pyconvexity 0.4.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyconvexity might be problematic. Click here for more details.

Files changed (44) hide show
  1. pyconvexity/__init__.py +241 -0
  2. pyconvexity/_version.py +1 -0
  3. pyconvexity/core/__init__.py +60 -0
  4. pyconvexity/core/database.py +485 -0
  5. pyconvexity/core/errors.py +106 -0
  6. pyconvexity/core/types.py +400 -0
  7. pyconvexity/dashboard.py +265 -0
  8. pyconvexity/data/README.md +101 -0
  9. pyconvexity/data/__init__.py +17 -0
  10. pyconvexity/data/loaders/__init__.py +3 -0
  11. pyconvexity/data/loaders/cache.py +213 -0
  12. pyconvexity/data/schema/01_core_schema.sql +420 -0
  13. pyconvexity/data/schema/02_data_metadata.sql +120 -0
  14. pyconvexity/data/schema/03_validation_data.sql +507 -0
  15. pyconvexity/data/sources/__init__.py +5 -0
  16. pyconvexity/data/sources/gem.py +442 -0
  17. pyconvexity/io/__init__.py +26 -0
  18. pyconvexity/io/excel_exporter.py +1226 -0
  19. pyconvexity/io/excel_importer.py +1381 -0
  20. pyconvexity/io/netcdf_exporter.py +191 -0
  21. pyconvexity/io/netcdf_importer.py +1802 -0
  22. pyconvexity/models/__init__.py +195 -0
  23. pyconvexity/models/attributes.py +730 -0
  24. pyconvexity/models/carriers.py +159 -0
  25. pyconvexity/models/components.py +611 -0
  26. pyconvexity/models/network.py +503 -0
  27. pyconvexity/models/results.py +148 -0
  28. pyconvexity/models/scenarios.py +234 -0
  29. pyconvexity/solvers/__init__.py +29 -0
  30. pyconvexity/solvers/pypsa/__init__.py +30 -0
  31. pyconvexity/solvers/pypsa/api.py +446 -0
  32. pyconvexity/solvers/pypsa/batch_loader.py +296 -0
  33. pyconvexity/solvers/pypsa/builder.py +655 -0
  34. pyconvexity/solvers/pypsa/clearing_price.py +678 -0
  35. pyconvexity/solvers/pypsa/constraints.py +405 -0
  36. pyconvexity/solvers/pypsa/solver.py +1442 -0
  37. pyconvexity/solvers/pypsa/storage.py +2096 -0
  38. pyconvexity/timeseries.py +330 -0
  39. pyconvexity/validation/__init__.py +25 -0
  40. pyconvexity/validation/rules.py +312 -0
  41. pyconvexity-0.4.8.dist-info/METADATA +148 -0
  42. pyconvexity-0.4.8.dist-info/RECORD +44 -0
  43. pyconvexity-0.4.8.dist-info/WHEEL +5 -0
  44. pyconvexity-0.4.8.dist-info/top_level.txt +1 -0
@@ -0,0 +1,296 @@
1
+ """
2
+ PyPSA Batch Data Loader
3
+ Simplified to always create MultiIndex timeseries for consistent multi-period optimization.
4
+ """
5
+
6
+ import pandas as pd
7
+ import json
8
+ from typing import Dict, Any, List, Optional
9
+
10
+ from pyconvexity.models.attributes import get_timeseries
11
+ from pyconvexity.models import get_network_time_periods
12
+
13
+
14
+ class PyPSABatchLoader:
15
+ """
16
+ Simplified batch data loader for PyPSA network construction.
17
+ Always creates MultiIndex timeseries for consistent multi-period optimization.
18
+ """
19
+
20
+ def __init__(self):
21
+ pass
22
+
23
+ def batch_load_component_attributes(
24
+ self, conn, component_ids: List[int], scenario_id: Optional[int]
25
+ ) -> Dict[int, Dict[str, Any]]:
26
+ """Batch load all static attributes for multiple components to avoid N+1 queries (single network per database)"""
27
+ if not component_ids:
28
+ return {}
29
+
30
+ # Build a single query to get all attributes for all components
31
+ placeholders = ",".join(["?" for _ in component_ids])
32
+
33
+ # Get all attribute names for all components in one query
34
+ cursor = conn.execute(
35
+ f"""
36
+ SELECT DISTINCT attribute_name
37
+ FROM component_attributes
38
+ WHERE component_id IN ({placeholders}) AND storage_type = 'static'
39
+ """,
40
+ component_ids,
41
+ )
42
+ all_attribute_names = [row[0] for row in cursor.fetchall()]
43
+
44
+ if not all_attribute_names:
45
+ return {comp_id: {} for comp_id in component_ids}
46
+
47
+ # Build query to get all attributes for all components
48
+ attr_placeholders = ",".join(["?" for _ in all_attribute_names])
49
+
50
+ # Scenario fallback: scenario_id -> NULL (base network)
51
+ # Query for both scenario-specific and base network attributes
52
+ if scenario_id is not None:
53
+ # Get both scenario and base network values (scenario takes precedence)
54
+ query = f"""
55
+ SELECT component_id, attribute_name, static_value, data_type, scenario_id
56
+ FROM component_attributes
57
+ WHERE component_id IN ({placeholders})
58
+ AND attribute_name IN ({attr_placeholders})
59
+ AND (scenario_id = ? OR scenario_id IS NULL)
60
+ AND storage_type = 'static'
61
+ ORDER BY component_id, attribute_name,
62
+ CASE WHEN scenario_id = ? THEN 0 ELSE 1 END
63
+ """
64
+ query_params = (
65
+ component_ids + all_attribute_names + [scenario_id, scenario_id]
66
+ )
67
+ else:
68
+ # Get only base network attributes (scenario_id IS NULL)
69
+ query = f"""
70
+ SELECT component_id, attribute_name, static_value, data_type, scenario_id
71
+ FROM component_attributes
72
+ WHERE component_id IN ({placeholders})
73
+ AND attribute_name IN ({attr_placeholders})
74
+ AND scenario_id IS NULL
75
+ AND storage_type = 'static'
76
+ ORDER BY component_id, attribute_name
77
+ """
78
+ query_params = component_ids + all_attribute_names
79
+
80
+ cursor = conn.execute(query, query_params)
81
+
82
+ # Group by component_id, preferring current scenario over master
83
+ component_attributes = {}
84
+ for comp_id in component_ids:
85
+ component_attributes[comp_id] = {}
86
+
87
+ # Process results, preferring current scenario over master
88
+ rows = cursor.fetchall()
89
+
90
+ for row in rows:
91
+ comp_id, attr_name, static_value_json, data_type, row_scenario_id = row
92
+
93
+ # Ensure component exists in our dictionary (safety check)
94
+ if comp_id not in component_attributes:
95
+ continue
96
+
97
+ # Skip if we already have this attribute from a preferred scenario
98
+ if attr_name in component_attributes[comp_id]:
99
+ continue
100
+
101
+ # Parse JSON value
102
+ json_value = json.loads(static_value_json)
103
+
104
+ # Convert based on data type
105
+ if data_type == "float":
106
+ value = (
107
+ float(json_value) if isinstance(json_value, (int, float)) else 0.0
108
+ )
109
+ elif data_type == "int":
110
+ value = int(json_value) if isinstance(json_value, (int, float)) else 0
111
+ elif data_type == "boolean":
112
+ value = bool(json_value) if isinstance(json_value, bool) else False
113
+ elif data_type == "string":
114
+ value = str(json_value) if isinstance(json_value, str) else ""
115
+ else:
116
+ value = json_value
117
+
118
+ component_attributes[comp_id][attr_name] = value
119
+
120
+ return component_attributes
121
+
122
+ def batch_load_component_connections(self, conn) -> Dict[str, Dict[str, str]]:
123
+ """Batch load bus and carrier connections to avoid individual lookups (single network per database)"""
124
+ # Get all bus names in one query
125
+ cursor = conn.execute(
126
+ """
127
+ SELECT id, name FROM components
128
+ WHERE component_type = 'BUS'
129
+ """
130
+ )
131
+ bus_id_to_name = {row[0]: row[1] for row in cursor.fetchall()}
132
+
133
+ # Get all carrier names in one query
134
+ cursor = conn.execute(
135
+ """
136
+ SELECT id, name FROM carriers
137
+ """
138
+ )
139
+ carrier_id_to_name = {row[0]: row[1] for row in cursor.fetchall()}
140
+
141
+ return {
142
+ "bus_id_to_name": bus_id_to_name,
143
+ "carrier_id_to_name": carrier_id_to_name,
144
+ }
145
+
146
+ def batch_load_component_timeseries(
147
+ self, conn, component_ids: List[int], scenario_id: Optional[int]
148
+ ) -> Dict[int, Dict[str, pd.Series]]:
149
+ """Batch load all timeseries attributes - always create MultiIndex for consistency (single network per database)"""
150
+ if not component_ids:
151
+ return {}
152
+
153
+ # Get network time periods for proper timestamp alignment
154
+ network_time_periods = get_network_time_periods(conn)
155
+ if not network_time_periods:
156
+ return {comp_id: {} for comp_id in component_ids}
157
+
158
+ # Convert to timestamps and extract years
159
+ timestamps = [pd.Timestamp(tp.formatted_time) for tp in network_time_periods]
160
+ years = sorted(list(set([ts.year for ts in timestamps])))
161
+
162
+ # Build a single query to get all timeseries attributes for all components
163
+ placeholders = ",".join(["?" for _ in component_ids])
164
+
165
+ # Get all attribute names for all components in one query
166
+ cursor = conn.execute(
167
+ f"""
168
+ SELECT DISTINCT attribute_name
169
+ FROM component_attributes
170
+ WHERE component_id IN ({placeholders}) AND storage_type = 'timeseries'
171
+ """,
172
+ component_ids,
173
+ )
174
+ all_attribute_names = [row[0] for row in cursor.fetchall()]
175
+
176
+ if not all_attribute_names:
177
+ return {comp_id: {} for comp_id in component_ids}
178
+
179
+ # Build query to get all timeseries for all components
180
+ attr_placeholders = ",".join(["?" for _ in all_attribute_names])
181
+
182
+ # Scenario fallback: scenario_id -> NULL (base network)
183
+ if scenario_id is not None:
184
+ # Get both scenario and base network timeseries (scenario takes precedence)
185
+ query = f"""
186
+ SELECT component_id, attribute_name, timeseries_data, scenario_id
187
+ FROM component_attributes
188
+ WHERE component_id IN ({placeholders})
189
+ AND attribute_name IN ({attr_placeholders})
190
+ AND (scenario_id = ? OR scenario_id IS NULL)
191
+ AND storage_type = 'timeseries'
192
+ ORDER BY component_id, attribute_name,
193
+ CASE WHEN scenario_id = ? THEN 0 ELSE 1 END
194
+ """
195
+ query_params = (
196
+ component_ids + all_attribute_names + [scenario_id, scenario_id]
197
+ )
198
+ else:
199
+ # Get only base network timeseries (scenario_id IS NULL)
200
+ query = f"""
201
+ SELECT component_id, attribute_name, timeseries_data, scenario_id
202
+ FROM component_attributes
203
+ WHERE component_id IN ({placeholders})
204
+ AND attribute_name IN ({attr_placeholders})
205
+ AND scenario_id IS NULL
206
+ AND storage_type = 'timeseries'
207
+ ORDER BY component_id, attribute_name
208
+ """
209
+ query_params = component_ids + all_attribute_names
210
+
211
+ cursor = conn.execute(query, query_params)
212
+
213
+ # Group by component_id, preferring current scenario over master
214
+ component_timeseries = {}
215
+ for comp_id in component_ids:
216
+ component_timeseries[comp_id] = {}
217
+
218
+ # Process results, preferring current scenario over master
219
+ rows = cursor.fetchall()
220
+
221
+ for row in rows:
222
+ comp_id, attr_name, timeseries_data, row_scenario_id = row
223
+
224
+ # Ensure component exists in our dictionary (safety check)
225
+ if comp_id not in component_timeseries:
226
+ continue
227
+
228
+ # Skip if we already have this attribute from a preferred scenario
229
+ if attr_name in component_timeseries[comp_id]:
230
+ continue
231
+
232
+ # Deserialize timeseries data
233
+ try:
234
+ timeseries = get_timeseries(conn, comp_id, attr_name, row_scenario_id)
235
+ if timeseries and timeseries.values:
236
+ values = timeseries.values
237
+
238
+ # Always create MultiIndex following PyPSA multi-investment tutorial format
239
+ # First level: investment periods (years), Second level: timesteps
240
+ multi_snapshots = []
241
+ for i, ts in enumerate(timestamps[: len(values)]):
242
+ multi_snapshots.append((ts.year, ts))
243
+
244
+ if multi_snapshots:
245
+ multi_index = pd.MultiIndex.from_tuples(
246
+ multi_snapshots, names=["period", "timestep"]
247
+ )
248
+ component_timeseries[comp_id][attr_name] = pd.Series(
249
+ values, index=multi_index
250
+ )
251
+
252
+ except Exception:
253
+ continue
254
+
255
+ return component_timeseries
256
+
257
+ def batch_load_all_component_timeseries_by_type(
258
+ self, conn, component_type: str, scenario_id: Optional[int]
259
+ ) -> Dict[str, pd.DataFrame]:
260
+ """
261
+ Load all timeseries attributes for a component type and organize by attribute name (single network per database).
262
+ This is a compatibility method for the existing _load_all_component_timeseries interface.
263
+ """
264
+ from pyconvexity.models import list_components_by_type
265
+
266
+ components = list_components_by_type(conn, component_type)
267
+ component_ids = [comp.id for comp in components]
268
+
269
+ # Use batch loading
270
+ component_timeseries = self.batch_load_component_timeseries(
271
+ conn, component_ids, scenario_id
272
+ )
273
+
274
+ # Reorganize by attribute name (matching original interface)
275
+ timeseries_by_attr = {}
276
+
277
+ for component in components:
278
+ comp_timeseries = component_timeseries.get(component.id, {})
279
+
280
+ for attr_name, series in comp_timeseries.items():
281
+ if attr_name not in timeseries_by_attr:
282
+ timeseries_by_attr[attr_name] = {}
283
+
284
+ # Store series in dict first
285
+ timeseries_by_attr[attr_name][component.name] = series
286
+
287
+ # Convert to DataFrames all at once to avoid fragmentation
288
+ for attr_name in timeseries_by_attr:
289
+ if timeseries_by_attr[attr_name]:
290
+ timeseries_by_attr[attr_name] = pd.DataFrame(
291
+ timeseries_by_attr[attr_name]
292
+ )
293
+ else:
294
+ timeseries_by_attr[attr_name] = pd.DataFrame()
295
+
296
+ return timeseries_by_attr