pycoze 0.1.79__py3-none-any.whl → 0.1.81__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pycoze/bot/agent/agent.py +50 -72
- pycoze/bot/agent/agent_types/__init__.py +1 -2
- pycoze/bot/agent/assistant.py +34 -35
- pycoze/bot/bot.py +12 -5
- {pycoze-0.1.79.dist-info → pycoze-0.1.81.dist-info}/METADATA +1 -1
- {pycoze-0.1.79.dist-info → pycoze-0.1.81.dist-info}/RECORD +9 -11
- pycoze/bot/agent/agent_types/react_agent.py +0 -170
- pycoze/bot/agent/agent_types/react_prompt.py +0 -91
- {pycoze-0.1.79.dist-info → pycoze-0.1.81.dist-info}/LICENSE +0 -0
- {pycoze-0.1.79.dist-info → pycoze-0.1.81.dist-info}/WHEEL +0 -0
- {pycoze-0.1.79.dist-info → pycoze-0.1.81.dist-info}/top_level.txt +0 -0
pycoze/bot/agent/agent.py
CHANGED
@@ -13,78 +13,56 @@ from langchain_core.agents import AgentFinish
|
|
13
13
|
|
14
14
|
|
15
15
|
async def run_agent(agent, inputs: list):
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
if
|
22
|
-
if
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
if
|
57
|
-
msg
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
exist_ids.add(t["id"])
|
65
|
-
tool = t["function"]["name"]
|
66
|
-
info("assistant", f"\n[调用工具:{tool}]\n\n")
|
16
|
+
exist_ids = set()
|
17
|
+
content_list = []
|
18
|
+
async for event in agent.astream_events(inputs, version="v2"):
|
19
|
+
kind = event["event"]
|
20
|
+
if kind == "on_chain_end":
|
21
|
+
if "data" in event:
|
22
|
+
if (
|
23
|
+
"output" in event["data"]
|
24
|
+
and event["data"]["output"] == "end"
|
25
|
+
and "input" in event["data"]
|
26
|
+
and isinstance(event["data"]["input"], list)
|
27
|
+
):
|
28
|
+
input_list = event["data"]["input"]
|
29
|
+
for msg in input_list:
|
30
|
+
if isinstance(msg, HumanMessage) or isinstance(
|
31
|
+
msg, SystemMessage
|
32
|
+
):
|
33
|
+
content_list = []
|
34
|
+
if isinstance(msg, AIMessage) and not isinstance(
|
35
|
+
msg, AIMessageChunk
|
36
|
+
):
|
37
|
+
content = msg.content
|
38
|
+
if content:
|
39
|
+
content_list.append(content)
|
40
|
+
elif kind == "on_chat_model_stream":
|
41
|
+
content = event["data"]["chunk"].content
|
42
|
+
if content:
|
43
|
+
info("assistant", content)
|
44
|
+
elif kind == "on_chain_start":
|
45
|
+
data = event["data"]
|
46
|
+
if "input" in data:
|
47
|
+
input_list = (
|
48
|
+
data["input"]
|
49
|
+
if isinstance(data["input"], list)
|
50
|
+
else [data["input"]]
|
51
|
+
)
|
52
|
+
if len(input_list) == 0:
|
53
|
+
continue
|
54
|
+
msg = input_list[-1]
|
55
|
+
if isinstance(msg, AIMessage) and not isinstance(msg, AIMessageChunk):
|
56
|
+
if "tool_calls" in msg.additional_kwargs:
|
57
|
+
tool_calls = msg.additional_kwargs["tool_calls"]
|
58
|
+
for t in tool_calls:
|
59
|
+
if t["id"] in exist_ids:
|
60
|
+
continue
|
61
|
+
exist_ids.add(t["id"])
|
62
|
+
tool = t["function"]["name"]
|
63
|
+
info("assistant", f"\n[调用工具:{tool}]\n\n")
|
67
64
|
|
68
|
-
|
69
|
-
else:
|
70
|
-
assert agent.agent_execution_mode == "ReAct"
|
71
|
-
inputs_msg = {"input": inputs[-1].content, "chat_history": inputs[:-1]}
|
72
|
-
use_tools = []
|
73
|
-
async for event in agent.astream_events(inputs_msg, version="v2"):
|
74
|
-
kind = event["event"]
|
75
|
-
result = None
|
76
|
-
if kind == "on_chain_end":
|
77
|
-
if "data" in event:
|
78
|
-
if "output" in event["data"]:
|
79
|
-
output = event["data"]["output"]
|
80
|
-
if "agent_outcome" in output and "input" in output:
|
81
|
-
outcome = output["agent_outcome"]
|
82
|
-
if isinstance(outcome, AgentFinish):
|
83
|
-
result = outcome.return_values["output"]
|
84
|
-
elif kind == "on_tool_start":
|
85
|
-
use_tools.append(event["name"])
|
86
|
-
info("assistant", f"\n[调用工具:{use_tools}]\n\n")
|
87
|
-
return result
|
65
|
+
return "\n".join(content_list)
|
88
66
|
|
89
67
|
|
90
68
|
if __name__ == "__main__":
|
@@ -101,7 +79,7 @@ if __name__ == "__main__":
|
|
101
79
|
)
|
102
80
|
python_tool = PythonREPLTool()
|
103
81
|
agent = Runnable(
|
104
|
-
agent_execution_mode="FuncCall",
|
82
|
+
agent_execution_mode="FuncCall",
|
105
83
|
tools=[python_tool],
|
106
84
|
llm=chat,
|
107
85
|
assistant_message="请以女友的口吻回答,输出不小于100字,可以随便说点其他的",
|
pycoze/bot/agent/assistant.py
CHANGED
@@ -1,35 +1,34 @@
|
|
1
|
-
from typing import Sequence
|
2
|
-
from langchain.tools import BaseTool
|
3
|
-
from langchain_core.language_models.base import LanguageModelLike
|
4
|
-
from langchain_core.runnables import RunnableBinding
|
5
|
-
from .agent_types import create_openai_func_call_agent_executor
|
6
|
-
|
7
|
-
|
8
|
-
class Runnable(RunnableBinding):
|
9
|
-
agent_execution_mode: str
|
10
|
-
tools: Sequence[BaseTool]
|
11
|
-
llm: LanguageModelLike
|
12
|
-
assistant_message: str
|
13
|
-
|
14
|
-
def __init__(
|
15
|
-
self,
|
16
|
-
*,
|
17
|
-
agent_execution_mode: str,
|
18
|
-
tools: Sequence[BaseTool],
|
19
|
-
llm: LanguageModelLike,
|
20
|
-
assistant_message: str,
|
21
|
-
) -> None:
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
)
|
1
|
+
from typing import Sequence
|
2
|
+
from langchain.tools import BaseTool
|
3
|
+
from langchain_core.language_models.base import LanguageModelLike
|
4
|
+
from langchain_core.runnables import RunnableBinding
|
5
|
+
from .agent_types import create_openai_func_call_agent_executor
|
6
|
+
|
7
|
+
|
8
|
+
class Runnable(RunnableBinding):
|
9
|
+
agent_execution_mode: str
|
10
|
+
tools: Sequence[BaseTool]
|
11
|
+
llm: LanguageModelLike
|
12
|
+
assistant_message: str
|
13
|
+
|
14
|
+
def __init__(
|
15
|
+
self,
|
16
|
+
*,
|
17
|
+
agent_execution_mode: str,
|
18
|
+
tools: Sequence[BaseTool],
|
19
|
+
llm: LanguageModelLike,
|
20
|
+
assistant_message: str,
|
21
|
+
) -> None:
|
22
|
+
|
23
|
+
agent_executor = create_openai_func_call_agent_executor(
|
24
|
+
tools, llm, assistant_message
|
25
|
+
)
|
26
|
+
agent_executor = agent_executor.with_config({"recursion_limit": 50})
|
27
|
+
super().__init__(
|
28
|
+
tools=tools,
|
29
|
+
llm=llm,
|
30
|
+
agent_execution_mode=agent_execution_mode,
|
31
|
+
assistant_message=assistant_message,
|
32
|
+
bound=agent_executor,
|
33
|
+
return_intermediate_steps=True,
|
34
|
+
)
|
pycoze/bot/bot.py
CHANGED
@@ -5,6 +5,7 @@ import asyncio
|
|
5
5
|
from langchain_core.messages import HumanMessage
|
6
6
|
from pycoze import utils
|
7
7
|
from pycoze.access.tool_for_bot import import_tools
|
8
|
+
from langchain_core.utils.function_calling import convert_to_openai_tool
|
8
9
|
|
9
10
|
params = utils.arg.read_params_file()
|
10
11
|
llm_file = params["appPath"] + "/JsonStorage/llm.json"
|
@@ -36,7 +37,7 @@ def agent_chat(bot_setting_file, history):
|
|
36
37
|
model=cfg["model"],
|
37
38
|
temperature=(
|
38
39
|
role_setting["temperature"] * 2
|
39
|
-
if cfg["model"].startswith("deepseek")
|
40
|
+
if cfg["model"].startswith("deepseek") or cfg["model"].startswith("yi-")
|
40
41
|
else role_setting["temperature"]
|
41
42
|
),
|
42
43
|
stop_sequences=[
|
@@ -45,17 +46,23 @@ def agent_chat(bot_setting_file, history):
|
|
45
46
|
], # 停用deepseek的工具调用标记,不然会虚构工具调用过程和结果
|
46
47
|
)
|
47
48
|
prompt = role_setting["prompt"]
|
48
|
-
if
|
49
|
+
if (
|
50
|
+
cfg["model"].startswith("deepseek")
|
51
|
+
or cfg["model"].startswith("yi-")
|
52
|
+
and len(tools) > 0
|
53
|
+
):
|
49
54
|
prompt += """
|
50
55
|
如果需要调用工具,请使用以正确的json格式进行结尾(务必保证json格式正确,不要出现反斜杠未转义等问题):
|
51
56
|
```json
|
52
57
|
{"name": 函数名, "parameters": 参数词典}
|
53
58
|
```
|
54
59
|
"""
|
60
|
+
if cfg["model"].startswith("yi-"):
|
61
|
+
prompt += "\nAvailable functions:\n"
|
62
|
+
for t in tools:
|
63
|
+
prompt += f"\n```json\n{json.dumps(convert_to_openai_tool(t))}\n```"
|
55
64
|
agent = Runnable(
|
56
|
-
agent_execution_mode=
|
57
|
-
"ReAct" if cfg["model"] in ["command-r", "yi-lightning"] else "FuncCall"
|
58
|
-
), # 'FuncCall' or 'ReAct',大模型支持FuncCall的话就用FuncCall
|
65
|
+
agent_execution_mode="FuncCall",
|
59
66
|
tools=tools,
|
60
67
|
llm=chat,
|
61
68
|
assistant_message=prompt,
|
@@ -6,15 +6,13 @@ pycoze/ai/__init__.py,sha256=Smivpb8qbRnzWkzKRe2IxsmKP5Dh8EvngDFdkD_DVLo,73
|
|
6
6
|
pycoze/ai/comfyui.py,sha256=u75tZywkuXiOdm7XST2kBAaveJKpPvY_qTQr_TN9sXk,795
|
7
7
|
pycoze/ai/vram_reserve.py,sha256=s55Cy-Q5mTq-k5oIPbAFwCfrjatjN0QTjQxW7WBTPZI,5738
|
8
8
|
pycoze/bot/__init__.py,sha256=6HHMxDQVOyZM9dtSjQm9tjGnhj4h7CixD0JOvEwTi48,41
|
9
|
-
pycoze/bot/bot.py,sha256=
|
9
|
+
pycoze/bot/bot.py,sha256=t5wtxigZO23qVhVrXBNVu1WYc8jBAvbWWBH1QNwmjXU,3006
|
10
10
|
pycoze/bot/agent/__init__.py,sha256=YR9vpkEQn1e4937r_xFPJXUCPBEJ0SFzEQDBe2x3-YA,157
|
11
|
-
pycoze/bot/agent/agent.py,sha256=
|
12
|
-
pycoze/bot/agent/assistant.py,sha256=
|
11
|
+
pycoze/bot/agent/agent.py,sha256=3504Q6IlgNirLma_bLcIxkBjTvmAWSjKzv6da7A6c2Y,3307
|
12
|
+
pycoze/bot/agent/assistant.py,sha256=eEcu8aS0m-Kmkv5QttnVeirJrsjqqUJ6iwLZsvwlSMY,1049
|
13
13
|
pycoze/bot/agent/chat.py,sha256=kc0qgcrBSXdiMy49JwThZTV-0PAvzAhiUvbI5ILiSnU,571
|
14
|
-
pycoze/bot/agent/agent_types/__init__.py,sha256=
|
14
|
+
pycoze/bot/agent/agent_types/__init__.py,sha256=XNvKWq9REE5Wzjm0OZi3CKIQF2UZ9PZkeUuxgFJbrfc,128
|
15
15
|
pycoze/bot/agent/agent_types/openai_func_call_agent.py,sha256=_nhlgmV_158fUEOtvB_R3my7Sz5FnCAhLZ1iuY1okOU,8270
|
16
|
-
pycoze/bot/agent/agent_types/react_agent.py,sha256=AnjHwHXVwLAm77ndglJGi4rQhqDGWaLuUfl46uZVSzM,6749
|
17
|
-
pycoze/bot/agent/agent_types/react_prompt.py,sha256=jyovokGaPzNIe5bvTRvn0gmsWLx5kpDIPmRwmEMCl-M,2142
|
18
16
|
pycoze/ui/__init__.py,sha256=7xAfL2lfG7-jllPJEZUJO89xUE9sNzvo1y0WmBswjBI,458
|
19
17
|
pycoze/ui/base.py,sha256=SCXVDK7PpMaBv6ovvabHcfRq_d2AWM0BRyxpNhuJN5A,1285
|
20
18
|
pycoze/ui/color.py,sha256=cT9Ib8uNzkOKxyW0IwVj46o4LwdB1xgNCj1_Rou9d_4,854
|
@@ -23,8 +21,8 @@ pycoze/ui/ui_def.py,sha256=UhhU_yB3GV9ISbvTWT48hsHPHI250BhMILh6bu5Uioo,4206
|
|
23
21
|
pycoze/utils/__init__.py,sha256=TNJhFfY7JYdLlzuP9GvgxfNXUtbgH_NUUJSqHXCxJn4,78
|
24
22
|
pycoze/utils/arg.py,sha256=kA3KBQzXc2WlH5XbF8kfikfpqljiKaW7oY_GE4Qyffc,753
|
25
23
|
pycoze/utils/text_or_file.py,sha256=gpxZVWt2DW6YiEg_MnMuwg36VNf3TX383QD_1oZNB0Y,551
|
26
|
-
pycoze-0.1.
|
27
|
-
pycoze-0.1.
|
28
|
-
pycoze-0.1.
|
29
|
-
pycoze-0.1.
|
30
|
-
pycoze-0.1.
|
24
|
+
pycoze-0.1.81.dist-info/LICENSE,sha256=QStd_Qsd0-kAam_-sOesCIp_uKrGWeoKwt9M49NVkNU,1090
|
25
|
+
pycoze-0.1.81.dist-info/METADATA,sha256=qccbO0_mIWODm1vfnkbWLNY2qC0_gdRJ5Kqs1j3_XEY,719
|
26
|
+
pycoze-0.1.81.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
27
|
+
pycoze-0.1.81.dist-info/top_level.txt,sha256=76dPeDhKvOCleL3ZC5gl1-y4vdS1tT_U1hxWVAn7sFo,7
|
28
|
+
pycoze-0.1.81.dist-info/RECORD,,
|
@@ -1,170 +0,0 @@
|
|
1
|
-
# https://github.com/langchain-ai/langgraph/blob/ea071935fef240d631305df12b6d83e9c363cef3/libs/langgraph/langgraph/prebuilt/agent_executor.py
|
2
|
-
import operator
|
3
|
-
from typing import Annotated, Sequence, TypedDict, Union
|
4
|
-
from langchain.tools import BaseTool
|
5
|
-
from langchain_core.agents import AgentAction, AgentFinish
|
6
|
-
from langchain_core.messages import BaseMessage
|
7
|
-
from langchain_core.language_models import LanguageModelLike
|
8
|
-
from langgraph.graph import END, StateGraph
|
9
|
-
from langgraph.graph.state import CompiledStateGraph
|
10
|
-
from langgraph.prebuilt.tool_executor import ToolExecutor
|
11
|
-
from langgraph.utils.runnable import RunnableCallable
|
12
|
-
from langchain.agents import create_structured_chat_agent
|
13
|
-
from .react_prompt import react_agent_prompt
|
14
|
-
|
15
|
-
|
16
|
-
def create_react_agent_executor(
|
17
|
-
tools: list[BaseTool],
|
18
|
-
llm: LanguageModelLike,
|
19
|
-
system_message: str,
|
20
|
-
**kwargs # ignore
|
21
|
-
):
|
22
|
-
prompt = react_agent_prompt.partial(assistant_message=system_message)
|
23
|
-
agent = create_structured_chat_agent(llm, tools, prompt)
|
24
|
-
agent_executer = create_agent_executor(agent, tools)
|
25
|
-
return agent_executer
|
26
|
-
|
27
|
-
|
28
|
-
def _get_agent_state(input_schema=None):
|
29
|
-
if input_schema is None:
|
30
|
-
|
31
|
-
class AgentState(TypedDict):
|
32
|
-
# The input string
|
33
|
-
input: str
|
34
|
-
# The list of previous messages in the conversation
|
35
|
-
chat_history: Sequence[BaseMessage]
|
36
|
-
# The outcome of a given call to the agent
|
37
|
-
# Needs `None` as a valid type, since this is what this will start as
|
38
|
-
agent_outcome: Union[AgentAction, AgentFinish, None]
|
39
|
-
# List of actions and corresponding observations
|
40
|
-
# Here we annotate this with `operator.add` to indicate that operations to
|
41
|
-
# this state should be ADDED to the existing values (not overwrite it)
|
42
|
-
intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]
|
43
|
-
|
44
|
-
else:
|
45
|
-
|
46
|
-
class AgentState(input_schema):
|
47
|
-
# The outcome of a given call to the agent
|
48
|
-
# Needs `None` as a valid type, since this is what this will start as
|
49
|
-
agent_outcome: Union[AgentAction, AgentFinish, None]
|
50
|
-
# List of actions and corresponding observations
|
51
|
-
# Here we annotate this with `operator.add` to indicate that operations to
|
52
|
-
# this state should be ADDED to the existing values (not overwrite it)
|
53
|
-
intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]
|
54
|
-
|
55
|
-
return AgentState
|
56
|
-
|
57
|
-
|
58
|
-
def create_agent_executor(
|
59
|
-
agent_runnable, tools, input_schema=None
|
60
|
-
) -> CompiledStateGraph:
|
61
|
-
"""This is a helper function for creating a graph that works with LangChain Agents.
|
62
|
-
|
63
|
-
Args:
|
64
|
-
agent_runnable (RunnableLike): The agent runnable.
|
65
|
-
tools (list): A list of tools to be used by the agent.
|
66
|
-
input_schema (dict, optional): The input schema for the agent. Defaults to None.
|
67
|
-
|
68
|
-
Returns:
|
69
|
-
The `CompiledStateGraph` object.
|
70
|
-
"""
|
71
|
-
|
72
|
-
if isinstance(tools, ToolExecutor):
|
73
|
-
tool_executor = tools
|
74
|
-
else:
|
75
|
-
tool_executor = ToolExecutor(tools)
|
76
|
-
|
77
|
-
state = _get_agent_state(input_schema)
|
78
|
-
|
79
|
-
# Define logic that will be used to determine which conditional edge to go down
|
80
|
-
|
81
|
-
def should_continue(data):
|
82
|
-
# If the agent outcome is an AgentFinish, then we return `exit` string
|
83
|
-
# This will be used when setting up the graph to define the flow
|
84
|
-
if isinstance(data["agent_outcome"], AgentFinish):
|
85
|
-
return "end"
|
86
|
-
# Otherwise, an AgentAction is returned
|
87
|
-
# Here we return `continue` string
|
88
|
-
# This will be used when setting up the graph to define the flow
|
89
|
-
else:
|
90
|
-
return "continue"
|
91
|
-
|
92
|
-
def run_agent(data, config):
|
93
|
-
agent_outcome = agent_runnable.invoke(data, config)
|
94
|
-
return {"agent_outcome": agent_outcome}
|
95
|
-
|
96
|
-
async def arun_agent(data, config):
|
97
|
-
agent_outcome = await agent_runnable.ainvoke(data, config)
|
98
|
-
return {"agent_outcome": agent_outcome}
|
99
|
-
|
100
|
-
# Define the function to execute tools
|
101
|
-
def execute_tools(data, config):
|
102
|
-
# Get the most recent agent_outcome - this is the key added in the `agent` above
|
103
|
-
agent_action = data["agent_outcome"]
|
104
|
-
if not isinstance(agent_action, list):
|
105
|
-
agent_action = [agent_action]
|
106
|
-
output = tool_executor.batch(agent_action, config, return_exceptions=True)
|
107
|
-
return {
|
108
|
-
"intermediate_steps": [
|
109
|
-
(action, str(out)) for action, out in zip(agent_action, output)
|
110
|
-
]
|
111
|
-
}
|
112
|
-
|
113
|
-
async def aexecute_tools(data, config):
|
114
|
-
# Get the most recent agent_outcome - this is the key added in the `agent` above
|
115
|
-
agent_action = data["agent_outcome"]
|
116
|
-
if not isinstance(agent_action, list):
|
117
|
-
agent_action = [agent_action]
|
118
|
-
output = await tool_executor.abatch(
|
119
|
-
agent_action, config, return_exceptions=True
|
120
|
-
)
|
121
|
-
return {
|
122
|
-
"intermediate_steps": [
|
123
|
-
(action, str(out)) for action, out in zip(agent_action, output)
|
124
|
-
]
|
125
|
-
}
|
126
|
-
|
127
|
-
# Define a new graph
|
128
|
-
workflow = StateGraph(state)
|
129
|
-
|
130
|
-
# Define the two nodes we will cycle between
|
131
|
-
workflow.add_node("agent", RunnableCallable(run_agent, arun_agent))
|
132
|
-
workflow.add_node("tools", RunnableCallable(execute_tools, aexecute_tools))
|
133
|
-
|
134
|
-
# Set the entrypoint as `agent`
|
135
|
-
# This means that this node is the first one called
|
136
|
-
workflow.set_entry_point("agent")
|
137
|
-
|
138
|
-
# We now add a conditional edge
|
139
|
-
workflow.add_conditional_edges(
|
140
|
-
# First, we define the start node. We use `agent`.
|
141
|
-
# This means these are the edges taken after the `agent` node is called.
|
142
|
-
"agent",
|
143
|
-
# Next, we pass in the function that will determine which node is called next.
|
144
|
-
should_continue,
|
145
|
-
# Finally we pass in a mapping.
|
146
|
-
# The keys are strings, and the values are other nodes.
|
147
|
-
# END is a special node marking that the graph should finish.
|
148
|
-
# What will happen is we will call `should_continue`, and then the output of that
|
149
|
-
# will be matched against the keys in this mapping.
|
150
|
-
# Based on which one it matches, that node will then be called.
|
151
|
-
{
|
152
|
-
# If `tools`, then we call the tool node.
|
153
|
-
"continue": "tools",
|
154
|
-
# Otherwise we finish.
|
155
|
-
"end": END,
|
156
|
-
},
|
157
|
-
)
|
158
|
-
|
159
|
-
# We now add a normal edge from `tools` to `agent`.
|
160
|
-
# This means that after `tools` is called, `agent` node is called next.
|
161
|
-
workflow.add_edge("tools", "agent")
|
162
|
-
|
163
|
-
# Finally, we compile it!
|
164
|
-
# This compiles it into a LangChain Runnable,
|
165
|
-
# meaning you can use it as you would any other runnable
|
166
|
-
return workflow.compile()
|
167
|
-
|
168
|
-
|
169
|
-
if __name__ == "__main__":
|
170
|
-
pass
|
@@ -1,91 +0,0 @@
|
|
1
|
-
from typing import List, Union
|
2
|
-
from langchain_core.prompts.chat import (
|
3
|
-
ChatPromptTemplate,
|
4
|
-
HumanMessagePromptTemplate,
|
5
|
-
SystemMessagePromptTemplate,
|
6
|
-
MessagesPlaceholder,
|
7
|
-
)
|
8
|
-
from langchain_core.messages import (
|
9
|
-
FunctionMessage,
|
10
|
-
SystemMessage,
|
11
|
-
ToolMessage,
|
12
|
-
AIMessage,
|
13
|
-
HumanMessage,
|
14
|
-
ChatMessage,
|
15
|
-
)
|
16
|
-
|
17
|
-
|
18
|
-
system_temp = """
|
19
|
-
{assistant_message}
|
20
|
-
|
21
|
-
Respond to the human as helpfully and accurately as possible. You have access to the following tools:
|
22
|
-
|
23
|
-
{tools}
|
24
|
-
|
25
|
-
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
26
|
-
|
27
|
-
Valid "action" values: "Final Answer" or {tool_names}
|
28
|
-
|
29
|
-
Provide only ONE action per $JSON_BLOB, as shown:
|
30
|
-
|
31
|
-
```
|
32
|
-
{{{{
|
33
|
-
"action": $TOOL_NAME,
|
34
|
-
"action_input": $INPUT
|
35
|
-
}}}}
|
36
|
-
```
|
37
|
-
|
38
|
-
Follow this format:
|
39
|
-
|
40
|
-
Question: input question to answer
|
41
|
-
Thought: consider previous and subsequent steps
|
42
|
-
Action:
|
43
|
-
```
|
44
|
-
$JSON_BLOB
|
45
|
-
```
|
46
|
-
Observation: action result
|
47
|
-
... (repeat Thought/Action/Observation N times)
|
48
|
-
Thought: I know what to respond
|
49
|
-
Action:
|
50
|
-
```
|
51
|
-
{{{{
|
52
|
-
"action": "Final Answer",
|
53
|
-
"action_input": "Final response to human"
|
54
|
-
}}}}
|
55
|
-
|
56
|
-
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation
|
57
|
-
"""
|
58
|
-
|
59
|
-
human_temp = """Question: {input}
|
60
|
-
|
61
|
-
Thought: {agent_scratchpad}
|
62
|
-
(reminder to respond in a JSON blob no matter what)"""
|
63
|
-
|
64
|
-
|
65
|
-
react_agent_prompt = ChatPromptTemplate(
|
66
|
-
input_variables=[
|
67
|
-
"agent_scratchpad",
|
68
|
-
"input",
|
69
|
-
"tool_names",
|
70
|
-
"tools",
|
71
|
-
"assistant_message",
|
72
|
-
],
|
73
|
-
optional_variables=["chat_history"],
|
74
|
-
input_types={
|
75
|
-
"chat_history": List[
|
76
|
-
Union[
|
77
|
-
AIMessage,
|
78
|
-
HumanMessage,
|
79
|
-
ChatMessage,
|
80
|
-
SystemMessage,
|
81
|
-
FunctionMessage,
|
82
|
-
ToolMessage,
|
83
|
-
]
|
84
|
-
]
|
85
|
-
},
|
86
|
-
messages=[
|
87
|
-
SystemMessagePromptTemplate.from_template(system_temp),
|
88
|
-
MessagesPlaceholder(variable_name="chat_history", optional=True),
|
89
|
-
HumanMessagePromptTemplate.from_template(human_temp),
|
90
|
-
],
|
91
|
-
)
|
File without changes
|
File without changes
|
File without changes
|