pycoze 0.1.79__py3-none-any.whl → 0.1.81__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pycoze/bot/agent/agent.py CHANGED
@@ -13,78 +13,56 @@ from langchain_core.agents import AgentFinish
13
13
 
14
14
 
15
15
  async def run_agent(agent, inputs: list):
16
- if agent.agent_execution_mode == "FuncCall":
17
- exist_ids = set()
18
- content_list = []
19
- async for event in agent.astream_events(inputs, version="v2"):
20
- kind = event["event"]
21
- if kind == "on_chain_end":
22
- if "data" in event:
23
- if (
24
- "output" in event["data"]
25
- and event["data"]["output"] == "end"
26
- and "input" in event["data"]
27
- and isinstance(event["data"]["input"], list)
28
- ):
29
- input_list = event["data"]["input"]
30
- for msg in input_list:
31
- if isinstance(msg, HumanMessage) or isinstance(
32
- msg, SystemMessage
33
- ):
34
- content_list = []
35
- if isinstance(msg, AIMessage) and not isinstance(
36
- msg, AIMessageChunk
37
- ):
38
- content = msg.content
39
- if content:
40
- content_list.append(content)
41
- elif kind == "on_chat_model_stream":
42
- content = event["data"]["chunk"].content
43
- if content:
44
- info("assistant", content)
45
- elif kind == "on_chain_start":
46
- data = event["data"]
47
- if "input" in data:
48
- input_list = (
49
- data["input"]
50
- if isinstance(data["input"], list)
51
- else [data["input"]]
52
- )
53
- if len(input_list) == 0:
54
- continue
55
- msg = input_list[-1]
56
- if isinstance(msg, AIMessage) and not isinstance(
57
- msg, AIMessageChunk
58
- ):
59
- if "tool_calls" in msg.additional_kwargs:
60
- tool_calls = msg.additional_kwargs["tool_calls"]
61
- for t in tool_calls:
62
- if t["id"] in exist_ids:
63
- continue
64
- exist_ids.add(t["id"])
65
- tool = t["function"]["name"]
66
- info("assistant", f"\n[调用工具:{tool}]\n\n")
16
+ exist_ids = set()
17
+ content_list = []
18
+ async for event in agent.astream_events(inputs, version="v2"):
19
+ kind = event["event"]
20
+ if kind == "on_chain_end":
21
+ if "data" in event:
22
+ if (
23
+ "output" in event["data"]
24
+ and event["data"]["output"] == "end"
25
+ and "input" in event["data"]
26
+ and isinstance(event["data"]["input"], list)
27
+ ):
28
+ input_list = event["data"]["input"]
29
+ for msg in input_list:
30
+ if isinstance(msg, HumanMessage) or isinstance(
31
+ msg, SystemMessage
32
+ ):
33
+ content_list = []
34
+ if isinstance(msg, AIMessage) and not isinstance(
35
+ msg, AIMessageChunk
36
+ ):
37
+ content = msg.content
38
+ if content:
39
+ content_list.append(content)
40
+ elif kind == "on_chat_model_stream":
41
+ content = event["data"]["chunk"].content
42
+ if content:
43
+ info("assistant", content)
44
+ elif kind == "on_chain_start":
45
+ data = event["data"]
46
+ if "input" in data:
47
+ input_list = (
48
+ data["input"]
49
+ if isinstance(data["input"], list)
50
+ else [data["input"]]
51
+ )
52
+ if len(input_list) == 0:
53
+ continue
54
+ msg = input_list[-1]
55
+ if isinstance(msg, AIMessage) and not isinstance(msg, AIMessageChunk):
56
+ if "tool_calls" in msg.additional_kwargs:
57
+ tool_calls = msg.additional_kwargs["tool_calls"]
58
+ for t in tool_calls:
59
+ if t["id"] in exist_ids:
60
+ continue
61
+ exist_ids.add(t["id"])
62
+ tool = t["function"]["name"]
63
+ info("assistant", f"\n[调用工具:{tool}]\n\n")
67
64
 
68
- return "\n".join(content_list)
69
- else:
70
- assert agent.agent_execution_mode == "ReAct"
71
- inputs_msg = {"input": inputs[-1].content, "chat_history": inputs[:-1]}
72
- use_tools = []
73
- async for event in agent.astream_events(inputs_msg, version="v2"):
74
- kind = event["event"]
75
- result = None
76
- if kind == "on_chain_end":
77
- if "data" in event:
78
- if "output" in event["data"]:
79
- output = event["data"]["output"]
80
- if "agent_outcome" in output and "input" in output:
81
- outcome = output["agent_outcome"]
82
- if isinstance(outcome, AgentFinish):
83
- result = outcome.return_values["output"]
84
- elif kind == "on_tool_start":
85
- use_tools.append(event["name"])
86
- info("assistant", f"\n[调用工具:{use_tools}]\n\n")
87
- return result
65
+ return "\n".join(content_list)
88
66
 
89
67
 
90
68
  if __name__ == "__main__":
@@ -101,7 +79,7 @@ if __name__ == "__main__":
101
79
  )
102
80
  python_tool = PythonREPLTool()
103
81
  agent = Runnable(
104
- agent_execution_mode="FuncCall", # 'FuncCall' or 'ReAct',大模型支持FuncCall的话就用FuncCall
82
+ agent_execution_mode="FuncCall",
105
83
  tools=[python_tool],
106
84
  llm=chat,
107
85
  assistant_message="请以女友的口吻回答,输出不小于100字,可以随便说点其他的",
@@ -1,5 +1,4 @@
1
1
  from .openai_func_call_agent import create_openai_func_call_agent_executor
2
- from .react_agent import create_react_agent_executor
3
2
 
4
3
 
5
- __all__ = [create_openai_func_call_agent_executor, create_react_agent_executor]
4
+ __all__ = [create_openai_func_call_agent_executor]
@@ -1,35 +1,34 @@
1
- from typing import Sequence
2
- from langchain.tools import BaseTool
3
- from langchain_core.language_models.base import LanguageModelLike
4
- from langchain_core.runnables import RunnableBinding
5
- from .agent_types import create_openai_func_call_agent_executor, create_react_agent_executor
6
-
7
-
8
- class Runnable(RunnableBinding):
9
- agent_execution_mode: str
10
- tools: Sequence[BaseTool]
11
- llm: LanguageModelLike
12
- assistant_message: str
13
-
14
- def __init__(
15
- self,
16
- *,
17
- agent_execution_mode: str,
18
- tools: Sequence[BaseTool],
19
- llm: LanguageModelLike,
20
- assistant_message: str,
21
- ) -> None:
22
-
23
- if agent_execution_mode == "FuncCall":
24
- agent_executor_object = create_openai_func_call_agent_executor
25
- else:
26
- agent_executor_object = create_react_agent_executor
27
- agent_executor = agent_executor_object(tools, llm, assistant_message)
28
- agent_executor = agent_executor.with_config({"recursion_limit": 50})
29
- super().__init__(
30
- tools=tools,
31
- llm=llm,
32
- agent_execution_mode=agent_execution_mode,
33
- assistant_message=assistant_message,
34
- bound=agent_executor, return_intermediate_steps=True
35
- )
1
+ from typing import Sequence
2
+ from langchain.tools import BaseTool
3
+ from langchain_core.language_models.base import LanguageModelLike
4
+ from langchain_core.runnables import RunnableBinding
5
+ from .agent_types import create_openai_func_call_agent_executor
6
+
7
+
8
+ class Runnable(RunnableBinding):
9
+ agent_execution_mode: str
10
+ tools: Sequence[BaseTool]
11
+ llm: LanguageModelLike
12
+ assistant_message: str
13
+
14
+ def __init__(
15
+ self,
16
+ *,
17
+ agent_execution_mode: str,
18
+ tools: Sequence[BaseTool],
19
+ llm: LanguageModelLike,
20
+ assistant_message: str,
21
+ ) -> None:
22
+
23
+ agent_executor = create_openai_func_call_agent_executor(
24
+ tools, llm, assistant_message
25
+ )
26
+ agent_executor = agent_executor.with_config({"recursion_limit": 50})
27
+ super().__init__(
28
+ tools=tools,
29
+ llm=llm,
30
+ agent_execution_mode=agent_execution_mode,
31
+ assistant_message=assistant_message,
32
+ bound=agent_executor,
33
+ return_intermediate_steps=True,
34
+ )
pycoze/bot/bot.py CHANGED
@@ -5,6 +5,7 @@ import asyncio
5
5
  from langchain_core.messages import HumanMessage
6
6
  from pycoze import utils
7
7
  from pycoze.access.tool_for_bot import import_tools
8
+ from langchain_core.utils.function_calling import convert_to_openai_tool
8
9
 
9
10
  params = utils.arg.read_params_file()
10
11
  llm_file = params["appPath"] + "/JsonStorage/llm.json"
@@ -36,7 +37,7 @@ def agent_chat(bot_setting_file, history):
36
37
  model=cfg["model"],
37
38
  temperature=(
38
39
  role_setting["temperature"] * 2
39
- if cfg["model"].startswith("deepseek")
40
+ if cfg["model"].startswith("deepseek") or cfg["model"].startswith("yi-")
40
41
  else role_setting["temperature"]
41
42
  ),
42
43
  stop_sequences=[
@@ -45,17 +46,23 @@ def agent_chat(bot_setting_file, history):
45
46
  ], # 停用deepseek的工具调用标记,不然会虚构工具调用过程和结果
46
47
  )
47
48
  prompt = role_setting["prompt"]
48
- if cfg["model"].startswith("deepseek") and len(tools) > 0:
49
+ if (
50
+ cfg["model"].startswith("deepseek")
51
+ or cfg["model"].startswith("yi-")
52
+ and len(tools) > 0
53
+ ):
49
54
  prompt += """
50
55
  如果需要调用工具,请使用以正确的json格式进行结尾(务必保证json格式正确,不要出现反斜杠未转义等问题):
51
56
  ```json
52
57
  {"name": 函数名, "parameters": 参数词典}
53
58
  ```
54
59
  """
60
+ if cfg["model"].startswith("yi-"):
61
+ prompt += "\nAvailable functions:\n"
62
+ for t in tools:
63
+ prompt += f"\n```json\n{json.dumps(convert_to_openai_tool(t))}\n```"
55
64
  agent = Runnable(
56
- agent_execution_mode=(
57
- "ReAct" if cfg["model"] in ["command-r", "yi-lightning"] else "FuncCall"
58
- ), # 'FuncCall' or 'ReAct',大模型支持FuncCall的话就用FuncCall
65
+ agent_execution_mode="FuncCall",
59
66
  tools=tools,
60
67
  llm=chat,
61
68
  assistant_message=prompt,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pycoze
3
- Version: 0.1.79
3
+ Version: 0.1.81
4
4
  Summary: Package for pycoze only!
5
5
  Author: Yuan Jie Xiong
6
6
  Author-email: aiqqqqqqq@qq.com
@@ -6,15 +6,13 @@ pycoze/ai/__init__.py,sha256=Smivpb8qbRnzWkzKRe2IxsmKP5Dh8EvngDFdkD_DVLo,73
6
6
  pycoze/ai/comfyui.py,sha256=u75tZywkuXiOdm7XST2kBAaveJKpPvY_qTQr_TN9sXk,795
7
7
  pycoze/ai/vram_reserve.py,sha256=s55Cy-Q5mTq-k5oIPbAFwCfrjatjN0QTjQxW7WBTPZI,5738
8
8
  pycoze/bot/__init__.py,sha256=6HHMxDQVOyZM9dtSjQm9tjGnhj4h7CixD0JOvEwTi48,41
9
- pycoze/bot/bot.py,sha256=xF9vg-Yj4XPXRoijmnUrxaiXL7k3MoU1Apshn1NV8-M,2785
9
+ pycoze/bot/bot.py,sha256=t5wtxigZO23qVhVrXBNVu1WYc8jBAvbWWBH1QNwmjXU,3006
10
10
  pycoze/bot/agent/__init__.py,sha256=YR9vpkEQn1e4937r_xFPJXUCPBEJ0SFzEQDBe2x3-YA,157
11
- pycoze/bot/agent/agent.py,sha256=7xnz4a8LDyAVU0O3tS6n7_jSnr_lukQxfNR2znCWoV4,4611
12
- pycoze/bot/agent/assistant.py,sha256=QLeWaPi415P9jruYOm8qcIbC94cXXAhJYmLTkyC9NTQ,1267
11
+ pycoze/bot/agent/agent.py,sha256=3504Q6IlgNirLma_bLcIxkBjTvmAWSjKzv6da7A6c2Y,3307
12
+ pycoze/bot/agent/assistant.py,sha256=eEcu8aS0m-Kmkv5QttnVeirJrsjqqUJ6iwLZsvwlSMY,1049
13
13
  pycoze/bot/agent/chat.py,sha256=kc0qgcrBSXdiMy49JwThZTV-0PAvzAhiUvbI5ILiSnU,571
14
- pycoze/bot/agent/agent_types/__init__.py,sha256=W2jTNMLqUMqgCMG0Tw0d8n7WpsbsnIonqaPR-YLegLU,210
14
+ pycoze/bot/agent/agent_types/__init__.py,sha256=XNvKWq9REE5Wzjm0OZi3CKIQF2UZ9PZkeUuxgFJbrfc,128
15
15
  pycoze/bot/agent/agent_types/openai_func_call_agent.py,sha256=_nhlgmV_158fUEOtvB_R3my7Sz5FnCAhLZ1iuY1okOU,8270
16
- pycoze/bot/agent/agent_types/react_agent.py,sha256=AnjHwHXVwLAm77ndglJGi4rQhqDGWaLuUfl46uZVSzM,6749
17
- pycoze/bot/agent/agent_types/react_prompt.py,sha256=jyovokGaPzNIe5bvTRvn0gmsWLx5kpDIPmRwmEMCl-M,2142
18
16
  pycoze/ui/__init__.py,sha256=7xAfL2lfG7-jllPJEZUJO89xUE9sNzvo1y0WmBswjBI,458
19
17
  pycoze/ui/base.py,sha256=SCXVDK7PpMaBv6ovvabHcfRq_d2AWM0BRyxpNhuJN5A,1285
20
18
  pycoze/ui/color.py,sha256=cT9Ib8uNzkOKxyW0IwVj46o4LwdB1xgNCj1_Rou9d_4,854
@@ -23,8 +21,8 @@ pycoze/ui/ui_def.py,sha256=UhhU_yB3GV9ISbvTWT48hsHPHI250BhMILh6bu5Uioo,4206
23
21
  pycoze/utils/__init__.py,sha256=TNJhFfY7JYdLlzuP9GvgxfNXUtbgH_NUUJSqHXCxJn4,78
24
22
  pycoze/utils/arg.py,sha256=kA3KBQzXc2WlH5XbF8kfikfpqljiKaW7oY_GE4Qyffc,753
25
23
  pycoze/utils/text_or_file.py,sha256=gpxZVWt2DW6YiEg_MnMuwg36VNf3TX383QD_1oZNB0Y,551
26
- pycoze-0.1.79.dist-info/LICENSE,sha256=QStd_Qsd0-kAam_-sOesCIp_uKrGWeoKwt9M49NVkNU,1090
27
- pycoze-0.1.79.dist-info/METADATA,sha256=IvqPghBssI9vTER33SeYlj_vpRIGVhCGYKZweaNFhgc,719
28
- pycoze-0.1.79.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
29
- pycoze-0.1.79.dist-info/top_level.txt,sha256=76dPeDhKvOCleL3ZC5gl1-y4vdS1tT_U1hxWVAn7sFo,7
30
- pycoze-0.1.79.dist-info/RECORD,,
24
+ pycoze-0.1.81.dist-info/LICENSE,sha256=QStd_Qsd0-kAam_-sOesCIp_uKrGWeoKwt9M49NVkNU,1090
25
+ pycoze-0.1.81.dist-info/METADATA,sha256=qccbO0_mIWODm1vfnkbWLNY2qC0_gdRJ5Kqs1j3_XEY,719
26
+ pycoze-0.1.81.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
27
+ pycoze-0.1.81.dist-info/top_level.txt,sha256=76dPeDhKvOCleL3ZC5gl1-y4vdS1tT_U1hxWVAn7sFo,7
28
+ pycoze-0.1.81.dist-info/RECORD,,
@@ -1,170 +0,0 @@
1
- # https://github.com/langchain-ai/langgraph/blob/ea071935fef240d631305df12b6d83e9c363cef3/libs/langgraph/langgraph/prebuilt/agent_executor.py
2
- import operator
3
- from typing import Annotated, Sequence, TypedDict, Union
4
- from langchain.tools import BaseTool
5
- from langchain_core.agents import AgentAction, AgentFinish
6
- from langchain_core.messages import BaseMessage
7
- from langchain_core.language_models import LanguageModelLike
8
- from langgraph.graph import END, StateGraph
9
- from langgraph.graph.state import CompiledStateGraph
10
- from langgraph.prebuilt.tool_executor import ToolExecutor
11
- from langgraph.utils.runnable import RunnableCallable
12
- from langchain.agents import create_structured_chat_agent
13
- from .react_prompt import react_agent_prompt
14
-
15
-
16
- def create_react_agent_executor(
17
- tools: list[BaseTool],
18
- llm: LanguageModelLike,
19
- system_message: str,
20
- **kwargs # ignore
21
- ):
22
- prompt = react_agent_prompt.partial(assistant_message=system_message)
23
- agent = create_structured_chat_agent(llm, tools, prompt)
24
- agent_executer = create_agent_executor(agent, tools)
25
- return agent_executer
26
-
27
-
28
- def _get_agent_state(input_schema=None):
29
- if input_schema is None:
30
-
31
- class AgentState(TypedDict):
32
- # The input string
33
- input: str
34
- # The list of previous messages in the conversation
35
- chat_history: Sequence[BaseMessage]
36
- # The outcome of a given call to the agent
37
- # Needs `None` as a valid type, since this is what this will start as
38
- agent_outcome: Union[AgentAction, AgentFinish, None]
39
- # List of actions and corresponding observations
40
- # Here we annotate this with `operator.add` to indicate that operations to
41
- # this state should be ADDED to the existing values (not overwrite it)
42
- intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]
43
-
44
- else:
45
-
46
- class AgentState(input_schema):
47
- # The outcome of a given call to the agent
48
- # Needs `None` as a valid type, since this is what this will start as
49
- agent_outcome: Union[AgentAction, AgentFinish, None]
50
- # List of actions and corresponding observations
51
- # Here we annotate this with `operator.add` to indicate that operations to
52
- # this state should be ADDED to the existing values (not overwrite it)
53
- intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]
54
-
55
- return AgentState
56
-
57
-
58
- def create_agent_executor(
59
- agent_runnable, tools, input_schema=None
60
- ) -> CompiledStateGraph:
61
- """This is a helper function for creating a graph that works with LangChain Agents.
62
-
63
- Args:
64
- agent_runnable (RunnableLike): The agent runnable.
65
- tools (list): A list of tools to be used by the agent.
66
- input_schema (dict, optional): The input schema for the agent. Defaults to None.
67
-
68
- Returns:
69
- The `CompiledStateGraph` object.
70
- """
71
-
72
- if isinstance(tools, ToolExecutor):
73
- tool_executor = tools
74
- else:
75
- tool_executor = ToolExecutor(tools)
76
-
77
- state = _get_agent_state(input_schema)
78
-
79
- # Define logic that will be used to determine which conditional edge to go down
80
-
81
- def should_continue(data):
82
- # If the agent outcome is an AgentFinish, then we return `exit` string
83
- # This will be used when setting up the graph to define the flow
84
- if isinstance(data["agent_outcome"], AgentFinish):
85
- return "end"
86
- # Otherwise, an AgentAction is returned
87
- # Here we return `continue` string
88
- # This will be used when setting up the graph to define the flow
89
- else:
90
- return "continue"
91
-
92
- def run_agent(data, config):
93
- agent_outcome = agent_runnable.invoke(data, config)
94
- return {"agent_outcome": agent_outcome}
95
-
96
- async def arun_agent(data, config):
97
- agent_outcome = await agent_runnable.ainvoke(data, config)
98
- return {"agent_outcome": agent_outcome}
99
-
100
- # Define the function to execute tools
101
- def execute_tools(data, config):
102
- # Get the most recent agent_outcome - this is the key added in the `agent` above
103
- agent_action = data["agent_outcome"]
104
- if not isinstance(agent_action, list):
105
- agent_action = [agent_action]
106
- output = tool_executor.batch(agent_action, config, return_exceptions=True)
107
- return {
108
- "intermediate_steps": [
109
- (action, str(out)) for action, out in zip(agent_action, output)
110
- ]
111
- }
112
-
113
- async def aexecute_tools(data, config):
114
- # Get the most recent agent_outcome - this is the key added in the `agent` above
115
- agent_action = data["agent_outcome"]
116
- if not isinstance(agent_action, list):
117
- agent_action = [agent_action]
118
- output = await tool_executor.abatch(
119
- agent_action, config, return_exceptions=True
120
- )
121
- return {
122
- "intermediate_steps": [
123
- (action, str(out)) for action, out in zip(agent_action, output)
124
- ]
125
- }
126
-
127
- # Define a new graph
128
- workflow = StateGraph(state)
129
-
130
- # Define the two nodes we will cycle between
131
- workflow.add_node("agent", RunnableCallable(run_agent, arun_agent))
132
- workflow.add_node("tools", RunnableCallable(execute_tools, aexecute_tools))
133
-
134
- # Set the entrypoint as `agent`
135
- # This means that this node is the first one called
136
- workflow.set_entry_point("agent")
137
-
138
- # We now add a conditional edge
139
- workflow.add_conditional_edges(
140
- # First, we define the start node. We use `agent`.
141
- # This means these are the edges taken after the `agent` node is called.
142
- "agent",
143
- # Next, we pass in the function that will determine which node is called next.
144
- should_continue,
145
- # Finally we pass in a mapping.
146
- # The keys are strings, and the values are other nodes.
147
- # END is a special node marking that the graph should finish.
148
- # What will happen is we will call `should_continue`, and then the output of that
149
- # will be matched against the keys in this mapping.
150
- # Based on which one it matches, that node will then be called.
151
- {
152
- # If `tools`, then we call the tool node.
153
- "continue": "tools",
154
- # Otherwise we finish.
155
- "end": END,
156
- },
157
- )
158
-
159
- # We now add a normal edge from `tools` to `agent`.
160
- # This means that after `tools` is called, `agent` node is called next.
161
- workflow.add_edge("tools", "agent")
162
-
163
- # Finally, we compile it!
164
- # This compiles it into a LangChain Runnable,
165
- # meaning you can use it as you would any other runnable
166
- return workflow.compile()
167
-
168
-
169
- if __name__ == "__main__":
170
- pass
@@ -1,91 +0,0 @@
1
- from typing import List, Union
2
- from langchain_core.prompts.chat import (
3
- ChatPromptTemplate,
4
- HumanMessagePromptTemplate,
5
- SystemMessagePromptTemplate,
6
- MessagesPlaceholder,
7
- )
8
- from langchain_core.messages import (
9
- FunctionMessage,
10
- SystemMessage,
11
- ToolMessage,
12
- AIMessage,
13
- HumanMessage,
14
- ChatMessage,
15
- )
16
-
17
-
18
- system_temp = """
19
- {assistant_message}
20
-
21
- Respond to the human as helpfully and accurately as possible. You have access to the following tools:
22
-
23
- {tools}
24
-
25
- Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
26
-
27
- Valid "action" values: "Final Answer" or {tool_names}
28
-
29
- Provide only ONE action per $JSON_BLOB, as shown:
30
-
31
- ```
32
- {{{{
33
- "action": $TOOL_NAME,
34
- "action_input": $INPUT
35
- }}}}
36
- ```
37
-
38
- Follow this format:
39
-
40
- Question: input question to answer
41
- Thought: consider previous and subsequent steps
42
- Action:
43
- ```
44
- $JSON_BLOB
45
- ```
46
- Observation: action result
47
- ... (repeat Thought/Action/Observation N times)
48
- Thought: I know what to respond
49
- Action:
50
- ```
51
- {{{{
52
- "action": "Final Answer",
53
- "action_input": "Final response to human"
54
- }}}}
55
-
56
- Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation
57
- """
58
-
59
- human_temp = """Question: {input}
60
-
61
- Thought: {agent_scratchpad}
62
- (reminder to respond in a JSON blob no matter what)"""
63
-
64
-
65
- react_agent_prompt = ChatPromptTemplate(
66
- input_variables=[
67
- "agent_scratchpad",
68
- "input",
69
- "tool_names",
70
- "tools",
71
- "assistant_message",
72
- ],
73
- optional_variables=["chat_history"],
74
- input_types={
75
- "chat_history": List[
76
- Union[
77
- AIMessage,
78
- HumanMessage,
79
- ChatMessage,
80
- SystemMessage,
81
- FunctionMessage,
82
- ToolMessage,
83
- ]
84
- ]
85
- },
86
- messages=[
87
- SystemMessagePromptTemplate.from_template(system_temp),
88
- MessagesPlaceholder(variable_name="chat_history", optional=True),
89
- HumanMessagePromptTemplate.from_template(human_temp),
90
- ],
91
- )