pycoze 0.1.0__py3-none-any.whl → 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pycoze/bot/__init__.py +0 -0
- pycoze/bot/agent/__init__.py +5 -0
- pycoze/bot/agent/agent.py +67 -0
- pycoze/bot/agent/agent_types/__init__.py +10 -0
- pycoze/bot/agent/agent_types/openai_func_call_agent.py +113 -0
- pycoze/bot/agent/agent_types/react_agent.py +170 -0
- pycoze/bot/agent/agent_types/react_prompt.py +67 -0
- pycoze/bot/agent/assistant.py +35 -0
- pycoze/bot/agent/chat.py +28 -0
- pycoze/bot/base.py +79 -0
- pycoze/bot/bot.py +50 -0
- pycoze/utils/__init__.py +0 -0
- pycoze/utils/arg.py +13 -0
- {pycoze-0.1.0.dist-info → pycoze-0.1.2.dist-info}/METADATA +1 -1
- pycoze-0.1.2.dist-info/RECORD +20 -0
- pycoze-0.1.0.dist-info/RECORD +0 -7
- {pycoze-0.1.0.dist-info → pycoze-0.1.2.dist-info}/LICENSE +0 -0
- {pycoze-0.1.0.dist-info → pycoze-0.1.2.dist-info}/WHEEL +0 -0
- {pycoze-0.1.0.dist-info → pycoze-0.1.2.dist-info}/top_level.txt +0 -0
pycoze/bot/__init__.py
ADDED
File without changes
|
@@ -0,0 +1,67 @@
|
|
1
|
+
import asyncio
|
2
|
+
import json
|
3
|
+
from langchain_openai import ChatOpenAI
|
4
|
+
from .chat import info
|
5
|
+
from .assistant import Runnable
|
6
|
+
from langchain_core.messages import HumanMessage, AIMessage,AIMessageChunk
|
7
|
+
from langchain_core.agents import AgentFinish
|
8
|
+
|
9
|
+
|
10
|
+
|
11
|
+
async def run_agent(agent, inputs: list):
|
12
|
+
if agent.agent_execution_mode == 'FuncCall':
|
13
|
+
content_list = []
|
14
|
+
async for event in agent.astream_events(inputs, version="v2"):
|
15
|
+
kind = event["event"]
|
16
|
+
if kind == "on_chat_model_stream":
|
17
|
+
content = event["data"]["chunk"].content
|
18
|
+
if content:
|
19
|
+
content_list.append(content)
|
20
|
+
info("assistant", content)
|
21
|
+
elif kind == "on_chain_start":
|
22
|
+
data = event["data"]
|
23
|
+
if "input" in data:
|
24
|
+
input_list = data["input"] if isinstance(data["input"], list) else [data["input"]]
|
25
|
+
msg = input_list[-1]
|
26
|
+
if isinstance(msg, AIMessage) and not isinstance(msg, AIMessageChunk):
|
27
|
+
if "tool_calls" in msg.additional_kwargs:
|
28
|
+
tools = [t["function"]["name"] for t in msg.additional_kwargs["tool_calls"]]
|
29
|
+
tools_str = ",".join(tools)
|
30
|
+
info("assistant", f"(调用工具:{tools_str})")
|
31
|
+
|
32
|
+
return "".join(content_list)
|
33
|
+
else:
|
34
|
+
assert agent.agent_execution_mode == 'ReAct'
|
35
|
+
inputs_msg = {'input': inputs[-1].content,'chat_history': inputs[:-1]}
|
36
|
+
use_tools = []
|
37
|
+
async for event in agent.astream_events(inputs_msg, version="v2"):
|
38
|
+
kind = event["event"]
|
39
|
+
result = None
|
40
|
+
if kind == "on_chain_end":
|
41
|
+
if 'data' in event:
|
42
|
+
if 'output' in event['data']:
|
43
|
+
output = event['data']['output']
|
44
|
+
if 'agent_outcome' in output and "input" in output:
|
45
|
+
outcome = output['agent_outcome']
|
46
|
+
if isinstance(outcome, AgentFinish):
|
47
|
+
result = outcome.return_values['output']
|
48
|
+
elif kind == "on_tool_start":
|
49
|
+
use_tools.append(event['name'])
|
50
|
+
info("assistant", f"(调用工具:{use_tools})")
|
51
|
+
return result
|
52
|
+
|
53
|
+
|
54
|
+
if __name__ == "__main__":
|
55
|
+
from langchain_experimental.tools import PythonREPLTool
|
56
|
+
llm_file = r"C:\Users\aiqqq\AppData\Roaming\pycoze\JsonStorage\llm.json"
|
57
|
+
with open(llm_file, "r", encoding="utf-8") as f:
|
58
|
+
cfg = json.load(f)
|
59
|
+
chat = ChatOpenAI(api_key=cfg["apiKey"], base_url=cfg['baseURL'], model=cfg["model"], temperature=0)
|
60
|
+
python_tool = PythonREPLTool()
|
61
|
+
agent = Runnable(agent_execution_mode='FuncCall', # 'FuncCall' or 'ReAct',大模型支持FuncCall的话就用FuncCall
|
62
|
+
tools=[python_tool],
|
63
|
+
llm=chat,
|
64
|
+
assistant_message="请以女友的口吻回答,输出不小于100字,可以随便说点其他的",)
|
65
|
+
|
66
|
+
inputs = [HumanMessage(content="计算根号7+根号88")]
|
67
|
+
print(asyncio.run(run_agent(agent, inputs)))
|
@@ -0,0 +1,113 @@
|
|
1
|
+
# reference:https://github.com/maxtheman/opengpts/blob/d3425b1ba80aec48953a327ecd9a61b80efb0e69/backend/app/agent_types/openai_agent.py
|
2
|
+
import json
|
3
|
+
|
4
|
+
from langchain.tools import BaseTool
|
5
|
+
from langchain_core.utils.function_calling import convert_to_openai_tool
|
6
|
+
from langchain_core.language_models.base import LanguageModelLike
|
7
|
+
from langchain_core.messages import SystemMessage, ToolMessage
|
8
|
+
from langgraph.graph import END
|
9
|
+
from langgraph.graph.message import MessageGraph
|
10
|
+
from langgraph.prebuilt import ToolExecutor, ToolInvocation
|
11
|
+
from typing import Any
|
12
|
+
|
13
|
+
|
14
|
+
def create_openai_func_call_agent_executor(tools: list[BaseTool], llm: LanguageModelLike,
|
15
|
+
system_message: str, **kwargs):
|
16
|
+
|
17
|
+
async def _get_messages(messages):
|
18
|
+
msgs = []
|
19
|
+
for m in messages:
|
20
|
+
if isinstance(m, ToolMessage):
|
21
|
+
_dict = m.dict()
|
22
|
+
_dict['content'] = str(_dict['content'])
|
23
|
+
m_c = ToolMessage(**_dict)
|
24
|
+
msgs.append(m_c)
|
25
|
+
else:
|
26
|
+
msgs.append(m)
|
27
|
+
|
28
|
+
return [SystemMessage(content=system_message)] + msgs
|
29
|
+
|
30
|
+
if tools:
|
31
|
+
llm_with_tools = llm.bind(tools=[convert_to_openai_tool(t) for t in tools])
|
32
|
+
else:
|
33
|
+
llm_with_tools = llm
|
34
|
+
agent = _get_messages | llm_with_tools
|
35
|
+
tool_executor = ToolExecutor(tools)
|
36
|
+
|
37
|
+
# Define the function that determines whether to continue or not
|
38
|
+
def should_continue(messages):
|
39
|
+
# If there is no FuncCall, then we finish
|
40
|
+
last_message = messages[-1]
|
41
|
+
if not last_message.tool_calls:
|
42
|
+
return "end"
|
43
|
+
# Otherwise if there is, we continue
|
44
|
+
else:
|
45
|
+
return "continue"
|
46
|
+
|
47
|
+
# Define the function to execute tools
|
48
|
+
async def call_tool(messages):
|
49
|
+
actions: list[ToolInvocation] = []
|
50
|
+
# Based on the continue condition
|
51
|
+
# we know the last message involves a FuncCall
|
52
|
+
last_message = messages[-1]
|
53
|
+
for tool_call in last_message.additional_kwargs['tool_calls']:
|
54
|
+
function = tool_call['function']
|
55
|
+
function_name = function['name']
|
56
|
+
_tool_input = json.loads(function['arguments'] or '{}')
|
57
|
+
# We construct an ToolInvocation from the function_call
|
58
|
+
actions.append(ToolInvocation(
|
59
|
+
tool=function_name,
|
60
|
+
tool_input=_tool_input,
|
61
|
+
))
|
62
|
+
# We call the tool_executor and get back a response
|
63
|
+
responses = await tool_executor.abatch(actions, **kwargs)
|
64
|
+
# We use the response to create a ToolMessage
|
65
|
+
tool_messages = [
|
66
|
+
ToolMessage(
|
67
|
+
tool_call_id=tool_call['id'],
|
68
|
+
content=response,
|
69
|
+
additional_kwargs={'name': tool_call['function']['name']},
|
70
|
+
)
|
71
|
+
for tool_call, response in zip(last_message.additional_kwargs['tool_calls'], responses)
|
72
|
+
]
|
73
|
+
return tool_messages
|
74
|
+
|
75
|
+
workflow = MessageGraph()
|
76
|
+
|
77
|
+
# Define the two nodes we will cycle between
|
78
|
+
workflow.add_node('agent', agent)
|
79
|
+
workflow.add_node('action', call_tool)
|
80
|
+
|
81
|
+
# Set the entrypoint as `agent`
|
82
|
+
# This means that this node is the first one called
|
83
|
+
workflow.set_entry_point('agent')
|
84
|
+
|
85
|
+
# We now add a conditional edge
|
86
|
+
workflow.add_conditional_edges(
|
87
|
+
# First, we define the start node. We use `agent`.
|
88
|
+
# This means these are the edges taken after the `agent` node is called.
|
89
|
+
'agent',
|
90
|
+
# Next, we pass in the function that will determine which node is called next.
|
91
|
+
should_continue,
|
92
|
+
# Finally we pass in a mapping.
|
93
|
+
# The keys are strings, and the values are other nodes.
|
94
|
+
# END is a special node marking that the graph should finish.
|
95
|
+
# What will happen is we will call `should_continue`, and then the output of that
|
96
|
+
# will be matched against the keys in this mapping.
|
97
|
+
# Based on which one it matches, that node will then be called.
|
98
|
+
{
|
99
|
+
# If `tools`, then we call the tool node.
|
100
|
+
'continue': 'action',
|
101
|
+
# Otherwise we finish.
|
102
|
+
'end': END,
|
103
|
+
},
|
104
|
+
)
|
105
|
+
|
106
|
+
# We now add a normal edge from `tools` to `agent`.
|
107
|
+
# This means that after `tools` is called, `agent` node is called next.
|
108
|
+
workflow.add_edge('action', 'agent')
|
109
|
+
|
110
|
+
# Finally, we compile it!
|
111
|
+
# This compiles it into a LangChain Runnable,
|
112
|
+
# meaning you can use it as you would any other runnable
|
113
|
+
return workflow.compile()
|
@@ -0,0 +1,170 @@
|
|
1
|
+
# https://github.com/langchain-ai/langgraph/blob/ea071935fef240d631305df12b6d83e9c363cef3/libs/langgraph/langgraph/prebuilt/agent_executor.py
|
2
|
+
import operator
|
3
|
+
from typing import Annotated, Sequence, TypedDict, Union
|
4
|
+
from langchain.tools import BaseTool
|
5
|
+
from langchain_core.agents import AgentAction, AgentFinish
|
6
|
+
from langchain_core.messages import BaseMessage
|
7
|
+
from langchain_core.language_models import LanguageModelLike
|
8
|
+
from langgraph.graph import END, StateGraph
|
9
|
+
from langgraph.graph.state import CompiledStateGraph
|
10
|
+
from langgraph.prebuilt.tool_executor import ToolExecutor
|
11
|
+
from langgraph.utils import RunnableCallable
|
12
|
+
from langchain.agents import create_structured_chat_agent
|
13
|
+
from .react_prompt import react_agent_prompt
|
14
|
+
|
15
|
+
|
16
|
+
def create_react_agent_executor(
|
17
|
+
tools: list[BaseTool],
|
18
|
+
llm: LanguageModelLike,
|
19
|
+
system_message: str,
|
20
|
+
**kwargs # ignore
|
21
|
+
):
|
22
|
+
prompt = react_agent_prompt.partial(assistant_message=system_message)
|
23
|
+
agent = create_structured_chat_agent(llm, tools, prompt)
|
24
|
+
agent_executer = create_agent_executor(agent, tools)
|
25
|
+
return agent_executer
|
26
|
+
|
27
|
+
|
28
|
+
def _get_agent_state(input_schema=None):
|
29
|
+
if input_schema is None:
|
30
|
+
|
31
|
+
class AgentState(TypedDict):
|
32
|
+
# The input string
|
33
|
+
input: str
|
34
|
+
# The list of previous messages in the conversation
|
35
|
+
chat_history: Sequence[BaseMessage]
|
36
|
+
# The outcome of a given call to the agent
|
37
|
+
# Needs `None` as a valid type, since this is what this will start as
|
38
|
+
agent_outcome: Union[AgentAction, AgentFinish, None]
|
39
|
+
# List of actions and corresponding observations
|
40
|
+
# Here we annotate this with `operator.add` to indicate that operations to
|
41
|
+
# this state should be ADDED to the existing values (not overwrite it)
|
42
|
+
intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]
|
43
|
+
|
44
|
+
else:
|
45
|
+
|
46
|
+
class AgentState(input_schema):
|
47
|
+
# The outcome of a given call to the agent
|
48
|
+
# Needs `None` as a valid type, since this is what this will start as
|
49
|
+
agent_outcome: Union[AgentAction, AgentFinish, None]
|
50
|
+
# List of actions and corresponding observations
|
51
|
+
# Here we annotate this with `operator.add` to indicate that operations to
|
52
|
+
# this state should be ADDED to the existing values (not overwrite it)
|
53
|
+
intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]
|
54
|
+
|
55
|
+
return AgentState
|
56
|
+
|
57
|
+
|
58
|
+
def create_agent_executor(
|
59
|
+
agent_runnable, tools, input_schema=None
|
60
|
+
) -> CompiledStateGraph:
|
61
|
+
"""This is a helper function for creating a graph that works with LangChain Agents.
|
62
|
+
|
63
|
+
Args:
|
64
|
+
agent_runnable (RunnableLike): The agent runnable.
|
65
|
+
tools (list): A list of tools to be used by the agent.
|
66
|
+
input_schema (dict, optional): The input schema for the agent. Defaults to None.
|
67
|
+
|
68
|
+
Returns:
|
69
|
+
The `CompiledStateGraph` object.
|
70
|
+
"""
|
71
|
+
|
72
|
+
if isinstance(tools, ToolExecutor):
|
73
|
+
tool_executor = tools
|
74
|
+
else:
|
75
|
+
tool_executor = ToolExecutor(tools)
|
76
|
+
|
77
|
+
state = _get_agent_state(input_schema)
|
78
|
+
|
79
|
+
# Define logic that will be used to determine which conditional edge to go down
|
80
|
+
|
81
|
+
def should_continue(data):
|
82
|
+
# If the agent outcome is an AgentFinish, then we return `exit` string
|
83
|
+
# This will be used when setting up the graph to define the flow
|
84
|
+
if isinstance(data["agent_outcome"], AgentFinish):
|
85
|
+
return "end"
|
86
|
+
# Otherwise, an AgentAction is returned
|
87
|
+
# Here we return `continue` string
|
88
|
+
# This will be used when setting up the graph to define the flow
|
89
|
+
else:
|
90
|
+
return "continue"
|
91
|
+
|
92
|
+
def run_agent(data, config):
|
93
|
+
agent_outcome = agent_runnable.invoke(data, config)
|
94
|
+
return {"agent_outcome": agent_outcome}
|
95
|
+
|
96
|
+
async def arun_agent(data, config):
|
97
|
+
agent_outcome = await agent_runnable.ainvoke(data, config)
|
98
|
+
return {"agent_outcome": agent_outcome}
|
99
|
+
|
100
|
+
# Define the function to execute tools
|
101
|
+
def execute_tools(data, config):
|
102
|
+
# Get the most recent agent_outcome - this is the key added in the `agent` above
|
103
|
+
agent_action = data["agent_outcome"]
|
104
|
+
if not isinstance(agent_action, list):
|
105
|
+
agent_action = [agent_action]
|
106
|
+
output = tool_executor.batch(agent_action, config, return_exceptions=True)
|
107
|
+
return {
|
108
|
+
"intermediate_steps": [
|
109
|
+
(action, str(out)) for action, out in zip(agent_action, output)
|
110
|
+
]
|
111
|
+
}
|
112
|
+
|
113
|
+
async def aexecute_tools(data, config):
|
114
|
+
# Get the most recent agent_outcome - this is the key added in the `agent` above
|
115
|
+
agent_action = data["agent_outcome"]
|
116
|
+
if not isinstance(agent_action, list):
|
117
|
+
agent_action = [agent_action]
|
118
|
+
output = await tool_executor.abatch(
|
119
|
+
agent_action, config, return_exceptions=True
|
120
|
+
)
|
121
|
+
return {
|
122
|
+
"intermediate_steps": [
|
123
|
+
(action, str(out)) for action, out in zip(agent_action, output)
|
124
|
+
]
|
125
|
+
}
|
126
|
+
|
127
|
+
# Define a new graph
|
128
|
+
workflow = StateGraph(state)
|
129
|
+
|
130
|
+
# Define the two nodes we will cycle between
|
131
|
+
workflow.add_node("agent", RunnableCallable(run_agent, arun_agent))
|
132
|
+
workflow.add_node("tools", RunnableCallable(execute_tools, aexecute_tools))
|
133
|
+
|
134
|
+
# Set the entrypoint as `agent`
|
135
|
+
# This means that this node is the first one called
|
136
|
+
workflow.set_entry_point("agent")
|
137
|
+
|
138
|
+
# We now add a conditional edge
|
139
|
+
workflow.add_conditional_edges(
|
140
|
+
# First, we define the start node. We use `agent`.
|
141
|
+
# This means these are the edges taken after the `agent` node is called.
|
142
|
+
"agent",
|
143
|
+
# Next, we pass in the function that will determine which node is called next.
|
144
|
+
should_continue,
|
145
|
+
# Finally we pass in a mapping.
|
146
|
+
# The keys are strings, and the values are other nodes.
|
147
|
+
# END is a special node marking that the graph should finish.
|
148
|
+
# What will happen is we will call `should_continue`, and then the output of that
|
149
|
+
# will be matched against the keys in this mapping.
|
150
|
+
# Based on which one it matches, that node will then be called.
|
151
|
+
{
|
152
|
+
# If `tools`, then we call the tool node.
|
153
|
+
"continue": "tools",
|
154
|
+
# Otherwise we finish.
|
155
|
+
"end": END,
|
156
|
+
},
|
157
|
+
)
|
158
|
+
|
159
|
+
# We now add a normal edge from `tools` to `agent`.
|
160
|
+
# This means that after `tools` is called, `agent` node is called next.
|
161
|
+
workflow.add_edge("tools", "agent")
|
162
|
+
|
163
|
+
# Finally, we compile it!
|
164
|
+
# This compiles it into a LangChain Runnable,
|
165
|
+
# meaning you can use it as you would any other runnable
|
166
|
+
return workflow.compile()
|
167
|
+
|
168
|
+
|
169
|
+
if __name__ == "__main__":
|
170
|
+
pass
|
@@ -0,0 +1,67 @@
|
|
1
|
+
from typing import List, Union
|
2
|
+
from langchain_core.prompts.chat import (
|
3
|
+
ChatPromptTemplate,
|
4
|
+
HumanMessagePromptTemplate,
|
5
|
+
SystemMessagePromptTemplate,
|
6
|
+
MessagesPlaceholder
|
7
|
+
)
|
8
|
+
from langchain_core.messages import FunctionMessage, SystemMessage, ToolMessage, AIMessage, HumanMessage, ChatMessage
|
9
|
+
|
10
|
+
|
11
|
+
system_temp = """
|
12
|
+
{assistant_message}
|
13
|
+
|
14
|
+
Respond to the human as helpfully and accurately as possible. You have access to the following tools:
|
15
|
+
|
16
|
+
{tools}
|
17
|
+
|
18
|
+
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
19
|
+
|
20
|
+
Valid "action" values: "Final Answer" or {tool_names}
|
21
|
+
|
22
|
+
Provide only ONE action per $JSON_BLOB, as shown:
|
23
|
+
|
24
|
+
```
|
25
|
+
{{{{
|
26
|
+
"action": $TOOL_NAME,
|
27
|
+
"action_input": $INPUT
|
28
|
+
}}}}
|
29
|
+
```
|
30
|
+
|
31
|
+
Follow this format:
|
32
|
+
|
33
|
+
Question: input question to answer
|
34
|
+
Thought: consider previous and subsequent steps
|
35
|
+
Action:
|
36
|
+
```
|
37
|
+
$JSON_BLOB
|
38
|
+
```
|
39
|
+
Observation: action result
|
40
|
+
... (repeat Thought/Action/Observation N times)
|
41
|
+
Thought: I know what to respond
|
42
|
+
Action:
|
43
|
+
```
|
44
|
+
{{{{
|
45
|
+
"action": "Final Answer",
|
46
|
+
"action_input": "Final response to human"
|
47
|
+
}}}}
|
48
|
+
|
49
|
+
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation
|
50
|
+
"""
|
51
|
+
|
52
|
+
human_temp = """Question: {input}
|
53
|
+
|
54
|
+
Thought: {agent_scratchpad}
|
55
|
+
(reminder to respond in a JSON blob no matter what)"""
|
56
|
+
|
57
|
+
|
58
|
+
react_agent_prompt = ChatPromptTemplate(
|
59
|
+
input_variables=['agent_scratchpad', 'input', 'tool_names', 'tools', 'assistant_message'],
|
60
|
+
optional_variables=['chat_history'],
|
61
|
+
input_types={'chat_history': List[Union[AIMessage, HumanMessage, ChatMessage, SystemMessage, FunctionMessage, ToolMessage]]},
|
62
|
+
messages=[
|
63
|
+
SystemMessagePromptTemplate.from_template(system_temp),
|
64
|
+
MessagesPlaceholder(variable_name='chat_history', optional=True),
|
65
|
+
HumanMessagePromptTemplate.from_template(human_temp)
|
66
|
+
]
|
67
|
+
)
|
@@ -0,0 +1,35 @@
|
|
1
|
+
from typing import Sequence
|
2
|
+
from langchain.tools import BaseTool
|
3
|
+
from langchain_core.language_models.base import LanguageModelLike
|
4
|
+
from langchain_core.runnables import RunnableBinding
|
5
|
+
from .agent_types import create_openai_func_call_agent_executor, create_react_agent_executor
|
6
|
+
|
7
|
+
|
8
|
+
class Runnable(RunnableBinding):
|
9
|
+
agent_execution_mode: str
|
10
|
+
tools: Sequence[BaseTool]
|
11
|
+
llm: LanguageModelLike
|
12
|
+
assistant_message: str
|
13
|
+
|
14
|
+
def __init__(
|
15
|
+
self,
|
16
|
+
*,
|
17
|
+
agent_execution_mode: str,
|
18
|
+
tools: Sequence[BaseTool],
|
19
|
+
llm: LanguageModelLike,
|
20
|
+
assistant_message: str,
|
21
|
+
) -> None:
|
22
|
+
|
23
|
+
if agent_execution_mode == "FuncCall":
|
24
|
+
agent_executor_object = create_openai_func_call_agent_executor
|
25
|
+
else:
|
26
|
+
agent_executor_object = create_react_agent_executor
|
27
|
+
agent_executor = agent_executor_object(tools, llm, assistant_message)
|
28
|
+
agent_executor = agent_executor.with_config({"recursion_limit": 50})
|
29
|
+
super().__init__(
|
30
|
+
tools=tools,
|
31
|
+
llm=llm,
|
32
|
+
agent_execution_mode=agent_execution_mode,
|
33
|
+
assistant_message=assistant_message,
|
34
|
+
bound=agent_executor, return_intermediate_steps=True
|
35
|
+
)
|
pycoze/bot/agent/chat.py
ADDED
@@ -0,0 +1,28 @@
|
|
1
|
+
import json
|
2
|
+
from langchain_core.messages import HumanMessage, AIMessage
|
3
|
+
|
4
|
+
|
5
|
+
INPUT_MESSAGE = "INPUT_MESSAGE=>"
|
6
|
+
_OUTPUT_MESSAGE = "OUTPUT_MESSAGE=>"
|
7
|
+
_INFOMATION_MESSAGE = "INFOMATION_MESSAGE=>"
|
8
|
+
_LOG = "LOG=>"
|
9
|
+
|
10
|
+
|
11
|
+
|
12
|
+
def log(content, *args, end='\n', **kwargs):
|
13
|
+
print(_LOG + content, *args, end=end, **kwargs)
|
14
|
+
|
15
|
+
|
16
|
+
def output(role, content, history):
|
17
|
+
print(_OUTPUT_MESSAGE + json.dumps({"role": role, "content": content}))
|
18
|
+
if role == "assistant":
|
19
|
+
history.append(AIMessage(content=content))
|
20
|
+
|
21
|
+
elif role == "user":
|
22
|
+
history.append(HumanMessage(content=content))
|
23
|
+
else:
|
24
|
+
raise ValueError("Invalid role")
|
25
|
+
return history
|
26
|
+
|
27
|
+
def info(role, content):
|
28
|
+
print(_INFOMATION_MESSAGE + json.dumps({"role": role, "content": content}))
|
pycoze/bot/base.py
ADDED
@@ -0,0 +1,79 @@
|
|
1
|
+
import sys
|
2
|
+
import os
|
3
|
+
import argparse
|
4
|
+
import importlib
|
5
|
+
from langchain.agents import tool as _tool
|
6
|
+
import types
|
7
|
+
import langchain_core
|
8
|
+
|
9
|
+
def wrapped_tool(tool, module_path):
|
10
|
+
old_tool_fun = tool.func
|
11
|
+
def _wrapped_tool(*args, **kwargs):
|
12
|
+
print(f"调用了{tool.name}")
|
13
|
+
old_path = os.getcwd()
|
14
|
+
try:
|
15
|
+
sys.path.insert(0, module_path) # 插入到第一个位置
|
16
|
+
os.chdir(module_path)
|
17
|
+
result = old_tool_fun(*args, **kwargs)
|
18
|
+
finally:
|
19
|
+
sys.path.remove(module_path)
|
20
|
+
os.chdir(old_path)
|
21
|
+
print(f"{tool.name}调用完毕,结果为:", result)
|
22
|
+
return result
|
23
|
+
return _wrapped_tool
|
24
|
+
|
25
|
+
|
26
|
+
def import_tools(tool_id):
|
27
|
+
tool_path = "../../tool"
|
28
|
+
old_path = os.getcwd()
|
29
|
+
module_path = os.path.join(tool_path, tool_id)
|
30
|
+
module_path = os.path.normpath(os.path.abspath(module_path))
|
31
|
+
|
32
|
+
if not os.path.exists(module_path):
|
33
|
+
return []
|
34
|
+
|
35
|
+
# 保存当前的 sys.modules 状态
|
36
|
+
original_modules = sys.modules.copy()
|
37
|
+
|
38
|
+
try:
|
39
|
+
sys.path.insert(0, module_path) # 插入到第一个位置
|
40
|
+
os.chdir(module_path)
|
41
|
+
module = importlib.import_module("tool")
|
42
|
+
export_tools = getattr(module, "export_tools")
|
43
|
+
temp_list = []
|
44
|
+
for tool in export_tools:
|
45
|
+
assert isinstance(tool, langchain_core.tools.StructuredTool) or isinstance(tool, types.FunctionType), f"Tool is not a StructuredTool or function: {tool}"
|
46
|
+
if isinstance(tool, types.FunctionType) and not isinstance(tool, langchain_core.tools.StructuredTool):
|
47
|
+
temp_list.append(_tool(tool))
|
48
|
+
export_tools = temp_list
|
49
|
+
|
50
|
+
except Exception as e:
|
51
|
+
sys.path.remove(module_path)
|
52
|
+
os.chdir(old_path)
|
53
|
+
return []
|
54
|
+
|
55
|
+
# 卸载模块并恢复 sys.modules 状态
|
56
|
+
importlib.invalidate_caches()
|
57
|
+
for key in list(sys.modules.keys()):
|
58
|
+
if key not in original_modules:
|
59
|
+
del sys.modules[key]
|
60
|
+
|
61
|
+
sys.path.remove(module_path)
|
62
|
+
os.chdir(old_path)
|
63
|
+
|
64
|
+
for tool in export_tools:
|
65
|
+
tool.func = wrapped_tool(tool, module_path)
|
66
|
+
|
67
|
+
return export_tools
|
68
|
+
|
69
|
+
|
70
|
+
def read_arg(param: str, is_path=False):
|
71
|
+
parser = argparse.ArgumentParser()
|
72
|
+
parser.add_argument(param, nargs='?', help=f'Parameter {param}')
|
73
|
+
args = parser.parse_args()
|
74
|
+
value = getattr(args, param.lstrip('-'))
|
75
|
+
# 如果是路径并且有引号,去掉引号
|
76
|
+
if is_path and value and value.startswith('"') and value.endswith('"'):
|
77
|
+
value = value[1:-1]
|
78
|
+
|
79
|
+
return value
|
pycoze/bot/bot.py
ADDED
@@ -0,0 +1,50 @@
|
|
1
|
+
import json
|
2
|
+
from langchain_openai import ChatOpenAI
|
3
|
+
from base import import_tools, read_arg
|
4
|
+
from agent import run_agent, Runnable, INPUT_MESSAGE, output
|
5
|
+
import asyncio
|
6
|
+
from langchain_core.messages import HumanMessage
|
7
|
+
|
8
|
+
|
9
|
+
def load_role_setting(bot_setting_file:str):
|
10
|
+
with open(bot_setting_file, "r", encoding="utf-8") as f:
|
11
|
+
return json.load(f)
|
12
|
+
|
13
|
+
def load_tools(bot_setting_file:str):
|
14
|
+
with open(bot_setting_file, "r", encoding="utf-8") as f:
|
15
|
+
role_setting = json.load(f)
|
16
|
+
|
17
|
+
tools = []
|
18
|
+
for tool_id in role_setting["tools"]:
|
19
|
+
tools.extend(import_tools(tool_id))
|
20
|
+
return tools
|
21
|
+
|
22
|
+
|
23
|
+
|
24
|
+
|
25
|
+
def chat(bot_setting_file:str, llm_file:str):
|
26
|
+
history = []
|
27
|
+
|
28
|
+
while True:
|
29
|
+
message = input()
|
30
|
+
role_setting = load_role_setting(bot_setting_file)
|
31
|
+
tools = load_tools(bot_setting_file)
|
32
|
+
if not message.startswith(INPUT_MESSAGE):
|
33
|
+
raise ValueError("Invalid message")
|
34
|
+
message = json.loads(message[len(INPUT_MESSAGE):])["content"]
|
35
|
+
print("user:", message)
|
36
|
+
|
37
|
+
with open(llm_file, "r", encoding="utf-8") as f:
|
38
|
+
cfg = json.load(f)
|
39
|
+
chat = ChatOpenAI(api_key=cfg["apiKey"], base_url=cfg['baseURL'], model=cfg["model"], temperature=role_setting["temperature"])
|
40
|
+
|
41
|
+
|
42
|
+
agent = Runnable(agent_execution_mode='FuncCall', # 'FuncCall' or 'ReAct',大模型支持FuncCall的话就用FuncCall
|
43
|
+
tools=tools,
|
44
|
+
llm=chat,
|
45
|
+
assistant_message=role_setting["prompt"],)
|
46
|
+
|
47
|
+
history += [HumanMessage(content=message)]
|
48
|
+
result = asyncio.run(run_agent(agent, history))
|
49
|
+
output("assistant", result, history)
|
50
|
+
|
pycoze/utils/__init__.py
ADDED
File without changes
|
pycoze/utils/arg.py
ADDED
@@ -0,0 +1,13 @@
|
|
1
|
+
import argparse
|
2
|
+
|
3
|
+
|
4
|
+
def read_arg(param: str, is_path=False):
|
5
|
+
parser = argparse.ArgumentParser()
|
6
|
+
parser.add_argument(param, nargs='?', help=f'Parameter {param}')
|
7
|
+
args = parser.parse_args()
|
8
|
+
value = getattr(args, param.lstrip('-'))
|
9
|
+
# 如果是路径并且有引号,去掉引号
|
10
|
+
if is_path and value and value.startswith('"') and value.endswith('"'):
|
11
|
+
value = value[1:-1]
|
12
|
+
|
13
|
+
return value
|
@@ -0,0 +1,20 @@
|
|
1
|
+
pycoze/__init__.py,sha256=xhKLVAxqUncda3aCjV2ugkU6nLXvpiKty8n2g_u469g,40
|
2
|
+
pycoze/module.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
|
+
pycoze/bot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
|
+
pycoze/bot/base.py,sha256=7sz_OeAqdFSmWsnReaxUku5QU6YEJ3VUFa2BZcVx-uM,2644
|
5
|
+
pycoze/bot/bot.py,sha256=hbhwbGHPIUy7xWv4tSIfxV6TnVSVBpfmnLQGw2YHRBs,1810
|
6
|
+
pycoze/bot/agent/__init__.py,sha256=IaYqQCJ3uBor92JdOxI_EY4HtYOHgej8lijr3UrN1Vc,161
|
7
|
+
pycoze/bot/agent/agent.py,sha256=8vww4POYkXLa5MlKQ5hL6ZIZs5q-Y7FS6SznATrrpjE,3324
|
8
|
+
pycoze/bot/agent/assistant.py,sha256=QLeWaPi415P9jruYOm8qcIbC94cXXAhJYmLTkyC9NTQ,1267
|
9
|
+
pycoze/bot/agent/chat.py,sha256=C2X0meUcIPbn5FCxvhkhxozldPG7qdb2jVR-WnPqqnQ,791
|
10
|
+
pycoze/bot/agent/agent_types/__init__.py,sha256=PoYsSeQld0kdROjejN3BNjC9NsgKNekjNy4FqtWRJqM,227
|
11
|
+
pycoze/bot/agent/agent_types/openai_func_call_agent.py,sha256=YkpiMxrLl7aMYZJsOtZraTT2UE0IZrQsfikGRCHx4jM,4467
|
12
|
+
pycoze/bot/agent/agent_types/react_agent.py,sha256=LwzIovswxPuc08A0imQwK3DIykhlZXK5eCWXcIAuNgM,6741
|
13
|
+
pycoze/bot/agent/agent_types/react_prompt.py,sha256=PdzL3SFb0Ee0dbK4HGqG09bRISrru4bhOj45CXBtqI0,1919
|
14
|
+
pycoze/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
15
|
+
pycoze/utils/arg.py,sha256=NKNSYttFk5y2l2ptk4Fiuk0SHrowYpbvl-xuggYAr4Q,430
|
16
|
+
pycoze-0.1.2.dist-info/LICENSE,sha256=QStd_Qsd0-kAam_-sOesCIp_uKrGWeoKwt9M49NVkNU,1090
|
17
|
+
pycoze-0.1.2.dist-info/METADATA,sha256=Q60lgBOYJ1CL8bRZ74g9O7I7SeHTOUkUktaqJdIgQPg,555
|
18
|
+
pycoze-0.1.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
19
|
+
pycoze-0.1.2.dist-info/top_level.txt,sha256=76dPeDhKvOCleL3ZC5gl1-y4vdS1tT_U1hxWVAn7sFo,7
|
20
|
+
pycoze-0.1.2.dist-info/RECORD,,
|
pycoze-0.1.0.dist-info/RECORD
DELETED
@@ -1,7 +0,0 @@
|
|
1
|
-
pycoze/__init__.py,sha256=xhKLVAxqUncda3aCjV2ugkU6nLXvpiKty8n2g_u469g,40
|
2
|
-
pycoze/module.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
|
-
pycoze-0.1.0.dist-info/LICENSE,sha256=QStd_Qsd0-kAam_-sOesCIp_uKrGWeoKwt9M49NVkNU,1090
|
4
|
-
pycoze-0.1.0.dist-info/METADATA,sha256=scJMwzRvKme7IxVxxJ2C3R5-jb1lbJfloQixR_IXSeo,555
|
5
|
-
pycoze-0.1.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
6
|
-
pycoze-0.1.0.dist-info/top_level.txt,sha256=76dPeDhKvOCleL3ZC5gl1-y4vdS1tT_U1hxWVAn7sFo,7
|
7
|
-
pycoze-0.1.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|