pycoze 0.1.225__py3-none-any.whl → 0.1.226__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pycoze/ai/__init__.py +2 -2
- pycoze/ai/llm/__init__.py +1 -1
- pycoze/ai/llm/text_to_image_prompt.py +65 -65
- pycoze/ai/llm/think.py +131 -0
- pycoze/ui/ui_def.py +3 -1
- {pycoze-0.1.225.dist-info → pycoze-0.1.226.dist-info}/METADATA +1 -1
- {pycoze-0.1.225.dist-info → pycoze-0.1.226.dist-info}/RECORD +10 -9
- {pycoze-0.1.225.dist-info → pycoze-0.1.226.dist-info}/LICENSE +0 -0
- {pycoze-0.1.225.dist-info → pycoze-0.1.226.dist-info}/WHEEL +0 -0
- {pycoze-0.1.225.dist-info → pycoze-0.1.226.dist-info}/top_level.txt +0 -0
pycoze/ai/__init__.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
from .vram_reserve import reserve_vram, reserve_vram_retry, unreserve_vram
|
2
|
-
from .llm import chat, chat_stream, extract, yes_or_no, extract_code, text_to_image_prompt
|
1
|
+
from .vram_reserve import reserve_vram, reserve_vram_retry, unreserve_vram
|
2
|
+
from .llm import chat, chat_stream, extract, yes_or_no, extract_code, text_to_image_prompt
|
pycoze/ai/llm/__init__.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
1
|
from .text_to_image_prompt import text_to_image_prompt
|
2
|
-
from .chat import chat, chat_stream, extract, yes_or_no, extract_code
|
2
|
+
from .chat import chat, chat_stream, extract, yes_or_no, extract_code
|
@@ -1,65 +1,65 @@
|
|
1
|
-
import re
|
2
|
-
from .chat import yes_or_no, extract
|
3
|
-
|
4
|
-
|
5
|
-
def contains_chinese(text):
|
6
|
-
pattern = re.compile(r'[\u4e00-\u9fa5]') # Regular expression to match Chinese characters
|
7
|
-
return bool(re.search(pattern, text))
|
8
|
-
|
9
|
-
|
10
|
-
requirement = """
|
11
|
-
Please reflect the scene content as prompts for the drawing AI.
|
12
|
-
|
13
|
-
## Prompt Concept
|
14
|
-
- A prompt is used to describe the image content, composed of common words, using English commas (",") as separators. For example, a prompt like "woman" indicates that the image should include a woman.
|
15
|
-
|
16
|
-
## Tag Restrictions
|
17
|
-
- Tags should be described using English words or phrases, avoiding Chinese.
|
18
|
-
- Tags can only contain keywords or key phrases, and should not include personal names, place names, etc.
|
19
|
-
- Tags should try to preserve physical characteristics of people, like body shape and hairstyle, but not use personal names, instead using terms like "man" to refer to people.
|
20
|
-
- The number of tags in a prompt is limited to 40, and the number of words is limited to 60.
|
21
|
-
|
22
|
-
## Incorrect Examples of Prompts
|
23
|
-
"In the bustling Shanghai Bund, there is a young man named Li Yang."
|
24
|
-
The prompt includes non-keywords like "there is", as well as the personal name "Li Yang" and the place name "Shanghai."
|
25
|
-
It should be modified to "a young man, in the bustling Bund"
|
26
|
-
|
27
|
-
"""
|
28
|
-
|
29
|
-
# As the LLM used is not very effective, negative prompts are not suitable for generation by LLM at this stage
|
30
|
-
# - Negative prompts describe content that should not appear in the image, for example if "bird, man" appears in the negative prompt, it means the image should not include "birds and men".
|
31
|
-
|
32
|
-
|
33
|
-
def text_to_image_prompt(query, style, negative_style, with_prompt="best quality,4k,", with_negative_prompt=""):
|
34
|
-
query = query.replace("{", "【").replace("}", "】")
|
35
|
-
needed = f"The scene I need: {query}"
|
36
|
-
style = style.replace(",", " ").replace(",", " ")
|
37
|
-
if len(style) > 0:
|
38
|
-
needed += f"\nThe style I need: {style}"
|
39
|
-
# if len(negative_style) > 0:
|
40
|
-
# needed += f"\nStyles to avoid: {negative_style}"
|
41
|
-
|
42
|
-
for i in range(15):
|
43
|
-
try:
|
44
|
-
print("doing")
|
45
|
-
output_obj = extract([("prompt", "Describe the image content with keywords")], needed + "\n" + requirement)
|
46
|
-
print("done")
|
47
|
-
if contains_chinese(output_obj["prompt"]):
|
48
|
-
print("Contains Chinese, regenerating")
|
49
|
-
continue
|
50
|
-
if yes_or_no("Does it include personal names:\n"+output_obj["prompt"]):
|
51
|
-
print(output_obj["prompt"]+" contains personal names, correcting")
|
52
|
-
output_obj["prompt"] = extract(
|
53
|
-
[("text without personal names", "Modified result (personal names can be changed to man, woman, he, she, etc.)")],
|
54
|
-
"Modify the following text, personal names can be changed to man, woman, he, she, etc.: \n"+output_obj["prompt"])["text without personal names"]
|
55
|
-
break
|
56
|
-
except Exception as e:
|
57
|
-
print(e)
|
58
|
-
output_obj["prompt"] = with_prompt + output_obj["prompt"].replace(" and ", ",")
|
59
|
-
output_obj["negative_prompt"] = with_negative_prompt
|
60
|
-
output_obj["with_prompt"] = with_prompt
|
61
|
-
output_obj["with_negative_prompt"] = with_negative_prompt
|
62
|
-
output_obj["query"] = query
|
63
|
-
output_obj["style"] = style
|
64
|
-
output_obj["negative_style"] = negative_style
|
65
|
-
return output_obj
|
1
|
+
import re
|
2
|
+
from .chat import yes_or_no, extract
|
3
|
+
|
4
|
+
|
5
|
+
def contains_chinese(text):
|
6
|
+
pattern = re.compile(r'[\u4e00-\u9fa5]') # Regular expression to match Chinese characters
|
7
|
+
return bool(re.search(pattern, text))
|
8
|
+
|
9
|
+
|
10
|
+
requirement = """
|
11
|
+
Please reflect the scene content as prompts for the drawing AI.
|
12
|
+
|
13
|
+
## Prompt Concept
|
14
|
+
- A prompt is used to describe the image content, composed of common words, using English commas (",") as separators. For example, a prompt like "woman" indicates that the image should include a woman.
|
15
|
+
|
16
|
+
## Tag Restrictions
|
17
|
+
- Tags should be described using English words or phrases, avoiding Chinese.
|
18
|
+
- Tags can only contain keywords or key phrases, and should not include personal names, place names, etc.
|
19
|
+
- Tags should try to preserve physical characteristics of people, like body shape and hairstyle, but not use personal names, instead using terms like "man" to refer to people.
|
20
|
+
- The number of tags in a prompt is limited to 40, and the number of words is limited to 60.
|
21
|
+
|
22
|
+
## Incorrect Examples of Prompts
|
23
|
+
"In the bustling Shanghai Bund, there is a young man named Li Yang."
|
24
|
+
The prompt includes non-keywords like "there is", as well as the personal name "Li Yang" and the place name "Shanghai."
|
25
|
+
It should be modified to "a young man, in the bustling Bund"
|
26
|
+
|
27
|
+
"""
|
28
|
+
|
29
|
+
# As the LLM used is not very effective, negative prompts are not suitable for generation by LLM at this stage
|
30
|
+
# - Negative prompts describe content that should not appear in the image, for example if "bird, man" appears in the negative prompt, it means the image should not include "birds and men".
|
31
|
+
|
32
|
+
|
33
|
+
def text_to_image_prompt(query, style, negative_style, with_prompt="best quality,4k,", with_negative_prompt=""):
|
34
|
+
query = query.replace("{", "【").replace("}", "】")
|
35
|
+
needed = f"The scene I need: {query}"
|
36
|
+
style = style.replace(",", " ").replace(",", " ")
|
37
|
+
if len(style) > 0:
|
38
|
+
needed += f"\nThe style I need: {style}"
|
39
|
+
# if len(negative_style) > 0:
|
40
|
+
# needed += f"\nStyles to avoid: {negative_style}"
|
41
|
+
|
42
|
+
for i in range(15):
|
43
|
+
try:
|
44
|
+
print("doing")
|
45
|
+
output_obj = extract([("prompt", "Describe the image content with keywords")], needed + "\n" + requirement)
|
46
|
+
print("done")
|
47
|
+
if contains_chinese(output_obj["prompt"]):
|
48
|
+
print("Contains Chinese, regenerating")
|
49
|
+
continue
|
50
|
+
if yes_or_no("Does it include personal names:\n"+output_obj["prompt"]):
|
51
|
+
print(output_obj["prompt"]+" contains personal names, correcting")
|
52
|
+
output_obj["prompt"] = extract(
|
53
|
+
[("text without personal names", "Modified result (personal names can be changed to man, woman, he, she, etc.)")],
|
54
|
+
"Modify the following text, personal names can be changed to man, woman, he, she, etc.: \n"+output_obj["prompt"])["text without personal names"]
|
55
|
+
break
|
56
|
+
except Exception as e:
|
57
|
+
print(e)
|
58
|
+
output_obj["prompt"] = with_prompt + output_obj["prompt"].replace(" and ", ",")
|
59
|
+
output_obj["negative_prompt"] = with_negative_prompt
|
60
|
+
output_obj["with_prompt"] = with_prompt
|
61
|
+
output_obj["with_negative_prompt"] = with_negative_prompt
|
62
|
+
output_obj["query"] = query
|
63
|
+
output_obj["style"] = style
|
64
|
+
output_obj["negative_style"] = negative_style
|
65
|
+
return output_obj
|
pycoze/ai/llm/think.py
ADDED
@@ -0,0 +1,131 @@
|
|
1
|
+
from pycoze import utils
|
2
|
+
import json5
|
3
|
+
import re
|
4
|
+
from retrying import retry
|
5
|
+
from openai import OpenAI
|
6
|
+
import openai
|
7
|
+
import requests
|
8
|
+
import os
|
9
|
+
|
10
|
+
|
11
|
+
def never_retry_on_rate_limit_error(exception):
|
12
|
+
"""Return True if we should retry (in this case when it's NOT a RateLimitError), False otherwise"""
|
13
|
+
return not isinstance(exception, openai.RateLimitError)
|
14
|
+
|
15
|
+
@retry(retry_on_exception=never_retry_on_rate_limit_error, wait_exponential_multiplier=500, stop_max_attempt_number=5)
|
16
|
+
def think(user_text, history, temperature=0.2, stop=None, **kwargs):
|
17
|
+
user_msg = {"role": "user", "content": user_text}
|
18
|
+
cfg = utils.read_json_file("llm.json")
|
19
|
+
|
20
|
+
base_url = cfg["baseURL"]
|
21
|
+
api_key = cfg["apiKey"]
|
22
|
+
model = cfg["model"]
|
23
|
+
|
24
|
+
base_url = base_url.replace("/chat/completions", "")
|
25
|
+
|
26
|
+
client = OpenAI(api_key=api_key, base_url=base_url)
|
27
|
+
|
28
|
+
response = client.chat.completions.create(model=model,
|
29
|
+
messages=simple_history(history) + [user_msg],
|
30
|
+
temperature=temperature,
|
31
|
+
stop=stop)
|
32
|
+
return response.choices[0].message.content
|
33
|
+
|
34
|
+
|
35
|
+
@retry(retry_on_exception=never_retry_on_rate_limit_error, wait_exponential_multiplier=500, stop_max_attempt_number=5)
|
36
|
+
def think_stream(user_text, history, temperature=0.2, stop=None, **kwargs):
|
37
|
+
user_msg = {"role": "user", "content": user_text}
|
38
|
+
cfg = utils.read_json_file("llm.json")
|
39
|
+
|
40
|
+
base_url = cfg["baseURL"]
|
41
|
+
api_key = cfg["apiKey"]
|
42
|
+
model = cfg["model"]
|
43
|
+
|
44
|
+
base_url = base_url.replace("/chat/completions", "")
|
45
|
+
|
46
|
+
client = OpenAI(api_key=api_key, base_url=base_url)
|
47
|
+
|
48
|
+
|
49
|
+
stream = client.chat.completions.create(model=model,
|
50
|
+
messages=simple_history(history) + [user_msg],
|
51
|
+
stream=True,
|
52
|
+
temperature=temperature,
|
53
|
+
stop=stop)
|
54
|
+
for chunk in stream:
|
55
|
+
yield chunk.choices[0].delta.content or ""
|
56
|
+
|
57
|
+
|
58
|
+
def simple_history(history):
|
59
|
+
return [{"role": h["role"], "content": h["content"]} for h in history]
|
60
|
+
|
61
|
+
|
62
|
+
@retry(retry_on_exception=never_retry_on_rate_limit_error, wait_exponential_multiplier=500, stop_max_attempt_number=3)
|
63
|
+
def extract(response_data, text: str, temperature=0, **kwargs):
|
64
|
+
"""print(extract({"name": "lowercase"}, "hello XiaoMing"))"""
|
65
|
+
if isinstance(response_data, dict):
|
66
|
+
response_items = [[res, response_data[res]] for res in response_data]
|
67
|
+
else:
|
68
|
+
response_items = response_data
|
69
|
+
|
70
|
+
json_text = ""
|
71
|
+
for i, res in enumerate(response_items):
|
72
|
+
comma = "," if i != len(response_items) - 1 else ""
|
73
|
+
json_text += f' "{res[0]}": {res[1]}{comma}\n'
|
74
|
+
|
75
|
+
# Combine the provided text with the formatted JSON schema
|
76
|
+
think_text = f"""
|
77
|
+
The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```" tags:
|
78
|
+
```json
|
79
|
+
{{
|
80
|
+
{json_text}
|
81
|
+
}}
|
82
|
+
```
|
83
|
+
|
84
|
+
Request:
|
85
|
+
{text}
|
86
|
+
"""
|
87
|
+
# text放后面,当翻译等情况时,不会把"The output should"之类翻译了,导致错误
|
88
|
+
markdown = think(think_text, [], temperature=temperature, **kwargs)
|
89
|
+
pattern = r'```json(.*?)```'
|
90
|
+
matches = re.findall(pattern, markdown, re.DOTALL)
|
91
|
+
if matches:
|
92
|
+
json_str = matches[0].strip()
|
93
|
+
# lines = [line.split("//")[0] for line in json_str.split("\n")]//这样当json中有//时会出错,例如https://
|
94
|
+
json_dict = json5.loads(json_str)
|
95
|
+
for item in response_items:
|
96
|
+
if item[0] not in json_dict:
|
97
|
+
raise "item:" + item + " not exists"
|
98
|
+
return json_dict
|
99
|
+
|
100
|
+
|
101
|
+
def yes_or_no(question, temperature=0, **kwargs):
|
102
|
+
result = extract([("Result", "Yes or No")], question,
|
103
|
+
temperature=temperature, **kwargs)["Result"]
|
104
|
+
if isinstance(result, bool):
|
105
|
+
return result
|
106
|
+
return result.upper() == "YES"
|
107
|
+
|
108
|
+
|
109
|
+
@retry(retry_on_exception=never_retry_on_rate_limit_error, wait_exponential_multiplier=500, stop_max_attempt_number=3)
|
110
|
+
def extract_code(text: str, temperature=0, language="python", markdown_word='python', **kwargs):
|
111
|
+
"""print(extract_code("sum 1~100"))"""
|
112
|
+
think_text = text + f"""
|
113
|
+
The output should be a complete and usable {language} code snippet, including the leading and trailing "```{markdown_word}" and "```":
|
114
|
+
"""
|
115
|
+
markdown = think(think_text, [], temperature=temperature, **kwargs)
|
116
|
+
# 使用正则表达式匹配围绕在```{markdown_word} 和 ```之间的文本
|
117
|
+
pattern = rf'```{markdown_word}(.*?)```'
|
118
|
+
matches = re.findall(pattern, markdown, re.DOTALL)
|
119
|
+
if matches:
|
120
|
+
# 去除可能的前后空白字符
|
121
|
+
return matches[0].strip()
|
122
|
+
else:
|
123
|
+
raise Exception("The string is not a valid python code.")
|
124
|
+
|
125
|
+
|
126
|
+
if __name__ == "__main__":
|
127
|
+
print(think("你好", []))
|
128
|
+
for chunk in think_stream("你好", []):
|
129
|
+
print(chunk)
|
130
|
+
print(extract({"name": "lowercase"}, "hello XiaoMing"))
|
131
|
+
print(extract_code("sum 1~100"))
|
pycoze/ui/ui_def.py
CHANGED
@@ -138,10 +138,12 @@ def multi_folder_select(
|
|
138
138
|
|
139
139
|
|
140
140
|
def folder_tree(
|
141
|
-
name, root="", default: List[str] = None, tip="", hide_if="", style="", cls=""
|
141
|
+
name, root="", default: List[str] = None, ignore_list=None, tip="", hide_if="", style="", cls=""
|
142
142
|
) -> dict:
|
143
143
|
if default is None:
|
144
144
|
default = []
|
145
|
+
if ignore_list is None:
|
146
|
+
ignore_list = []
|
145
147
|
value = {"root": root, "paths": default}
|
146
148
|
return useDefault(name, value)
|
147
149
|
|
@@ -1,9 +1,10 @@
|
|
1
1
|
pycoze/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
-
pycoze/ai/__init__.py,sha256=
|
2
|
+
pycoze/ai/__init__.py,sha256=NY6treq6PVA52c62RaP3S3v9Xsmj5xE1YOl169Fr0pg,168
|
3
3
|
pycoze/ai/vram_reserve.py,sha256=brgXP42yj3yaZRgW8pfgc4Jg9EivAhcbp5W4igVHcow,4256
|
4
|
-
pycoze/ai/llm/__init__.py,sha256=
|
4
|
+
pycoze/ai/llm/__init__.py,sha256=kAXcQ7SefJYysgKeVInlwYZoDk0BPuEnUuixy-quD_A,127
|
5
5
|
pycoze/ai/llm/chat.py,sha256=izriC7nCp5qeJRqcUVQBVqTHiH6MJS77ROzGBJufdNI,5133
|
6
|
-
pycoze/ai/llm/text_to_image_prompt.py,sha256=
|
6
|
+
pycoze/ai/llm/text_to_image_prompt.py,sha256=0bx2C_YRvjAo7iphHGp1-pmGKsKqwur7dM0t3SiA8kA,3398
|
7
|
+
pycoze/ai/llm/think.py,sha256=sUgTBdGzcZtL3r-Wx8M3lDuVUmDVz8g3qC0VU8uiKAI,5143
|
7
8
|
pycoze/automation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
8
9
|
pycoze/automation/browser/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
10
|
pycoze/automation/browser/edge_driver_manager.py,sha256=gpgseunph5owZH6EskSYthuhey2SU3UP204gY0yIcuI,3022
|
@@ -26,13 +27,13 @@ pycoze/ui/__init__.py,sha256=RTEUVXdMo7AYC1wsyS1yl5sLi5vf4bNFv4iggghGEgg,469
|
|
26
27
|
pycoze/ui/base.py,sha256=sbBZGMUtlosWHQJpxMULa1bGByeSlcldtE9QXNyiJmM,1093
|
27
28
|
pycoze/ui/color.py,sha256=cT9Ib8uNzkOKxyW0IwVj46o4LwdB1xgNCj1_Rou9d_4,854
|
28
29
|
pycoze/ui/typ.py,sha256=NpT0FrbHvByOszBZMFtroRp7I7pN-38tYz_zPOPejF4,1723
|
29
|
-
pycoze/ui/ui_def.py,sha256=
|
30
|
+
pycoze/ui/ui_def.py,sha256=lGWZGpzRoegP34D562PvK0EJHrmVZrlHW1JjsIG9A9Q,4521
|
30
31
|
pycoze/utils/__init__.py,sha256=Gi5EnrWZGMD2JRejgV4c_VLCXyvA2wwBFI_niDF5MUE,110
|
31
32
|
pycoze/utils/arg.py,sha256=GtfGbMTMdaK75Fwh6MpUe1pCA5X6Ep4LFG7a72YrzjI,525
|
32
33
|
pycoze/utils/env.py,sha256=W04lhvTHhAAC6EldP6kk2xrctqtu8K6kl1vDLZDNeh8,561
|
33
34
|
pycoze/utils/text_or_file.py,sha256=gpxZVWt2DW6YiEg_MnMuwg36VNf3TX383QD_1oZNB0Y,551
|
34
|
-
pycoze-0.1.
|
35
|
-
pycoze-0.1.
|
36
|
-
pycoze-0.1.
|
37
|
-
pycoze-0.1.
|
38
|
-
pycoze-0.1.
|
35
|
+
pycoze-0.1.226.dist-info/LICENSE,sha256=QStd_Qsd0-kAam_-sOesCIp_uKrGWeoKwt9M49NVkNU,1090
|
36
|
+
pycoze-0.1.226.dist-info/METADATA,sha256=Nx7J6gvZSKT8q7vyzbuSX_R1abxBh2MoKPbrfLsDbSo,726
|
37
|
+
pycoze-0.1.226.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
|
38
|
+
pycoze-0.1.226.dist-info/top_level.txt,sha256=76dPeDhKvOCleL3ZC5gl1-y4vdS1tT_U1hxWVAn7sFo,7
|
39
|
+
pycoze-0.1.226.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|