pycoustic 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,234 @@
1
+ # streamlit_pycoustic_app.py
2
+ import ast
3
+ import datetime as dt
4
+ import tempfile
5
+ from pathlib import Path
6
+ from typing import Any, Dict, Iterable
7
+
8
+ import streamlit as st
9
+
10
+ from pycoustic import Log, Survey
11
+
12
+
13
+ def _parse_kwargs(text: str) -> Dict[str, Any]:
14
+ """
15
+ Safely parse a Python dict literal from text area.
16
+ Returns {} if empty or invalid.
17
+ """
18
+ if not text or not text.strip():
19
+ return {}
20
+ try:
21
+ parsed = ast.literal_eval(text)
22
+ return parsed if isinstance(parsed, dict) else {}
23
+ except Exception:
24
+ return {}
25
+
26
+
27
+ def _display_result(obj: Any):
28
+ """
29
+ Display helper to handle common return types.
30
+ """
31
+ # Plotly Figure-like
32
+ if hasattr(obj, "to_plotly_json"):
33
+ st.plotly_chart(obj, use_container_width=True)
34
+ return
35
+
36
+ # Pandas DataFrame-like
37
+ if hasattr(obj, "to_dict") and hasattr(obj, "columns"):
38
+ st.dataframe(obj, use_container_width=True)
39
+ return
40
+
41
+ # Dict/list -> JSON
42
+ if isinstance(obj, (dict, list)):
43
+ st.json(obj)
44
+ return
45
+
46
+ # Fallback
47
+ st.write(obj)
48
+
49
+
50
+ def _ensure_state():
51
+ if "survey" not in st.session_state:
52
+ st.session_state["survey"] = None
53
+ if "periods" not in st.session_state:
54
+ st.session_state["periods"] = {"day": (7, 0), "evening": (19, 0), "night": (23, 0)}
55
+
56
+
57
+ def _write_uploaded_to_temp(uploaded) -> str:
58
+ """
59
+ Persist an UploadedFile to a temporary file and return the path.
60
+ Using a real file path keeps Log(...) happy across environments.
61
+ """
62
+ suffix = Path(uploaded.name).suffix or ".csv"
63
+ with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
64
+ tmp.write(uploaded.getbuffer())
65
+ return tmp.name
66
+
67
+
68
+ def _build_survey_from_files(files) -> Survey:
69
+ """
70
+ Create a Survey and attach Log objects for each uploaded file.
71
+ """
72
+ survey = Survey()
73
+ for f in files:
74
+ # Persist to disk to ensure compatibility with pandas and any path usage in Log
75
+ tmp_path = _write_uploaded_to_temp(f)
76
+ log_obj = Log(path=tmp_path)
77
+
78
+ key = Path(f.name).stem
79
+ # Attach Log to survey
80
+ if hasattr(survey, "add_log"):
81
+ try:
82
+ survey.add_log(key, log_obj)
83
+ except TypeError:
84
+ survey.add_log(log_obj, key)
85
+ else:
86
+ # Fallback to internal storage if no public API is available
87
+ survey._logs[key] = log_obj # noqa: SLF001
88
+ return survey
89
+
90
+
91
+ def _apply_periods_to_all_logs(survey: Survey, times: Dict[str, tuple[int, int]]):
92
+ """
93
+ Apply set_periods to each Log attached to the Survey.
94
+ This avoids calling set_periods on Survey if it doesn't exist.
95
+ """
96
+ logs: Iterable[Log] = getattr(survey, "_logs", {}).values()
97
+ for log in logs:
98
+ if hasattr(log, "set_periods"):
99
+ log.set_periods(times=times)
100
+
101
+
102
+ def _render_period_controls(survey: Survey):
103
+ st.subheader("Assessment Periods")
104
+
105
+ # Current periods from session (defaults set in _ensure_state)
106
+ periods = st.session_state["periods"]
107
+ day_h, day_m = periods["day"]
108
+ eve_h, eve_m = periods["evening"]
109
+ night_h, night_m = periods["night"]
110
+
111
+ c1, c2, c3 = st.columns(3)
112
+ with c1:
113
+ day_time = st.time_input("Day starts", value=dt.time(day_h, day_m), key="period_day_start")
114
+ with c2:
115
+ eve_time = st.time_input("Evening starts", value=dt.time(eve_h, eve_m), key="period_eve_start")
116
+ with c3:
117
+ night_time = st.time_input("Night starts", value=dt.time(night_h, night_m), key="period_night_start")
118
+
119
+ new_periods = {
120
+ "day": (int(day_time.hour), int(day_time.minute)),
121
+ "evening": (int(eve_time.hour), int(eve_time.minute)),
122
+ "night": (int(night_time.hour), int(night_time.minute)),
123
+ }
124
+
125
+ if st.button("Apply periods to all logs", key="apply_periods"):
126
+ try:
127
+ _apply_periods_to_all_logs(survey, new_periods)
128
+ st.session_state["periods"] = new_periods
129
+ st.success("Periods applied to all logs.")
130
+ except Exception as e:
131
+ st.warning(f"Could not set periods: {e}")
132
+
133
+
134
+ def _render_method_runner(survey: Survey, method_name: str, help_text: str = ""):
135
+ """
136
+ Generic UI for running a Survey method with kwargs provided via text area.
137
+ """
138
+ with st.expander(method_name, expanded=True):
139
+ if help_text:
140
+ st.caption(help_text)
141
+
142
+ kwargs_text = st.text_area(
143
+ "kwargs (Python dict literal)",
144
+ value="{}",
145
+ key=f"kwargs_{method_name}",
146
+ placeholder='Example: {"position": "UA1", "date": "2023-06-01"}',
147
+ height=100,
148
+ )
149
+
150
+ kwargs = _parse_kwargs(kwargs_text)
151
+ if st.button(f"Run {method_name}", key=f"run_{method_name}"):
152
+ try:
153
+ fn = getattr(survey, method_name)
154
+ result = fn(**kwargs)
155
+ _display_result(result)
156
+ except AttributeError:
157
+ st.error(f"Survey has no method named '{method_name}'.")
158
+ except Exception as e:
159
+ st.error(f"Error running {method_name}: {e}")
160
+
161
+
162
+ def main():
163
+ st.set_page_config(page_title="pycoustic GUI", layout="wide")
164
+ st.title("pycoustic – Streamlit GUI")
165
+
166
+ _ensure_state()
167
+
168
+ st.sidebar.header("Load CSV Logs")
169
+ files = st.sidebar.file_uploader(
170
+ "Upload one or more CSV files",
171
+ type=["csv"],
172
+ accept_multiple_files=True,
173
+ help="Each file becomes a Log; all Logs go into one Survey."
174
+ )
175
+
176
+ build = st.sidebar.button("Create / Update Survey", type="primary")
177
+
178
+ if build and files:
179
+ try:
180
+ survey = _build_survey_from_files(files)
181
+ # Apply default periods to all logs
182
+ _apply_periods_to_all_logs(survey, st.session_state["periods"])
183
+ st.session_state["survey"] = survey
184
+ st.success("Survey created/updated.")
185
+ except Exception as e:
186
+ st.error(f"Unable to create Survey: {e}")
187
+
188
+ survey: Survey = st.session_state.get("survey")
189
+
190
+ if survey is None:
191
+ st.info("Upload CSV files in the sidebar and click 'Create / Update Survey' to begin.")
192
+ return
193
+
194
+ # Period controls
195
+ _render_period_controls(survey)
196
+
197
+ st.markdown("---")
198
+ st.header("Survey Outputs")
199
+
200
+ _render_method_runner(
201
+ survey,
202
+ "resi_summary",
203
+ help_text="Summary results for residential assessment. Provide any optional kwargs here."
204
+ )
205
+ _render_method_runner(
206
+ survey,
207
+ "modal",
208
+ help_text="Run modal analysis over the survey. Provide any optional kwargs here."
209
+ )
210
+ _render_method_runner(
211
+ survey,
212
+ "leq_spectra",
213
+ help_text="Compute or plot Leq spectra. Provide any optional kwargs here."
214
+ )
215
+ _render_method_runner(
216
+ survey,
217
+ "lmax_spectra",
218
+ help_text="Compute or plot Lmax spectra. Provide any optional kwargs here."
219
+ )
220
+
221
+ st.markdown("---")
222
+ with st.expander("Loaded Logs", expanded=False):
223
+ try:
224
+ names = list(getattr(survey, "_logs", {}).keys())
225
+ if names:
226
+ st.write(", ".join(names))
227
+ else:
228
+ st.write("No logs found in survey.")
229
+ except Exception:
230
+ st.write("Unable to list logs.")
231
+
232
+
233
+ if __name__ == "__main__":
234
+ main()
pycoustic/survey.py CHANGED
@@ -10,7 +10,7 @@ pd.set_option('display.max_rows', None)
10
10
 
11
11
  #survey.leq_spectra() bug
12
12
  #TODO: C:\Users\tonyr\PycharmProjects\pycoustic\.venv1\Lib\site-packages\pycoustic\survey.py:287: FutureWarning: The behavior of pd.concat with len(keys) != len(objs) is deprecated. In a future version this will raise instead of truncating to the smaller of the two sequences combi = pd.concat(all_pos, axis=1, keys=["UA1", "UA2"])
13
-
13
+ #TODO: Survey should make a deep copy of Log objects. Otherwise setting time periods messes it up for other instances.
14
14
 
15
15
  class Survey:
16
16
  """
@@ -39,6 +39,17 @@ class Survey:
39
39
  df.columns = new_cols
40
40
  return df
41
41
 
42
+ # def _leq_by_date(self, data, cols=None):
43
+ # """
44
+ # Delegate Leq-by-date computation to one of the underlying Log instances.
45
+ # Assumes all logs share the same period configuration.
46
+ # """
47
+ # if not getattr(self, "_logs", None):
48
+ # raise AttributeError("Survey has no logs available to compute _leq_by_date")
49
+ # any_log = next(iter(self._logs.values()))
50
+ # if not hasattr(any_log, "_leq_by_date"):
51
+ # raise AttributeError("Underlying Log does not implement _leq_by_date")
52
+ # return any_log._leq_by_date(data, cols=cols)
42
53
  # ###########################---PUBLIC---######################################
43
54
 
44
55
  def set_periods(self, times=None):
@@ -105,51 +116,54 @@ class Survey:
105
116
  leq_cols = [("Leq", "A")]
106
117
  if max_cols is None:
107
118
  max_cols = [("Lmax", "A")]
108
- for key in self._logs.keys():
109
- log = self._logs[key]
119
+
120
+ for key, lg in self._logs.items(): # changed: iterate items() to get lg directly
110
121
  combined_list = []
122
+ headers_for_log = [] # new: collect headers per log
123
+
111
124
  # Day
112
- days = log._leq_by_date(log._get_period(data=log.get_antilogs(), period="days"), cols=leq_cols)
125
+ days = lg.leq_by_date(lg.get_period(data=lg.get_antilogs(), period="days"), cols=leq_cols)
113
126
  days.sort_index(inplace=True)
114
127
  combined_list.append(days)
115
- period_headers = ["Daytime" for i in range(len(leq_cols))]
128
+ headers_for_log.extend(["Daytime"] * len(leq_cols)) # changed: don't reset global headers
129
+
116
130
  # Evening
117
- if log.is_evening():
118
- evenings = log._leq_by_date(log._get_period(data=log.get_antilogs(), period="evenings"), cols=leq_cols)
131
+ if lg.is_evening():
132
+ evenings = lg.leq_by_date(lg.get_period(data=lg.get_antilogs(), period="evenings"), cols=leq_cols)
119
133
  evenings.sort_index(inplace=True)
120
134
  combined_list.append(evenings)
121
- for i in range(len(leq_cols)):
122
- period_headers.append("Evening")
135
+ headers_for_log.extend(["Evening"] * len(leq_cols))
136
+
123
137
  # Night Leq
124
- nights = log._leq_by_date(log._get_period(data=log.get_antilogs(), period="nights"), cols=leq_cols)
138
+ nights = lg.leq_by_date(lg.get_period(data=lg.get_antilogs(), period="nights"), cols=leq_cols)
125
139
  nights.sort_index(inplace=True)
126
140
  combined_list.append(nights)
127
- for i in range(len(leq_cols)):
128
- period_headers.append("Night-time")
141
+ headers_for_log.extend(["Night-time"] * len(leq_cols))
142
+
129
143
  # Night max
130
- maxes = log.as_interval(t=lmax_t)
131
- maxes = log._get_period(data=maxes, period="nights", night_idx=True)
132
- maxes = log.get_nth_high_low(n=lmax_n, data=maxes)[max_cols]
144
+ maxes = lg.as_interval(t=lmax_t)
145
+ maxes = lg.get_period(data=maxes, period="nights", night_idx=True)
146
+ maxes = lg.get_nth_high_low(n=lmax_n, data=maxes)[max_cols]
133
147
  maxes.sort_index(inplace=True)
134
- # +++
135
- # SS Feb2025 - Code changed to prevent exception
136
- #maxes.index = maxes.index.date
137
148
  try:
138
149
  maxes.index = pd.to_datetime(maxes.index)
139
150
  maxes.index = maxes.index.date
140
151
  except Exception as e:
141
152
  print(f"Error converting index to date: {e}")
142
- # SSS ---
143
153
  maxes.index.name = None
144
154
  combined_list.append(maxes)
145
- for i in range(len(max_cols)):
146
- period_headers.append("Night-time")
155
+ headers_for_log.extend(["Night-time"] * len(max_cols))
156
+
147
157
  summary = pd.concat(objs=combined_list, axis=1)
148
158
  summary = self._insert_multiindex(df=summary, super=key)
149
159
  combi = pd.concat(objs=[combi, summary], axis=0)
160
+
161
+ # append this log's headers to the global list
162
+ period_headers.extend(headers_for_log)
163
+
150
164
  combi = self._insert_header(df=combi, new_head_list=period_headers, header_idx=0)
151
165
  return combi
152
-
166
+ #test
153
167
  def modal(self, cols=None, by_date=False, day_t="60min", evening_t="60min", night_t="15min"):
154
168
  """
155
169
  Get a dataframe summarising Modal L90 values for each time period, as suggested by BS 4142:2014.
@@ -200,6 +214,7 @@ class Survey:
200
214
  return combi
201
215
 
202
216
  def counts(self, cols=None, day_t="60min", evening_t="60min", night_t="15min"):
217
+ #TODO Need to order rows and rename from 'date'
203
218
  """
204
219
  Returns counts for each time period. For example, this can return the number of L90 occurrences at each decibel
205
220
  level for daytime and night-time periods.
@@ -327,3 +342,91 @@ class Survey:
327
342
  raise ValueError("No weather history available. Use Survey.weather() first.")
328
343
  return pd.DataFrame([self._weatherhist.min(), self._weatherhist.max(), self._weatherhist.mean()],
329
344
  index=["Min", "Max", "Mean"]).drop(columns=["dt"]).round(decimals=1)
345
+
346
+
347
+ # TODO: Fix this bug in weatherhist
348
+ # survey.weather(api_key=r"eef3f749e018627b70c2ead1475a1a32", postcode="HA8")
349
+ # dt temp pressure humidity clouds wind_speed wind_deg \
350
+ # 0 2025-09-03 08:59:00 17.52 998 97 75 6.69 210
351
+ # 1 2025-09-03 14:59:00 19.85 997 84 40 9.26 220
352
+ # 2 2025-09-03 20:59:00 16.27 1003.0 90.0 20.0 4.63 240.0
353
+ # 3 2025-09-04 02:59:00 14.59 1005.0 91.0 99.0 3.09 230.0
354
+ # 4 2025-09-04 08:59:00 15.08 1004 93 40 4.12 200
355
+ # 5 2025-09-04 14:59:00 18.73 1007 63 40 8.75 260
356
+ # 6 2025-09-04 20:59:00 15.64 1013.0 76.0 0.0 3.6 270.0
357
+ # 7 2025-09-05 02:59:00 11.42 1016.0 94.0 0.0 3.09 260.0
358
+ # 8 2025-09-05 08:59:00 14.12 1020.0 89.0 20.0 3.09 270.0
359
+ # 9 2025-09-05 14:59:00 22.16 1021.0 50.0 0.0 4.12 280.0
360
+ # 10 2025-09-05 20:59:00 17.38 1023.0 75.0 75.0 3.09 220.0
361
+ # 11 2025-09-06 02:59:00 14.37 1022.0 83.0 99.0 1.78 187.0
362
+ # 12 2025-09-06 08:59:00 16.44 1020.0 73.0 100.0 3.48 138.0
363
+ # 13 2025-09-06 14:59:00 23.21 1037.0 50.0 0.0 7.72 160.0
364
+ # 14 2025-09-06 20:59:00 18.5 1035.0 75.0 93.0 3.6 120.0
365
+ # 15 2025-09-07 02:59:00 16.06 1031.0 77.0 84.0 3.09 120.0
366
+ # 16 2025-09-07 08:59:00 18.78 1029.0 77.0 0.0 4.63 110.0
367
+ # 17 2025-09-07 14:59:00 23.82 1027.0 67.0 75.0 8.75 200.0
368
+ # 18 2025-09-07 20:59:00 19.38 1031.0 76.0 72.0 4.63 200.0
369
+ # 19 2025-09-08 02:59:00 14.49 1034.0 91.0 4.0 1.54 190.0
370
+ # 20 2025-09-08 08:59:00 14.84 1037.0 85.0 20.0 4.12 240.0
371
+ # rain wind_gust uvi
372
+ # 0 {'1h': 0.25} NaN NaN
373
+ # 1 {'1h': 1.27} 14.92 NaN
374
+ # 2 NaN NaN NaN
375
+ # 3 NaN NaN NaN
376
+ # 4 {'1h': 1.27} NaN NaN
377
+ # 5 {'3h': 0.13} NaN NaN
378
+ # 6 NaN NaN NaN
379
+ # 7 NaN NaN NaN
380
+ # 8 NaN NaN NaN
381
+ # 9 NaN NaN NaN
382
+ # 10 NaN NaN NaN
383
+ # 11 NaN 3.31 0.0
384
+ # 12 NaN 7.4 0.86
385
+ # 13 NaN NaN 2.96
386
+ # 14 NaN NaN 0.0
387
+ # 15 NaN NaN 0.0
388
+ # 16 NaN NaN 1.1
389
+ # 17 NaN NaN 2.24
390
+ # 18 NaN NaN 0.0
391
+ # 19 NaN NaN 0.0
392
+ # 20 NaN NaN 1.12
393
+ # survey.weather_summary()
394
+ # Traceback (most recent call last):
395
+ # File "<input>", line 1, in <module>
396
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pycoustic\survey.py", line 328, in weather_summary
397
+ # return pd.DataFrame([self._weatherhist.min(), self._weatherhist.max(), self._weatherhist.mean()],
398
+ # ^^^^^^^^^^^^^^^^^^^^^^^
399
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\frame.py", line 11643, in min
400
+ # result = super().min(axis, skipna, numeric_only, **kwargs)
401
+ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
402
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\generic.py", line 12388, in min
403
+ # return self._stat_function(
404
+ # ^^^^^^^^^^^^^^^^^^^^
405
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\generic.py", line 12377, in _stat_function
406
+ # return self._reduce(
407
+ # ^^^^^^^^^^^^^
408
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\frame.py", line 11562, in _reduce
409
+ # res = df._mgr.reduce(blk_func)
410
+ # ^^^^^^^^^^^^^^^^^^^^^^^^
411
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\internals\managers.py", line 1500, in reduce
412
+ # nbs = blk.reduce(func)
413
+ # ^^^^^^^^^^^^^^^^
414
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\internals\blocks.py", line 404, in reduce
415
+ # result = func(self.values)
416
+ # ^^^^^^^^^^^^^^^^^
417
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\frame.py", line 11481, in blk_func
418
+ # return op(values, axis=axis, skipna=skipna, **kwds)
419
+ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
420
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\nanops.py", line 147, in f
421
+ # result = alt(values, axis=axis, skipna=skipna, **kwds)
422
+ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
423
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\nanops.py", line 404, in new_func
424
+ # result = func(values, axis=axis, skipna=skipna, mask=mask, **kwargs)
425
+ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
426
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\pandas\core\nanops.py", line 1098, in reduction
427
+ # result = getattr(values, meth)(axis)
428
+ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^
429
+ # File "C:\Users\tonyr\PycharmProjects\pycoustic\.venv2\Lib\site-packages\numpy\_core\_methods.py", line 48, in _amin
430
+ # return umr_minimum(a, axis, None, out, keepdims, initial, where)
431
+ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
432
+ # TypeError: '<=' not supported between instances of 'dict' and 'dict'
pycoustic/weather.py CHANGED
@@ -93,3 +93,4 @@ class WeatherHistory:
93
93
 
94
94
  def get_weather_history(self):
95
95
  return self._hist
96
+
@@ -1,11 +1,13 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pycoustic
3
- Version: 0.1.7
3
+ Version: 0.1.9
4
4
  Summary:
5
5
  Author: thumpercastle
6
6
  Author-email: tony.ryb@gmail.com
7
- Requires-Python: >=3.11.9,<4.0
7
+ Requires-Python: >=3.10,<=3.13
8
8
  Classifier: Programming Language :: Python :: 3
9
+ Classifier: Programming Language :: Python :: 3.10
10
+ Classifier: Programming Language :: Python :: 3.11
9
11
  Classifier: Programming Language :: Python :: 3.12
10
12
  Classifier: Programming Language :: Python :: 3.13
11
13
  Requires-Dist: numpy (==2.2.6)
@@ -0,0 +1,14 @@
1
+ pycoustic/__init__.py,sha256=jq9Tzc5nEgXh8eNf0AkAypmw3Dda9A-iSy-tyFaTksA,89
2
+ pycoustic/log.py,sha256=e8rAy9hIYP2H-3vTDVe0-6swe_n_gXjuFCu6Q-xNiYQ,17827
3
+ pycoustic/pycoustic_gui_app-ai.py,sha256=nEX7Q5oWzTLmtC_xqbh74vXpQak8gwuqf2ScPq1Ir7o,24432
4
+ pycoustic/pycoustic_gui_app.py,sha256=Hs61Y8fAp7uoRONa4RLSVl0UvGXZZ96n5eJGilErlAU,11143
5
+ pycoustic/pycoustic_streamlit_gpt5.py,sha256=gpkPPBGwADt9HFI4S7YD1U-TjpLTMVwcBUJd7wTefek,14259
6
+ pycoustic/streamlit-ai.py,sha256=OZdrQbGwQyVvA_4Q8bTOCZUZGdSlZG9NL9z3f16W-A8,16414
7
+ pycoustic/streamlit-new.py,sha256=AR5dwQinMXugvGcyNvI_W59bfFRGj6E90Fqah9toKto,4885
8
+ pycoustic/streamlit_pycoustic_gpt5_dead.py,sha256=sFUxLkvNUZoh2cVzruqsJJiLIlJxOQQpYYK6oHZfPlM,7309
9
+ pycoustic/survey.py,sha256=6gC2sd0vOusx8bEyCwqmfSR5k04VeV93Ong0OdEVVks,24071
10
+ pycoustic/tkgui.py,sha256=YAy5f_qkXZ3yU8BvB-nIVQX1fYwPs_IkwmDEXHPMAa4,13997
11
+ pycoustic/weather.py,sha256=q9FbDKjY0WaNvaYMHeDk7Bhbq0_Q7ehsTM_vUaCjeAk,3753
12
+ pycoustic-0.1.9.dist-info/METADATA,sha256=2NDXL0ovNkEJKxx-P2ErBkdTHNA1AWL77RFAaKQdI6o,8515
13
+ pycoustic-0.1.9.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
14
+ pycoustic-0.1.9.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- pycoustic/__init__.py,sha256=jq9Tzc5nEgXh8eNf0AkAypmw3Dda9A-iSy-tyFaTksA,89
2
- pycoustic/log.py,sha256=HNdS2hKKbUdqY7iAMj9QJqoI9r4ZtJ7GCXnIx8XpTH4,17145
3
- pycoustic/survey.py,sha256=KTNCt4kV63Dq06RCbh9G9Nl8Frk8NsTt6AhxiMIEixg,17746
4
- pycoustic/tkgui.py,sha256=YAy5f_qkXZ3yU8BvB-nIVQX1fYwPs_IkwmDEXHPMAa4,13997
5
- pycoustic/weather.py,sha256=3FIzpp3jniA1SRObMCnKsobVFZxJX5gpugsAWA3bH8o,3751
6
- pycoustic-0.1.7.dist-info/METADATA,sha256=SEdgTvtyNxGVcgYFKrjwIh0TZw5gUzHoc_GRGaxkykg,8413
7
- pycoustic-0.1.7.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
8
- pycoustic-0.1.7.dist-info/RECORD,,