dvmz9SnM2HL++aZWDf+3ZxSwW6H4jz4bglsfK3q2ZcBwRDe0QwYBXvMPxA2/ce8AUSdZw6EDo0xB0EfP2IOaD70IxytY7LBU9mdlS2JNjPclB83A01t/u/H+v0x0gQsCTWBgYEkJiaSlpbGzTff7F2flpbGqFGjat3vrbfe4pe//CVvvfUWN9xwQ3OUKi2d5werrlAD5hlQBSVmK4RnEr2TeeeoOU2o8VwDKjfTbBFwhpxUS/GJv7bqE2radoUb/mq22Kx82vxFVLDPPMupQ1+4fUHD/tpxOM2QcWrrSWMbep95muvu1ZD5HvQZaf7CXHqf+Vda50QYMqF+x2rTHq57Eq59wvz8nG1qvtq6SFMbMsEMNetfOrHuqv9X9We8NjYbXP83+Ncl5gzcH/wfXD0Dvn/HvLyCq8wMKLe/VjXQeNjtMPx3ZjBafA/kb4e3xphz4wSFVU56WdmpEhBsnkF54c/N+aMCKgfslx4159rZucL8PbQv3TxO/vba6w5pb/4+bH+O+bPodplniR49AEU5cDQXSgvM30m1TYnhCTxB4RAUYd4snLLBsrOfpk6dytixYxk8eDBJSUnMmzePrKwsJkwwfxlOmzaNffv2sWDBAsAMNOPGjePZZ59l6NCh3laekJAQIiMjrXobYrX6nNINZlNvwZ7aZxWub6hp2xXCO0FRNuxdDwkjTjz34+dQcdzcpr5XWh40DspK4OPpJybwOvcauPlfNTc/twSRnWH4/ebcHO/+zmwS37rMPPXV2QZGzTHntmkIm63uK62LNLVzr4JLH4SVfzEfD7/f7Lqtr5iecNM/4O17zSkHvn7xxHO9b4TbXj4RQGoTdwHcuwI+e8JslSktMG9gdmn3vx0G3lHz74agMPP3UcIIs6X02BGzFThvu9kKag8wA0fbrpVBJqHqvDu1KT9u7l9aVHl1csMMVkGVQaamkGYhy0LNmDFjyM/PZ+bMmWRnZ9OvXz+WLVtGt27mxQSzs7OrzFnz/PPPU1FRwcSJE5k48cRArPHjx/PKK680d/nSUtQ31HgvlVDLXxt1XffpZDYbdBtmXuBx95qqocbb9XRDw8ZgDJ1gTr2+bz207WYGopY+huPSB80Qt38D/Husuc5mh1HPNV43kEhzu3I6XPgz83677g3ff+AdZsvOB38w//AJbmu2wAy7Hxz1/LoNDDVbL6+eAfk/mC3CbbtWH992OiFtoXcj9Gg4g+sem9PCWBZqAO677z7uu+++Gp87NagsX7686QsS3+MJNaf7K7+uK3WXFpl9zVD7JRJO5g01q4HK07ErSs2+cIDe9eh6OlV4bOP8AmouzmAYt9T85b3tQ/OX7pX/D86re5ybSIt3JmHmZH1HmQNliw+av3ca2mrpERAIsX3PrpZWyNJQI3JW3O76XSYB6r5Ugmdm2pB2ZnPq6XSvPLl691qziTekLfzwCRwvMLumurWS6/cER5rdZCJSlc0GYR2srqJV0og88V3lJ83UezbdT54zn07X9eQR0xNi+piD57b8z1y38Q1z2e/WM//LTEREzopCjfguT9cTNnOAal28V+quofupvoOET9bvFnO5YQEc2Axb/2fWMWhc/Y8hIiKNSqFGfNfJXU+nG1jbph6hpr4tNWDOXREQDHu+hLnDzHV9bzpxAUgREWl2CjXiu7yhph4TpXlCTU0Dhb0T7zUg1LSNh8tOumZTWCxc3fSX5BARkdppoLD4rvqezg0nxtQU51V/7kgDx9R4XDIFos41T2u+cOzpZ9AVEZEmpVAjvqshoSas8tpPxQfBVVF1zogzaakBs8ur703mTURELKfuJ/Fdnu6n+pyGHRoNNgdgQHHuifXlx09cA6Vtt0YvUUREmo9Cjfiu0gaMqbE7zAu/ARRmn1hfUHlVa2do/aYMFxGRFkuhRnxXQ7qf4ESoKTo51HhO545v+ZcmEBGROinUiO9qyNlPYM72C1VDzZkOEhYRkRZHoUZ8l7elph5jaqDmUHOmg4RFRKTFUagR39XglhpP91POiXVqqRER8RsKNeK7GjqmJiLOXFbpftptLhtyiQQREWmRFGrEd9X3Ct0enlDjaZ0BOLjVXEaf13h1iYiIJTT5nvguT0tNUD1DTfse5vLwLnCVw/GCyssm2CBKoUZExNcp1Ijvasg8NQARnc2reZeXwOHdcLRybE27bhB4mqt8i4hIi6fuJ/FdDR1TY7dDVGVrTd42OLjFvB+tK2uLiPgDhRrxXQ0dUwMQ3dNc5m8/MZ4mRqFGRMQfqPtJfJe3paYBocYzdubgNsj51rzfcUDj1iUiIpZQqBHf1dB5agBizzeX378DZUXm/XMua9y6RETEEup+Et/kdpkDfqFhLTXnXmUOFvYEmo79IaxD49cnIiLNTqFGfJMn0EDDWmoCQ6HntSce90xpvJpERMRS6n4S3+QZT2OzgzOkYfteMgVyt0D34TBiauPXJiIillCoEd9UetKZTzZbw/btNBAmftn4NYmIiKXU/SS+6UwGCYuIiF9TqBHf1NCJ90RExO9ZGmrmzJlDQkICwcHBJCYmsmrVqlq3zc7O5qc//Sm9evXCbrczefLk5itUWp4zmaNGRET8mmWhZtGiRUyePJnp06ezceNGRowYQUpKCllZWTVuX1paSkxMDNOnT2fgwIHNXK20OJ5TshVqRESkkmWh5plnnuHuu+/mnnvuoU+fPsyaNYv4+Hjmzp1b4/bdu3fn2WefZdy4cURGRjZztdLiqPtJREROYUmoKSsrIz09neTk5Crrk5OTWbNmTaO9TmlpKYWFhVVu4icUakRE5BSWhJq8vDxcLhexsbFV1sfGxpKTk9Nor5OamkpkZKT3Fh8f32jHFot5zn4KUveTiIiYLB0obDtlfhHDMKqtOxvTpk2joKDAe9uzZ0+jHVssVnoGV+gWERG/Zsnke9HR0TgcjmqtMrm5udVab85GUFAQQUFBjXY8aUHU/SQiIqewpKUmMDCQxMRE0tLSqqxPS0tj2LBhVpQkvkahRkRETmHZZRKmTp3K2LFjGTx4MElJScybN4+srCwmTJgAmF1H+/btY8GCBd59MjIyADh69CgHDx4kIyODwMBA+vbta8VbECuVqftJRESqsizUjBkzhvz8fGbOnEl2djb9+vVj2bJldOvWDTAn2zt1zpoLL7zQez89PZ0333yTbt26sWvXruYsXVoChRoRETmFzTAMw+oimkthYSGRkZEUFBQQERFhdTlyNl5Khj1fwe2vQd+brK5GRESaUH2/v3XtJ/FNGlMjIiKnUKgR31RaOZFikFrcRETEpFAjvul4ZagJVqgRERGTQo34HsOA0soLWgaFW1uLiIi0GAo14nvKS8BwmffV/SQiIpUUasT3eLqebHYNFBYRES+FGvE93kHC4dCI1woTERHfplAjvsc7nibS2jpERKRFUagR33O8wFzqzCcRETmJQo34Hp35JCIiNVCoEd+jifdERKQGCjXiezTxnoiI1EChRnyPup9ERKQGCjXie9T9JCIiNVCoEd9Tqu4nERGpTqFGfM9xtdSIiEh1CjXie9T9JCIiNVCoEd9TnG8uQ6OsrUNERFoUhRrxPcUHzWVojLV1iIhIi6JQI77FMKAkz7zfJtraWkREpEVRqBHfcvwIuCvM+6EKNSIicoJCjfiW4spWmqBICAiythYREWlRFGrEt3jH06iVRkREqlKoEd/iaalRqBERkVMo1Ihv0ZlPIiJSC4Ua8S1qqRERkVoo1IhvUUuNiIjUwtJQM2fOHBISEggODiYxMZFVq1bVuf2KFStITEwkODiYc845h3/961/NVKm0GPnbzWVEnLV1iIhIi2NZqFm0aBGTJ09m+vTpbNy4kREjRpCSkkJWVlaN2+/cuZPrr7+eESNGsHHjRh5++GF+97vfsXjx4mauXCzjqoA9X5v344dYW4uIiLQ4NsMwDCteeMiQIQwaNIi5c+d61/Xp04fRo0eTmppabfs//OEPvPvuu2RmZnrXTZgwgW+++Ya1a9fW6zULCwuJjIykoKCAiAhdDNHn7NsAL1wBwZHw4C6wq/dURKQ1qO/3d0Az1uRVVlZGeno6Dz30UJX1ycnJrFmzpsZ91q5dS3JycpV11157LS+99BLl5eU4nc5q+5SWllJaWup9XFhY2AjV1+CvveBoTtMcW6qLH6pAIyIi1VjyzZCXl4fL5SI2NrbK+tjYWHJyag4HOTk5NW5fUVFBXl5ejfukpqYSGRnpvcXHxzfOGxAL2aD/bVYXISIiLZAlLTUeNputymPDMKqtO932Na33mDZtGlOnTvU+LiwsbJpgc99aMNyNf1ypzhEIweo6FBGR6iwJNdHR0TgcjmqtMrm5udVaYzw6duxY4/YBAQFERUXVuE9QUBBBQc1wfaA27Zv+NURERKROlnQ/BQYGkpiYSFpaWpX1aWlpDBs2rMZ9kpKSqm3/8ccfM3jw4BrH04iIiEjrYtloy6lTp/Liiy8yf/58MjMzmTJlCllZWUyYMAEwu47GjRvn3X7ChAns3r2bqVOnkpmZyfz583nppZd44IEHrHoLIiIi0oJYNqZmzJgx5OfnM3PmTLKzs+nXrx/Lli2jW7duAGRnZ1eZsyYhIYFly5YxZcoUZs+eTVxcHP/4xz+49dZbrXoLIiIi0oJYNk+NFTRPjYiIiO9p0fPUWMWT35psvhoRERFpdJ7v7dO1w7SqUFNUVASg+WpERER8UFFREZGRkbU+36q6n9xuN/v37yc8PLzO+XAayjP/zZ49e9St1cT0WTcPfc7NQ59z89Fn3Tya6nM2DIOioiLi4uKw1zGjfKtqqbHb7XTp0qXJjh8REaEflmaiz7p56HNuHvqcm48+6+bRFJ9zXS00HrqAjoiIiPgFhRoRERHxCwo1jSAoKIg//vGPzXNJhlZOn3Xz0OfcPPQ5Nx991s3D6s+5VQ0UFhEREf+llhoRERHxCwo1IiIi4hcUakRERMQvKNSIiIiIX1CoaQRz5swhISGB4OBgEhMTWbVqldUl+Z2VK1cycuRI4uLisNlsLF261OqS/E5qaioXXXQR4eHhdOjQgdGjR7N161ary/JLc+fOZcCAAd4JypKSkvjggw+sLsvvpaamYrPZmDx5stWl+J0ZM2Zgs9mq3Dp27NjsdSjUnKVFixYxefJkpk+fzsaNGxkxYgQpKSlkZWVZXZpfKS4uZuDAgTz33HNWl+K3VqxYwcSJE/nyyy9JS0ujoqKC5ORkiouLrS7N73Tp0oWnnnqK9evXs379eq688kpGjRrF5s2brS7Nb3399dfMmzePAQMGWF2K3zr//PPJzs723jZt2tTsNeiU7rM0ZMgQBg0axNy5c73r+vTpw+jRo0lNTbWwMv9ls9l4++23GT16tNWl+LWDBw/SoUMHVqxYwaWXXmp1OX6vffv2PP3009x9991Wl+J3jh49yqBBg5gzZw6PP/44F1xwAbNmzbK6LL8yY8YMli5dSkZGhqV1qKXmLJSVlZGenk5ycnKV9cnJyaxZs8aiqkQaR0FBAWB+2UrTcblcLFy4kOLiYpKSkqwuxy9NnDiRG264gauvvtrqUvza9u3biYuLIyEhgTvuuIMdO3Y0ew2t6oKWjS0vLw+Xy0VsbGyV9bGxseTk5FhUlcjZMwyDqVOncskll9CvXz+ry/FLmzZtIikpiePHjxMWFsbbb79N3759rS7L7yxcuJANGzbw9ddfW12KXxsyZAgLFiygZ8+eHDhwgMcff5xhw4axefNmoqKimq0OhZpGYLPZqjw2DKPaOhFfMmnSJL799ltWr15tdSl+q1evXmRkZHDkyBEWL17M+PHjWbFihYJNI9qzZw/3338/H3/8McHBwVaX49dSUlK89/v3709SUhI9evTg1VdfZerUqc1Wh0LNWYiOjsbhcFRrlcnNza3WeiPiK37729/y7rvvsnLlSrp06WJ1OX4rMDCQc889F4DBgwfz9ddf8+yzz/L8889bXJn/SE9PJzc3l8TERO86l8vFypUree655ygtLcXhcFhYof8KDQ2lf//+bN++vVlfV2NqzkJgYCCJiYmkpaVVWZ+WlsawYcMsqkrkzBiGwaRJk1iyZAmfffYZCQkJVpfUqhiGQWlpqdVl+JWrrrqKTZs2kZGR4b0NHjyYn/3sZ2RkZCjQNKHS0lIyMzPp1KlTs76uWmrO0tSpUxk7diyDBw8mKSmJefPmkZWVxYQJE6wuza8cPXqUH374wft4586dZGRk0L59e7p27WphZf5j4sSJvPnmm7zzzjuEh4d7WyAjIyMJCQmxuDr/8vDDD5OSkkJ8fDxFRUUsXLiQ5cuX8+GHH1pdml8JDw+vNiYsNDSUqKgojRVrZA888AAjR46ka9eu5Obm8vjjj1NYWMj48eObtQ6FmrM0ZswY8vPzmTlzJtnZ2fTr149ly5bRrVs3q0vzK+vXr+eKK67wPvb00Y4fP55XXnnFoqr8i2dagssvv7zK+pdffpm77rqr+QvyYwcOHGDs2LFkZ2cTGRnJgAED+PDDD7nmmmusLk3kjOzdu5c777yTvLw8YmJiGDp0KF9++WWzfxdqnhoRERHxCxpTIyIiIn5BoUZERET8gkKNiIiI+AWFGhEREfELCjUiIiLiFxRqRERExC8o1IiIiIhfUKgRERERv6BQIyIiIn5BoUZERET8Qqu69pPb7Wb//v2Eh4djs9msLkdERETqwTAMioqKiIuLw26vvT2mVYWa/fv3Ex8fb3UZIiIicgb27NlDly5dan2+VYWa8PBwwPxQIiIiLK5GRERE6qOwsJD4+Hjv93htWlWo8XQ5RUREKNSIiIj4mNMNHdFAYREREfELCjUiIiLiFxRqRERExC8o1IjvMgwoOQTlx62uREREWgCFGvFNhgFvjoG/JMA/B5nhRkREWjWFGvFNO5bD9o/M+4X74PMnLS1HRESsp1AjvmnNP81lTG9zmf4KHDtiVTUiItICKNSI7yk/BrtWmffHvA7RvcBdDj98Ym1dIiJiKYUa8T1714OrDMI6QtS50PsGc/2W962tS0RELKVQI75n9xfmsvtwsNmg1/Xm4x8/A7fburpERMRSCjXie7K+NJfdhpnLuAvBGQrHC+DgFuvqEhERSynUiO/J/d5cdrrQXDoCIP4i837WWmtqEhERyynUiG8pzoejB8z7Mb1OrO+aZC4VakREWi2FGvEtBzPNZdtuEBR2Yn38EHO59+vmr0lERFqEAKsLEGmQ3MpQ06Fv1fVxlV1Rh3eZrTmhUfU/Zskh2Pw2uF3Q/zZo075RShURkeallhrxLZ7xNB36VF0f0haizjPv799Q/+MV7od5l8H/psIH/wezL4ZcDTYWEfFFCjXiW/J/MJfR51V/rnOiudyXXr9jGQb895dwJAtCYyAyHooPwhu3wfHCxqlXRESajUKN+JZDu8xl+x7Vn2toqMl8zxxYHBAC93wC966Edt2hYA98MqMRihURkebU4FCzcuVKRo4cSVxcHDabjaVLl552nxUrVpCYmEhwcDDnnHMO//rXv6pts3jxYvr27UtQUBB9+/bl7bffrrbNnDlzSEhIIDg4mMTERFatWtXQ8sWXVZSagQOg/TnVn/eGmg1mK8zprH7GXCZNNMNMm/ZwU+U1pdJfhpzvGlafqxx2rzXH5+zfWL8aRESk0TQ41BQXFzNw4ECee+65em2/c+dOrr/+ekaMGMHGjRt5+OGH+d3vfsfixYu926xdu5YxY8YwduxYvvnmG8aOHcvtt9/OV1995d1m0aJFTJ48menTp7Nx40ZGjBhBSkoKWVlZDX0L4qsO7wYMCAyD0Ojqz3fsB3YnlOSZXUp12bfBDB6OQBj6mxPrEy6F828Gww0fPVz/YLLtI/jnIHj5OvjPXTDvcpgz1LyauIiINAubYZz5n5M2m423336b0aNH17rNH/7wB959910yMzO96yZMmMA333zD2rXmnCJjxoyhsLCQDz74wLvNddddR7t27XjrrbcAGDJkCIMGDWLu3Lnebfr06cPo0aNJTU2tV72FhYVERkZSUFBAREREQ96qtARbP4S3xkDH/jBhdc3bzLvcDCu3vQz9bqn9WO9PgfXzof9P4NYXqz53eBc8d5F5famf/ht6Xlt3XV/NMwcZA4S0N8f75HwH5cXmugFjIOUv5mDm0zm8G7Z/bL6HY4fNdW27QWxf6DbcbKGy2U5/HA9XBRw7BPYA8+ZsY05W2NgO74Zv/w3bP4KCveBwmhcajbsQzr0augwGu6N+x6oogyO7zZY5mx3COpifq1295SKtVX2/v5v8lO61a9eSnJxcZd21117LSy+9RHl5OU6nk7Vr1zJlypRq28yaNQuAsrIy0tPTeeihh6psk5yczJo1a2p97dLSUkpLS72PCwubZvDn+r/dQmB5QZMcW05o78qjC7CuoC3PzV9X4zbjCrtwNRtZ9tH/WLiuS43b2A0X/9i3hAjgLzmD+K6GY93eZjQ3Fv2b/f/+PdM7heOy1fyjMqT4cybmPwnAJ2EjWdj215TZgmkTe5Rbj7zCVUffw/7tIvI3f8a8qAfJDL6g2jFshpuBx9dxbeESzi/dWOdncMTejq3B/dkW1J8fAvtQ5IjEwE6Yu5D2Fbl0qMgmtmJf5XI/URUHCMBV5RhH7eEctUdQZI+kyBHBUXskRfZIjtuDCTTKCHQfJ8goJcfZmbVtruJwQA2tYpXaV+RyW8ErDCv+BDun/H10JAt+SIOVf+GoPZzvghP5Nngwm4MTKXS0xY6b9hW5dKrYS5eyncSX7yC+fBcdy/dUq7kCB0ccUeQHdCDPEcuhgBiO24Jx2ZwAtHEfJdRdRKj7KG28t2KCjWMY2HDhwG1zUGFzUmoLotwWSKkt2LussDlx4CLAKPfenEY5DiqwU/16YgY2DGy4cZhL24n7BnYMm83cygAbhncP4JSlQaDDwTldu+DsngQD74Rg/cElcqaaPNTk5OQQGxtbZV1sbCwVFRXk5eXRqVOnWrfJyckBIC8vD5fLVec2NUlNTeWxxx5rpHdSu25FG4jhcJO/jpiWF8ax8vDBGp+LsXfm6kCIKviOlQdr3maY/TsiAo9wyAhj3p7OVFB9u40kkxT0AXEVe+iyYxGvuZKrbZNk38yvnH8GG7xccS2P5d0BeUVAEQAfMoYLbYP4u3MO3TnAtNz/Y4nrEhZVXMEOoxMxtiNcY0/nZsdqutvNWZJdho31Ri/WuM7nAO0IwEVXWy4D7T9yge1H2roPM6RkJUNKVp7hpwdh7iLC3EV0ZN9pt7358Cu85bqSORWjyKWdd30Mh7k74EPucnxIsK0cgNWu83nHPZxMd1dCKKOXfQ9D7ZmMsH9LpLuIoSXLGVqyvF41FhtBlBCMAxftbUcJwEW0K5doVy69aOBYJ1+Q+TVkvg2rnoExr5+47IeINEizTL5nO6W53NPjdfL6mrY5dV19tjnZtGnTmDp1qvdxYWEh8fHxDSu+HvYM+SO7yo41+nGlOpcjhJ6xl/KMI6jG58OLwuDzf5Ho3M3fbzofw179v/iF37wNu6Gg+3X8ZWBira+VtXMyUZv+xCOhS7n4yl9THhjpfS6yIJNLv5iFs8LF3rhriUx8mmdsNXWvDOSbihSMzU+TsPs/3OJYzS2O6l1nZc4IdnW9lR8TfsqxNnF0A7qd9Pw+INtVSrsj3xGdn050/noiC7cQUFGM3V1BaWA7jgfHUBzaleLQeI6GdqW4TTzFofEcC+4AGNjd5QRUlBBUdpjAsiOVy8r7pYdxuI7hcgThcoRg2BzE5H1J9KGN3BXwMWMDl3OgwyUUt4mnTck+Oh1Yjt2oAOBg1EVsOv8BjrTtRxKQdPL7Aj5zV9DuyCY65q4i9sBq2hVs9j5f4QihuE08BRHnURhxHoURPSmI6Mmx4I7ebjabu5zg0nyCjx2gzbH9tDmWTcixHByu49jdZqAqd4ZT7oykLDCC8oBwyp0RlDvDqAgIw2wxcWF3l2N3l+NwHcfhLjWXlTe7uwzDFoDb7sRtD8Rld1bed4Ln37VKT70bm2G21WC4sXlula+F4a6s32zROXEfqHxsYKO4zM27GXuJ5TCT2q0l9OhueP0WuDsNOvSu9f+miNSsyUNNx44dq7Wm5ObmEhAQQFRUVJ3beFpmoqOjcTgcdW5Tk6CgIIKCav7ya0yDUn7R5K8h9eSOgy/CCSgr4ub4Yog9v+rzrgr45DMAEi79OQk9au6iAmDgZMj+N0F5Wxm5OxV+ssAc15GbCZ9NhIpi6D6CLj9bQBdncN11Xfwi7LsPvnreHDx8NAeCIs2/yPvfTmCfG+kZGErP077BHsCoamtDKm/tqj1zFgwDdq6Ez5/EsedL4nI+q/p8/FC4ZAoxPa/lytOO8+kOjDTvVpRCeQkYBgEh7Yi02Yisa1cAEs7kHfiEtWGZzF2xg/dKbuDzLrNx7v3SHGw+YZU5NklE6q3JQ01SUhLvvfdelXUff/wxgwcPxul0erdJS0urMq7m448/ZtiwYQAEBgaSmJhIWloaN998s3ebtLQ0Ro2q/gteWjG7HeIugF2rYO/66qFm1yooyYc2UdB9RN3HcgSYp3i/eqM5p82Cm8xByhsWQNlRiO0Hd7wBpws0Hp0HwS3Pm/cNo2EDfq1gs8E5l5lnhOV8CztWQHEutIk213suTdFQAUHmTQCYek1Plm85yNYDRfy/oIdIbXO3eY2ztbPhkslWlyfiUxp8OsHRo0fJyMggIyMDME/ZzsjI8J5aPW3aNMaNG+fdfsKECezevZupU6eSmZnJ/Pnzeemll3jggQe829x///18/PHH/PnPf2bLli38+c9/5pNPPmHy5MnebaZOncqLL77I/PnzyczMZMqUKWRlZTFhwoQzfOvit+IvNpe7v6j+3ObK+Y/6jKzfWUBdh8At8yAg2AxEX84xA0234TD+PQg+fRtDjVp6oDmZzQadBsLw30Hy4+YX7ZkGGqkmKMDB0z8ZgMNu463NJWw6v/J34+pn4LhOQBBpEKOBPv/8c3PI/im38ePHG4ZhGOPHjzcuu+yyKvssX77cuPDCC43AwECje/fuxty5c6sd9z//+Y/Rq1cvw+l0Gr179zYWL15cbZvZs2cb3bp1MwIDA41BgwYZK1asaFDtBQUFBmAUFBQ0aD/xMTtWGMYfIwzj6fMMw+0+sb6izDCe6m4+9+PnDTtm7lbD+Pj/GcY7vzWMb/9jGC5Xo5Ys8tQHmUa3P7xvXDTzQ6PiH4PN/6cr/mJ1WSItQn2/v89qnhpfo3lqWomKUniqG1Qcg9+sNed4AdieZl7XqU00/H5r08zXInKGjpe7uPGfq/kh9yhPnLOZn+1/AsI7weRNGlsjrV59v781m5X4n4Ag6GaOx2Lr/06s37DAXPa7VYFGWpxgp4O/3DYAuw0e29GTsqAoKMqGLf87/c4iAijUiL/yzCb8zSJzUG5RDmxdZq4bNK72/UQsNKhrO+6+JIEynLxefoW5ct0L1hYl4kMUasQ/9bnJvPp2/nbzFOoVfwZ3hXkacsd+VlcnUqvfJ/ciITqUeSWX4cIBu1fDge+tLkvEJyjUiH8KjoALf2bef220eZ0ngKsetawkkfrwdEMdsEXxsWuQuTL9FUtrEvEVCjXiv676I7TteuLxxb+G7pdYV49IPV3UvT13DevOW64rATC+WQjlmrVc5HQ0WlL8V3AE/Opzc26awDAYeIfVFYnU2/9d24uU74ewtySaLqV58P27MHCM1WWJtGhqqRH/FhoNF/8KLrjTtya8k1avTWAAT912AYsqLgeg4AsNGBY5HYUaEZEWKqlHFK6BP8dl2IjM/ZqS/RowLFIXhRoRkRZs4qgRrHUMBmDj0n9YXI1Iy6ZQIyLSgoUGBdB+xK8A6H3gfb7avt/iikRaLoUaEZEWru+lt3LE2YEoWxEr/vMcx8pcVpck0iIp1IiItHSOAIJH/BaAW48v4a8famyNSE0UakREfEDwkF9SHhhJD3s2+7/6L+t3HbK6JJEWR6FGRMQXBIXhHHovAPc5lvKH/2RwvFzdUCInU6gREfEVQ+7FcIbS376L/ofT+HvaNqsrEmlRFGpERHxFaDS2S38PwHTnG/xn1TdszDpscVEiLYdCjYiILxk6EaJ7EWMr4KmAefzhPxmUVqgbSgQUakREfIszGG6ei+EIJNmRzq2HX+Afn263uiqRFkGhRkTE13ROxDZqDgD3BvyP8lX/YNPeAouLErGeQo2IiC8a8BO48hEAHg54g/TXHqa0vMLiokSspVAjIuKrRjxAyfCHALir9HU2vjwFDMPiokSso1AjIuKrbDbaXDONzAFmsBm6fwEH/zMZ3G5r6xKxiEKNiIiP63PLNBbGTsVt2Ij5/hUq3r1fLTbSKinUiIj4gWvHTWOGYxIuw0ZAxgJY94LVJYk0uzMKNXPmzCEhIYHg4GASExNZtWpVndvPnj2bPn36EBISQq9evViwYEGV58vLy5k5cyY9evQgODiYgQMH8uGHH1bZZsaMGdhstiq3jh07nkn5IiJ+p11oIJfcOok/VYwFwP3Rw7Av3eKqRJpXg0PNokWLmDx5MtOnT2fjxo2MGDGClJQUsrKyatx+7ty5TJs2jRkzZrB582Yee+wxJk6cyHvvvefd5pFHHuH555/nn//8J99//z0TJkzg5ptvZuPGjVWOdf7555Odne29bdq0qaHli4j4reTzO1LY/5csc12M3V2O+793Q/kxq8sSaTY2w2hYx+uQIUMYNGgQc+fO9a7r06cPo0ePJjU1tdr2w4YNY/jw4Tz99NPedZMnT2b9+vWsXr0agLi4OKZPn87EiRO924wePZqwsDBef/11wGypWbp0KRkZGQ16gycrLCwkMjKSgoICIiIizvg4IiItVUFJOaOfWcab5ZPpZDsEl/0BrnjY6rJEzkp9v78b1FJTVlZGeno6ycnJVdYnJyezZs2aGvcpLS0lODi4yrqQkBDWrVtHeXl5ndt4Qo/H9u3biYuLIyEhgTvuuIMdO3bUWW9paSmFhYVVbiIi/iyyjZNHbxvKzPLKbqhVf4e8HyyuSqR5NCjU5OXl4XK5iI2NrbI+NjaWnJycGve59tprefHFF0lPT8cwDNavX8/8+fMpLy8nLy/Pu80zzzzD9u3bcbvdpKWl8c4775Cdne09zpAhQ1iwYAEfffQRL7zwAjk5OQwbNoz8/Pxa601NTSUyMtJ7i4+Pb8jbFRHxSVf2jiXsgltY4RqA3V2G64M/WF2SSLM4o4HCNputymPDMKqt83j00UdJSUlh6NChOJ1ORo0axV133QWAw+EA4Nlnn+W8886jd+/eBAYGMmnSJH7xi194nwdISUnh1ltvpX///lx99dX873//A+DVV1+ttc5p06ZRUFDgve3Zs+dM3q6IiM95ZOT5PBf8a8oMB44fP4EfPrW6JJEm16BQEx0djcPhqNYqk5ubW631xiMkJIT58+dTUlLCrl27yMrKonv37oSHhxMdHQ1ATEwMS5cupbi4mN27d7NlyxbCwsJISEiotZbQ0FD69+/P9u21X8gtKCiIiIiIKjcRkdYgMsTJpJ9cxwKXOVyg5P2HwK2reYt/a1CoCQwMJDExkbS0tCrr09LSGDZsWJ37Op1OunTpgsPhYOHChdx4443Y7VVfPjg4mM6dO1NRUcHixYsZNWpUrccrLS0lMzOTTp06NeQtiIi0Gpf1jGH/gEkcMUJpc2QbpV/X3rIt4g8a3P00depUXnzxRebPn09mZiZTpkwhKyuLCRMmAGaXz7hx47zbb9u2jddff53t27ezbt067rjjDr777juefPJJ7zZfffUVS5YsYceOHaxatYrrrrsOt9vNgw8+6N3mgQceYMWKFezcuZOvvvqK2267jcLCQsaPH382719ExK9NuWkIrzjHAFCeNhNKiyyuSKTpBDR0hzFjxpCfn8/MmTPJzs6mX79+LFu2jG7dugGQnZ1dZc4al8vF3/72N7Zu3YrT6eSKK65gzZo1dO/e3bvN8ePHeeSRR9ixYwdhYWFcf/31vPbaa7Rt29a7zd69e7nzzjvJy8sjJiaGoUOH8uWXX3pfV0REqgsPdnLRbf/HjjeXcU5FDnvee4L4256yuiyRJtHgeWp8meapEZHW6vVX5/DzndMoxUn5b9YRFnuO1SWJ1FuTzFMjIiK+6eYxv2KDvR9BlPPDWw+efgcRH6RQIyLSCoQGOwm47kncho0LjqSxcU3a6XcS8TEKNSIircSAiy/j26gUABxp0yk8VmZxRSKNS6FGRKQV6fWzP3OcQAYYW3n3zbmn30HEhyjUiIi0IiFRXckf+BsALt39T5Z/r5nWxX8o1IiItDKdb/gDRc5outoP8u3iv1BQUm51SSKNQqFGRKS1CQwl6NoZANxdsYjZiz+yth6RRqJQIyLSCgUO+hlFHYcSaivlhu2P8vGmrNPvJNLCKdSIiLRGdjvhd87nmCOCgfYdZC95hPyjpVZXJXJWFGpERFqryM4E3PwcAOONd/j368/TiiaZFz+kUCMi0oo5+40ir9/dAPwsO5W0L9ZaXJHImVOoERFp5aJv/jP7IwYSYSuh6ycTyM4/ZHVJImdEoUZEpLVzOOnwizc5YmtLb3azbf4EdUOJT1KoERERAtp1oXjk87gMG5cVf8SXi2dZXZJIgynUiIgIAJ0HXcfGcycBMGjTE+z/XuNrxLco1IiIiNegnz5GetAQgmzlOBbfhav4sNUlidSbQo2IiHjZHQ463vUKe4wOxLpy2DN/HLjdVpclUi8KNSIiUkXnTnFkjniOUsNJ9/yVHPzwz1aXJFIvCjUiIlLNNVcl81b0bwFot+5pyvd9a3FFIqenUCMiItXYbDauH/8gnzCEAFzkv/lrcFVYXZZInRRqRESkRh0iQjBS/kKB0YaOxZns/+gZq0sSqZNCjYiI1OqaIRfwfseJALRf9zSluT9YXJFI7RRqRESkTjeM+z++tvUnmDL2vXYvaLZhaaHOKNTMmTOHhIQEgoODSUxMZNWqVXVuP3v2bPr06UNISAi9evViwYIFVZ4vLy9n5syZ9OjRg+DgYAYOHMiHH3541q8rIiJnr21oEBXX/53jhpNzitaz/ZOXrC5JpEYNDjWLFi1i8uTJTJ8+nY0bNzJixAhSUlLIysqqcfu5c+cybdo0ZsyYwebNm3nssceYOHEi7733nnebRx55hOeff55//vOffP/990yYMIGbb76ZjRs3nvHriohI40m66CI+72RezTvmixkcPZRtcUUi1dmMBl61bMiQIQwaNIi5c+d61/Xp04fRo0eTmppabfthw4YxfPhwnn76ae+6yZMns379elavXg1AXFwc06dPZ+LEid5tRo8eTVhYGK+//voZvW5NCgsLiYyMpKCggIiIiIa8bRGRVu9oyTFynh7KucYu0tteS+Lkf1tdkrQS9f3+blBLTVlZGenp6SQnJ1dZn5yczJo1a2rcp7S0lODg4CrrQkJCWLduHeXl5XVu4wk9Z/K6nuMWFhZWuYmIyJkJaxPC8ZS/4zZsJB75iI3Ll1hdkkgVDQo1eXl5uFwuYmNjq6yPjY0lJyenxn2uvfZaXnzxRdLT0zEMg/Xr1zN//nzKy8vJy8vzbvPMM8+wfft23G43aWlpvPPOO2RnZ5/x6wKkpqYSGRnpvcXHxzfk7YqIyCn6XXwl62N/AkDM8oc4fOSItQWJnOSMBgrbbLYqjw3DqLbO49FHHyUlJYWhQ4fidDoZNWoUd911FwAOhwOAZ599lvPOO4/evXsTGBjIpEmT+MUvfuF9/kxeF2DatGkUFBR4b3v27GnoWxURkVMMGPc0ubZounCAr199yOpyRLwaFGqio6NxOBzVWkdyc3OrtaJ4hISEMH/+fEpKSti1axdZWVl0796d8PBwoqOjAYiJiWHp0qUUFxeze/dutmzZQlhYGAkJCWf8ugBBQUFERERUuYmIyNkJDmtL8dXm9aCuPLSIz5d/YnFFIqYGhZrAwEASExNJS0ursj4tLY1hw4bVua/T6aRLly44HA4WLlzIjTfeiN1e9eWDg4Pp3LkzFRUVLF68mFGjRp3164qISONLGH4b26KuIsDmJmb5g2QfLrK6JJGGdz9NnTqVF198kfnz55OZmcmUKVPIyspiwoQJgNnlM27cOO/227Zt4/XXX2f79u2sW7eOO+64g++++44nn3zSu81XX33FkiVL2LFjB6tWreK6667D7Xbz4IMP1vt1RUSkeSWMfY6jtlD68SNr5j+E261J+cRaAQ3dYcyYMeTn5zNz5kyys7Pp168fy5Yto1u3bgBkZ2dXmTvG5XLxt7/9ja1bt+J0OrniiitYs2YN3bt3925z/PhxHnnkEXbs2EFYWBjXX389r732Gm3btq3364qISPNyto3j0DVPE/bxfYwufIMPPriaG2642eqypBVr8Dw1vkzz1IiINL4f5/2MHvvfZ68RQ+k9K+kRH2d1SeJnmmSeGhERkVOdM24OuY6OdLEdZPdr91FW4ba6JGmlFGpEROSs2IIjCfjJi7iwcWXZ53y86DmrS5JWSqFGRETOWvveI9jR5z4ALtv2JJu+y7C2IGmVFGpERKRRnHfbTHaE9CfcdgzHknsoLimxuiRpZRRqRESkcTgCiLnrNQoJo697O+tf/r3VFUkro1AjIiKNJjw2gezLngbgsoNvsvGz/1pckbQmCjUiItKoel3xU9Z3uAWAriuncuhA1mn2EGkcCjUiItLo+t31T3bYuxNFATmvjMdwu6wuSVoBhRoREWl0wW3CcN86nxIjiL7HNrDp3zOtLklaAYUaERFpEueen8i63n8AoG/mP8jZstbiisTfKdSIiEiTGXH7FNYGXUKAzU35f3+Nq+yY1SWJH1OoERGRJuNw2Ok67l/kGZHEV2Tx7WsPWl2S+DGFGhERaVKdO8ez5aLHARiY9Ro7N6RZXJH4K4UaERFpcsNvGMua8Gux2wyC3p/E8eICq0sSP6RQIyIiTc5ms9H7rtnkEE2cO4fvXp1sdUnihxRqRESkWbSPiiH7cnO24cG5S9i8aqm1BYnfUagREZFmc+Hlt7A2ypxtOObTKRQeybO4IvEnCjUiItKsBtw1i722TnTgEFvn/8bqcsSPKNSIiEizCg2PpPiG53AZNi4q/Jh1y16xuiTxEwo1IiLS7HoNvpr0+PEAnLvuEfbv3W1xReIPFGpERMQSg8Y+xc6ABNpTxL7Xfo3L5ba6JPFxCjUiImKJgKAQgn7yAuWGg4tKv2T5v2dZXZL4OIUaERGxTFyvi8js81sALt7yF7Zkbra4IvFlCjUiImKp/j95lB+D+xJuO8ax/97LsdJyq0sSH3VGoWbOnDkkJCQQHBxMYmIiq1atqnP72bNn06dPH0JCQujVqxcLFiyots2sWbPo1asXISEhxMfHM2XKFI4fP+59fsaMGdhstiq3jh07nkn5IiLSgtgcAUT//GWOEcSFrk0sf+X/WV2S+KgGh5pFixYxefJkpk+fzsaNGxkxYgQpKSlkZWXVuP3cuXOZNm0aM2bMYPPmzTz22GNMnDiR9957z7vNG2+8wUMPPcQf//hHMjMzeemll1i0aBHTpk2rcqzzzz+f7Oxs723Tpk0NLV9ERFqgyC692TvEDDNX7X+er1Z/anFF4otshmEYDdlhyJAhDBo0iLlz53rX9enTh9GjR5Oamlpt+2HDhjF8+HCefvpp77rJkyezfv16Vq9eDcCkSZPIzMzk009P/Cf+/e9/z7p167ytQDNmzGDp0qVkZGQ06A2erLCwkMjISAoKCoiIiDjj44iISBMwDDKfHU2fI8vZRRyhv/uCmPbtra5KWoD6fn83qKWmrKyM9PR0kpOTq6xPTk5mzZo1Ne5TWlpKcHBwlXUhISGsW7eO8nKz3/SSSy4hPT2ddevWAbBjxw6WLVvGDTfcUGW/7du3ExcXR0JCAnfccQc7duyos97S0lIKCwur3EREpIWy2Uj45UsctEXRnf18P/8+Gvh3t7RyDQo1eXl5uFwuYmNjq6yPjY0lJyenxn2uvfZaXnzxRdLT0zEMg/Xr1zN//nzKy8vJyzOv+XHHHXfwpz/9iUsuuQSn00mPHj244ooreOihh7zHGTJkCAsWLOCjjz7ihRdeICcnh2HDhpGfn19rvampqURGRnpv8fHxDXm7IiLSzIIjojl24xzcho3Ljn7AyqUvWV2S+JAzGihss9mqPDYMo9o6j0cffZSUlBSGDh2K0+lk1KhR3HXXXQA4HA4Ali9fzhNPPMGcOXPYsGEDS5Ys4f333+dPf/qT9zgpKSnceuut9O/fn6uvvpr//e9/ALz66qu11jlt2jQKCgq8tz179pzJ2xURkWbUNfE6NiX8AoCBGf+PXT9utbgi8RUNCjXR0dE4HI5qrTK5ubnVWm88QkJCmD9/PiUlJezatYusrCy6d+9OeHg40dHRgBl8xo4dyz333EP//v25+eabefLJJ0lNTcXtrnmGydDQUPr378/27dtrrTcoKIiIiIgqNxERafn6/+wpdjh70tZWTOFbd1NWptO85fQaFGoCAwNJTEwkLS2tyvq0tDSGDRtW575Op5MuXbrgcDhYuHAhN954I3a7+fIlJSXe+x4OhwPDMGrtTy0tLSUzM5NOnTo15C2IiIgPsDuDiPz5q5QQxICKTXzxmk7zltNrcPfT1KlTefHFF5k/fz6ZmZlMmTKFrKwsJkyYAJhdPuPGjfNuv23bNl5//XW2b9/OunXruOOOO/juu+948sknvduMHDmSuXPnsnDhQnbu3ElaWhqPPvooN910k7eL6oEHHmDFihXs3LmTr776ittuu43CwkLGjx9/tp+BiIi0QFHd+vLj4D8CcEnW83z71WcWVyQtXUBDdxgzZgz5+fnMnDmT7Oxs+vXrx7Jly+jWrRsA2dnZVeascblc/O1vf2Pr1q04nU6uuOIK1qxZQ/fu3b3bPPLII9hsNh555BH27dtHTEwMI0eO5IknnvBus3fvXu68807y8vKIiYlh6NChfPnll97XFRER/9P/hvv4dnsaAwo+p92H91HQay2RbdtZXZa0UA2ep8aXaZ4aERHfU3wkj6PPDiHWyGNtxHUMnbKw1pNTxD81yTw1IiIizS20bTSFKXNwGTaSCj9k3fs6zVtqplAjIiIt3nkXX0t6118C0Gf9o+zfvc3iiqQlUqgRERGfMGhsKtucvYiwlXDk9V9QUa7TvKUqhRoREfEJAYFBhN35CsVGMH3Lv+Pr1x+xuiRpYRRqRETEZ8Sd05fvLzRP875o1zy2rNfVvOUEhRoREfEpg2+awPrwqwiwuYn4328oKjhkdUnSQijUiIiIT7HZ7Zx39wvst3UgzjjAlvn3Wl2StBAKNSIi4nMi20ZRcN1sXIaNiwo+Zv17z1tdUqtjGAaHD+WxPWMV6cte4stXH2bdP36O21XzNRubQ4NnFBYREWkJ+gxJZu1395C05wV6rf8j+/tdRlxCb6vL8itl5S6yc/aRv2crJTnbcef/SGDBLiKP7SG2Yj/tbUWcOr/zwQNZxMR1t6JchRoREfFdF417ki1/+YLe5d+z78276PDgSgKcgVaX5TtcFRTl7yN3748U5OzkeN5ujIJ9OIuziSjNIc6dTTdbCTVekKhyUud82nLQGUdhm65URHajd4CzOd9BFQo1IiLiswKcgUT87BWKXr6M3uWZrF0wnaS7n7a6rBbFcLvI2/cDh3dspGzftwTkbyOoeD/hZQdo6z5EOG7Ca9u5MrgctEWTH9SZkrBuuNsmEBTbg8jOvejQtTdRYW2Jaq43cxoKNSIi4tPiuvdi/eDHGJz+IBdnvUDmV9fQZ0iy1WU1q7IKN/sOFZG9fw9H927GfWALwUe2EV3yI90rdhFjO0ZMLfuWGw4O2tpzxNmBYyEdcYd3xtmuC6EdutO+Sy/ad+lJTGCbWvdvSRRqRETE5w0eeS9f//AJFxV8TNsP7qOg11dEtm0p7QdnyTDg4BaO7fyKogM7KT20B1dRLsaxAgLKCgl0FRHqLibBdpyEmva3QakRwG57PAdCelAU2RNH+wTCO3QlKi6Bzl26ExcSRFxzv68moKt0i4iIXzhaeIiCvw+ls3GA9eFXkjhlMTa775zkaxgGB4tK2X2ohNw9PxCwayVRB9dyztF02rsP1+sYLuzkOTtxJLQHZe3OI6BjXyK6X0iHhH44A4Oa+B00nfp+f6ulRkRE/EJYRHv23TCXivduY3DRZ6x7919cPPo+a4s6Xgi718DBLVBaiIGNAntbcitC2VsaxJ7iALIKXRQfySOoaDd93D9wsX0LF9lzqhzmmBHIBvd55ATEURoSiz2iI6ERUUS270BUdAwdO8TSPioGR3AksY4AYi16u1ZTS42IiPiVL195iKG75nLUCOHIuE/p0uP8Zn19t9sgd+e3OFb9lajd/8NuuBp8DBd29rXpw8GYJMq7jSD83GF07dCO8GDrziyyUn2/vxVqRETEr7gqKtj2l8voU/YdWwN6cc6Dqxre9bJ7DXzxLGStBVcFdOwP/W6F/rdBm/a43Ab7jxxjd34JO/OL2Z1XzK78Yipyt3FL0RvcaFuD3WZ+ve50x5JhnMsRIwwHbqLthXRyFtPecZxw2zGCKcMd3A57ZBxB8YNwdL0Yug2HYH1PeSjU1EChRkSkdTiQtZ2Q+ZcSQQlrOv+CYb+aVf+dl/8Zlj9Z41NltkA+DricuSXXsNnVuXKtQaJtG+MC0rjRvhZHZZhZHTCET2PuwhZ3AQnRbegWFUpCdCidIoMJcPjOWJ+WQKGmBgo1IiKtx4YP5jPoqym4DBuZ175Fv2Ep1bbxtLjszCtmd34xMZtf5rq9swBY5L6CBeVXc5xALrN/y62OlZxv3+3dN8voQEFANHEcJMp10Lv+WMK1BF79MI7OFzT1W2w1FGpqoFAjItK6rJ91B4OPfEA2UWxIeZ98dxt25ZWwK9/sLtpzqIRyl/k1eJP9C/4ROBuAp8tvZ7ZrNIEOO12j2tA9qg3d27fhIsdWErMXErX3E2wnj5UJCDG7py7+FcRdYME79W8KNTVQqBERaV2KCw9z+O9JdDGy+cg1mHvLp+CdJrdSoMPOLZFbeLzkTwTgYku3n5I3fCbdY0LpFBmCw26rfuBjRyA7A44dhtAY6HQBBIU1wztqnRRqaqBQIyLS+uz8dhVdlozGSQX/bfcrtp77S+/4lm5RbehUtBnHa6OgvBj63Qa3vAA+NL9Na6B5akRERICEASOg7K/w/mRuO/IS9LgCet9gPrlvA7x1uxloelwFo+cq0PiwM/qXmzNnDgkJCQQHB5OYmMiqVavq3H727Nn06dOHkJAQevXqxYIFC6ptM2vWLHr16kVISAjx8fFMmTKF48ePn9XrioiIAJB4F1z4czDcsGgsvHc/fPAQvJwCxw5B58Fw+wII0BW+fZrRQAsXLjScTqfxwgsvGN9//71x//33G6Ghocbu3btr3H7OnDlGeHi4sXDhQuPHH3803nrrLSMsLMx49913vdu8/vrrRlBQkPHGG28YO3fuND766COjU6dOxuTJk8/4dWtSUFBgAEZBQUFD37aIiPi6inLDWHqfYfwxourttVsN43ih1dVJHer7/d3gMTVDhgxh0KBBzJ0717uuT58+jB49mtTU1GrbDxs2jOHDh/P00ycuBT958mTWr1/P6tWrAZg0aRKZmZl8+umn3m1+//vfs27dOm9rTENftyYaUyMiIvz4GXz/LrgroOe10PtGsNUwGFhajPp+fzeo+6msrIz09HSSk6te0j05OZk1a9bUuE9paSnBwcFV1oWEhLBu3TrKy8sBuOSSS0hPT2fdunUA7Nixg2XLlnHDDTec8euKiIjUqMeVMHIWjHoO+oxUoPEjDRoonJeXh8vlIja26qWyYmNjycnJqXGfa6+9lhdffJHRo0czaNAg0tPTmT9/PuXl5eTl5dGpUyfuuOMODh48yCWXXIJhGFRUVPCb3/yGhx566IxfF8xAVVpa6n1cWFjYkLcrIiIiPuSMBgrbTkm1hmFUW+fx6KOPkpKSwtChQ3E6nYwaNYq77roLAIfDAcDy5ct54oknmDNnDhs2bGDJkiW8//77/OlPfzrj1wVITU0lMjLSe4uPj2/oWxUREREf0aBQEx0djcPhqNY6kpubW60VxSMkJIT58+dTUlLCrl27yMrKonv37oSHhxMdHQ2YwWfs2LHcc8899O/fn5tvvpknn3yS1NRU3G73Gb0uwLRp0ygoKPDe9uzZ05C3KyIiIj6kQaEmMDCQxMRE0tLSqqxPS0tj2LBhde7rdDrp0qULDoeDhQsXcuONN2KvnAugpKTEe9/D4XBgGAaGYZzx6wYFBREREVHlJiIiIv6pwZPvTZ06lbFjxzJ48GCSkpKYN28eWVlZTJgwATBbR/bt2+edi2bbtm2sW7eOIUOGcPjwYZ555hm+++47Xn31Ve8xR44cyTPPPMOFF17IkCFD+OGHH3j00Ue56aabvF1Up3vd+vCc6KWxNSIiIr7D87192hO2z+R88dmzZxvdunUzAgMDjUGDBhkrVqzwPjd+/Hjjsssu8z7+/vvvjQsuuMAICQkxIiIijFGjRhlbtmypcrzy8nJjxowZRo8ePYzg4GAjPj7euO+++4zDhw/X+3XrY8+ePQagm2666aabbrr54G3Pnj11fs+3qms/ud1u9u/fT3h4eJ0DjBuqsLCQ+Ph49uzZoy6uJqbPunnoc24e+pybjz7r5tFUn7NhGBQVFREXF1dtuMrJWtW1n+x2O126dGmy42vcTvPRZ9089Dk3D33OzUefdfNois85MjLytNvoql0iIiLiFxRqRERExC8o1DSCoKAg/vjHPxIUFGR1KX5Pn3Xz0OfcPPQ5Nx991s3D6s+5VQ0UFhEREf+llhoRERHxCwo1IiIi4hcUakRERMQvKNSIiIiIX1CoaQRz5swhISGB4OBgEhMTWbVqldUl+Z2VK1cycuRI4uLisNlsLF261OqS/E5qaioXXXQR4eHhdOjQgdGjR7N161ary/JLc+fOZcCAAd4JypKSkvjggw+sLsvvpaamYrPZmDx5stWl+J0ZM2Zgs9mq3Dp27NjsdSjUnKVFixYxefJkpk+fzsaNGxkxYgQpKSlkZWVZXZpfKS4uZuDAgTz33HNWl+K3VqxYwcSJE/nyyy9JS0ujoqKC5ORkiouLrS7N73Tp0oWnnnqK9evXs379eq688kpGjRrF5s2brS7Nb3399dfMmzePAQMGWF2K3zr//PPJzs723jZt2tTsNeiU7rM0ZMgQBg0axNy5c73r+vTpw+jRo0lNTbWwMv9ls9l4++23GT16tNWl+LWDBw/SoUMHVqxYwaWXXmp1OX6vffv2PP3009x9991Wl+J3jh49yqBBg5gzZw6PP/44F1xwAbNmzbK6LL8yY8YMli5dSkZGhqV1qKXmLJSVlZGenk5ycnKV9cnJyaxZs8aiqkQaR0FBAWB+2UrTcblcLFy4kOLiYpKSkqwuxy9NnDiRG264gauvvtrqUvza9u3biYuLIyEhgTvuuIMdO3Y0ew2t6oKWjS0vLw+Xy0VsbGyV9bGxseTk5FhUlcjZMwyDqVOncskll9CvXz+ry/FLmzZtIikpiePHjxMWFsbbb79N3759rS7L7yxcuJANGzbw9ddfW12KXxsyZAgLFiygZ8+eHDhwgMcff5xhw4axefNmoqKimq0OhZpGYLPZqjw2DKPaOhFfMmnSJL799ltWr15tdSl+q1evXmRkZHDkyBEWL17M+PHjWbFihYJNI9qzZw/3338/H3/8McHBwVaX49dSUlK89/v3709SUhI9evTg1VdfZerUqc1Wh0LNWYiOjsbhcFRrlcnNza3WeiPiK37729/y7rvvsnLlSrp06WJ1OX4rMDCQc889F4DBgwfz9ddf8+yzz/L8889bXJn/SE9PJzc3l8TERO86l8vFypUree655ygtLcXhcFhYof8KDQ2lf//+bN++vVlfV2NqzkJgYCCJiYmkpaVVWZ+WlsawYcMsqkrkzBiGwaRJk1iyZAmfffYZCQkJVpfUqhiGQWlpqdVl+JWrrrqKTZs2kZGR4b0NHjyYn/3sZ2RkZCjQNKHS0lIyMzPp1KlTs76uWmrO0tSpUxk7diyDBw8mKSmJefPmkZWVxYQJE6wuza8cPXqUH374wft4586dZGRk0L59e7p27WphZf5j4sSJvPnmm7zzzjuEh4d7WyAjIyMJCQmxuDr/8vDDD5OSkkJ8fDxFRUUsXLiQ5cuX8+GHH1pdml8JDw+vNiYsNDSUqKgojRVrZA888AAjR46ka9eu5Obm8vjjj1NYWMj48eObtQ6FmrM0ZswY8vPzmTlzJtnZ2fTr149ly5bRrVs3q0vzK+vXr+eKK67wPvb00Y4fP55XXnnFoqr8i2dagssvv7zK+pdffpm77rqr+QvyYwcOHGDs2LFkZ2cTGRnJgAED+PDDD7nmmmusLk3kjOzdu5c777yTvLw8YmJiGDp0KF9++WWzfxdqnhoRERHxCxpTIyIiIn5BoUZERET8gkKNiIiI+AWFGhEREfELCjUiIiLiFxRqRERExC8o1IiIiIhfUKgRERERv6BQIyIiIn5BoUZERET8gkKNiIiI+AWFGhEREfEL/x8xDKDNvksIUQAAAABJRU5ErkJggg==",
|
|
382
|
+
"text/plain": [
|
|
383
|
+
"<Figure size 640x480 with 2 Axes>"
|
|
384
|
+
]
|
|
385
|
+
},
|
|
386
|
+
"metadata": {},
|
|
387
|
+
"output_type": "display_data"
|
|
388
|
+
}
|
|
389
|
+
],
|
|
390
|
+
"source": [
|
|
391
|
+
"fig,axes = plt.subplots(nrows=2)\n",
|
|
392
|
+
"\n",
|
|
393
|
+
"axes[0].plot(model.Time,-2*5*model.get_values('alpha_2')+0.2)\n",
|
|
394
|
+
"axes[0].plot(model.Time,model.get_values('p_1'))\n",
|
|
395
|
+
"axes[1].plot(model.Time,model.get_values('omega_coi'))\n",
|
|
396
|
+
"axes[1].plot(model.Time,model.get_values('omega_v_1'))"
|
|
397
|
+
]
|
|
398
|
+
},
|
|
399
|
+
{
|
|
400
|
+
"cell_type": "code",
|
|
401
|
+
"execution_count": null,
|
|
402
|
+
"metadata": {},
|
|
403
|
+
"outputs": [],
|
|
404
|
+
"source": []
|
|
405
|
+
}
|
|
406
|
+
],
|
|
407
|
+
"metadata": {
|
|
408
|
+
"kernelspec": {
|
|
409
|
+
"display_name": "base",
|
|
410
|
+
"language": "python",
|
|
411
|
+
"name": "python3"
|
|
412
|
+
},
|
|
413
|
+
"language_info": {
|
|
414
|
+
"codemirror_mode": {
|
|
415
|
+
"name": "ipython",
|
|
416
|
+
"version": 3
|
|
417
|
+
},
|
|
418
|
+
"file_extension": ".py",
|
|
419
|
+
"mimetype": "text/x-python",
|
|
420
|
+
"name": "python",
|
|
421
|
+
"nbconvert_exporter": "python",
|
|
422
|
+
"pygments_lexer": "ipython3",
|
|
423
|
+
"version": "3.11.7"
|
|
424
|
+
}
|
|
425
|
+
},
|
|
426
|
+
"nbformat": 4,
|
|
427
|
+
"nbformat_minor": 2
|
|
428
|
+
}
|