pycityagent 2.0.0a53__cp39-cp39-macosx_11_0_arm64.whl → 2.0.0a54__cp39-cp39-macosx_11_0_arm64.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,11 +1,11 @@
1
1
  import asyncio
2
2
  import logging
3
3
  from collections import defaultdict
4
- from collections.abc import Callable, Sequence
4
+ from collections.abc import Callable, Coroutine, Sequence
5
5
  from copy import deepcopy
6
- from typing import Any, Literal, Optional, Union, Dict
7
6
  from dataclasses import dataclass
8
7
  from enum import Enum
8
+ from typing import Any, Dict, Literal, Optional, Union
9
9
 
10
10
  from langchain_core.embeddings import Embeddings
11
11
  from pyparsing import deque
@@ -19,8 +19,10 @@ from .state import StateMemory
19
19
 
20
20
  logger = logging.getLogger("pycityagent")
21
21
 
22
+
22
23
  class MemoryTag(str, Enum):
23
24
  """记忆标签枚举类"""
25
+
24
26
  MOBILITY = "mobility"
25
27
  SOCIAL = "social"
26
28
  ECONOMY = "economy"
@@ -28,9 +30,11 @@ class MemoryTag(str, Enum):
28
30
  OTHER = "other"
29
31
  EVENT = "event"
30
32
 
33
+
31
34
  @dataclass
32
35
  class MemoryNode:
33
36
  """记忆节点"""
37
+
34
38
  tag: MemoryTag
35
39
  day: int
36
40
  t: int
@@ -39,8 +43,10 @@ class MemoryNode:
39
43
  cognition_id: Optional[int] = None # 关联的认知记忆ID
40
44
  id: Optional[int] = None # 记忆ID
41
45
 
46
+
42
47
  class StreamMemory:
43
48
  """用于存储时序性的流式信息"""
49
+
44
50
  def __init__(self, max_len: int = 1000):
45
51
  self._memories: deque = deque(maxlen=max_len) # 限制最大存储量
46
52
  self._memory_id_counter: int = 0 # 用于生成唯一ID
@@ -50,6 +56,20 @@ class StreamMemory:
50
56
  self._status_memory = None
51
57
  self._simulator = None
52
58
 
59
+ @property
60
+ def faiss_query(
61
+ self,
62
+ ) -> FaissQuery:
63
+ assert self._faiss_query is not None
64
+ return self._faiss_query
65
+
66
+ @property
67
+ def status_memory(
68
+ self,
69
+ ):
70
+ assert self._status_memory is not None
71
+ return self._status_memory
72
+
53
73
  def set_simulator(self, simulator):
54
74
  self._simulator = simulator
55
75
 
@@ -73,14 +93,14 @@ class StreamMemory:
73
93
  else:
74
94
  day = 1
75
95
  t = 1
76
- position = await self._status_memory.get("position")
77
- if 'aoi_position' in position:
78
- location = position['aoi_position']['aoi_id']
79
- elif 'lane_position' in position:
80
- location = position['lane_position']['lane_id']
96
+ position = await self.status_memory.get("position")
97
+ if "aoi_position" in position:
98
+ location = position["aoi_position"]["aoi_id"]
99
+ elif "lane_position" in position:
100
+ location = position["lane_position"]["lane_id"]
81
101
  else:
82
102
  location = "unknown"
83
-
103
+
84
104
  current_id = self._memory_id_counter
85
105
  self._memory_id_counter += 1
86
106
  memory_node = MemoryNode(
@@ -92,11 +112,10 @@ class StreamMemory:
92
112
  id=current_id,
93
113
  )
94
114
  self._memories.append(memory_node)
95
-
96
115
 
97
116
  # 为新记忆创建 embedding
98
117
  if self._embedding_model and self._faiss_query:
99
- await self._faiss_query.add_documents(
118
+ await self.faiss_query.add_documents(
100
119
  agent_id=self._agent_id,
101
120
  documents=description,
102
121
  extra_tags={
@@ -106,29 +125,30 @@ class StreamMemory:
106
125
  "time": t,
107
126
  },
108
127
  )
109
-
128
+
110
129
  return current_id
111
- async def add_cognition(self, description: str) -> None:
130
+
131
+ async def add_cognition(self, description: str) -> int:
112
132
  """添加认知记忆 Add cognition memory"""
113
133
  return await self._add_memory(MemoryTag.COGNITION, description)
114
134
 
115
- async def add_social(self, description: str) -> None:
135
+ async def add_social(self, description: str) -> int:
116
136
  """添加社交记忆 Add social memory"""
117
137
  return await self._add_memory(MemoryTag.SOCIAL, description)
118
138
 
119
- async def add_economy(self, description: str) -> None:
139
+ async def add_economy(self, description: str) -> int:
120
140
  """添加经济记忆 Add economy memory"""
121
141
  return await self._add_memory(MemoryTag.ECONOMY, description)
122
142
 
123
- async def add_mobility(self, description: str) -> None:
143
+ async def add_mobility(self, description: str) -> int:
124
144
  """添加移动记忆 Add mobility memory"""
125
145
  return await self._add_memory(MemoryTag.MOBILITY, description)
126
146
 
127
- async def add_event(self, description: str) -> None:
147
+ async def add_event(self, description: str) -> int:
128
148
  """添加事件记忆 Add event memory"""
129
149
  return await self._add_memory(MemoryTag.EVENT, description)
130
150
 
131
- async def add_other(self, description: str) -> None:
151
+ async def add_other(self, description: str) -> int:
132
152
  """添加其他记忆 Add other memory"""
133
153
  return await self._add_memory(MemoryTag.OTHER, description)
134
154
 
@@ -137,11 +157,13 @@ class StreamMemory:
137
157
  for memory in self._memories:
138
158
  if memory.cognition_id == memory_id:
139
159
  for cognition_memory in self._memories:
140
- if (cognition_memory.tag == MemoryTag.COGNITION and
141
- memory.cognition_id is not None):
160
+ if (
161
+ cognition_memory.tag == MemoryTag.COGNITION
162
+ and memory.cognition_id is not None
163
+ ):
142
164
  return cognition_memory
143
165
  return None
144
-
166
+
145
167
  async def format_memory(self, memories: list[MemoryNode]) -> str:
146
168
  """格式化记忆"""
147
169
  formatted_results = []
@@ -150,51 +172,51 @@ class StreamMemory:
150
172
  memory_day = memory.day
151
173
  memory_time_seconds = memory.t
152
174
  cognition_id = memory.cognition_id
153
-
175
+
154
176
  # 格式化时间
155
- if memory_time_seconds != 'unknown':
177
+ if memory_time_seconds != "unknown":
156
178
  hours = memory_time_seconds // 3600
157
179
  minutes = (memory_time_seconds % 3600) // 60
158
180
  seconds = memory_time_seconds % 60
159
181
  memory_time = f"{hours:02d}:{minutes:02d}:{seconds:02d}"
160
182
  else:
161
- memory_time = 'unknown'
162
-
183
+ memory_time = "unknown"
184
+
163
185
  memory_location = memory.location
164
-
186
+
165
187
  # 添加认知信息(如果存在)
166
188
  cognition_info = ""
167
189
  if cognition_id is not None:
168
190
  cognition_memory = await self.get_related_cognition(cognition_id)
169
191
  if cognition_memory:
170
- cognition_info = f"\n Related cognition: {cognition_memory.description}"
171
-
192
+ cognition_info = (
193
+ f"\n Related cognition: {cognition_memory.description}"
194
+ )
195
+
172
196
  formatted_results.append(
173
197
  f"- [{memory_tag}]: {memory.description} [day: {memory_day}, time: {memory_time}, "
174
198
  f"location: {memory_location}]{cognition_info}"
175
199
  )
176
200
  return "\n".join(formatted_results)
177
201
 
178
- async def get_by_ids(self, memory_ids: Union[int, list[int]]) -> str:
202
+ async def get_by_ids(
203
+ self, memory_ids: Union[int, list[int]]
204
+ ) -> Coroutine[Any, Any, str]:
179
205
  """获取指定ID的记忆"""
180
- memories = [memory for memory in self._memories if memory.id in memory_ids]
181
- sorted_results = sorted(
182
- memories,
183
- key=lambda x: (x.day, x.t),
184
- reverse=True
185
- )
206
+ memories = [memory for memory in self._memories if memory.id in memory_ids]
207
+ sorted_results = sorted(memories, key=lambda x: (x.day, x.t), reverse=True)
186
208
  return self.format_memory(sorted_results)
187
209
 
188
210
  async def search(
189
- self,
190
- query: str,
211
+ self,
212
+ query: str,
191
213
  tag: Optional[MemoryTag] = None,
192
214
  top_k: int = 3,
193
215
  day_range: Optional[tuple[int, int]] = None, # 新增参数
194
- time_range: Optional[tuple[int, int]] = None # 新增参数
216
+ time_range: Optional[tuple[int, int]] = None, # 新增参数
195
217
  ) -> str:
196
218
  """Search stream memory
197
-
219
+
198
220
  Args:
199
221
  query: Query text
200
222
  tag: Optional memory tag for filtering specific types of memories
@@ -205,60 +227,62 @@ class StreamMemory:
205
227
  if not self._embedding_model or not self._faiss_query:
206
228
  return "Search components not initialized"
207
229
 
208
- filter_dict = {"type": "stream"}
209
-
230
+ filter_dict: dict[str, Any] = {"type": "stream"}
231
+
210
232
  if tag:
211
233
  filter_dict["tag"] = tag
212
-
234
+
213
235
  # 添加时间范围过滤
214
236
  if day_range:
215
237
  start_day, end_day = day_range
216
238
  filter_dict["day"] = lambda x: start_day <= x <= end_day
217
-
239
+
218
240
  if time_range:
219
241
  start_time, end_time = time_range
220
242
  filter_dict["time"] = lambda x: start_time <= x <= end_time
221
243
 
222
- top_results = await self._faiss_query.similarity_search(
244
+ top_results = await self.faiss_query.similarity_search(
223
245
  query=query,
224
246
  agent_id=self._agent_id,
225
247
  k=top_k,
226
248
  return_score_type="similarity_score",
227
- filter=filter_dict
249
+ filter=filter_dict,
228
250
  )
229
251
 
230
252
  # 将结果按时间排序(先按天数,再按时间)
231
253
  sorted_results = sorted(
232
- top_results,
233
- key=lambda x: (x[2].get('day', 0), x[2].get('time', 0)),
234
- reverse=True
254
+ top_results,
255
+ key=lambda x: (x[2].get("day", 0), x[2].get("time", 0)), # type:ignore
256
+ reverse=True,
235
257
  )
236
-
258
+
237
259
  formatted_results = []
238
- for content, score, metadata in sorted_results:
239
- memory_tag = metadata.get('tag', 'unknown')
240
- memory_day = metadata.get('day', 'unknown')
241
- memory_time_seconds = metadata.get('time', 'unknown')
242
- cognition_id = metadata.get('cognition_id', None)
243
-
260
+ for content, score, metadata in sorted_results: # type:ignore
261
+ memory_tag = metadata.get("tag", "unknown")
262
+ memory_day = metadata.get("day", "unknown")
263
+ memory_time_seconds = metadata.get("time", "unknown")
264
+ cognition_id = metadata.get("cognition_id", None)
265
+
244
266
  # 格式化时间
245
- if memory_time_seconds != 'unknown':
267
+ if memory_time_seconds != "unknown":
246
268
  hours = memory_time_seconds // 3600
247
269
  minutes = (memory_time_seconds % 3600) // 60
248
270
  seconds = memory_time_seconds % 60
249
271
  memory_time = f"{hours:02d}:{minutes:02d}:{seconds:02d}"
250
272
  else:
251
- memory_time = 'unknown'
252
-
253
- memory_location = metadata.get('location', 'unknown')
254
-
273
+ memory_time = "unknown"
274
+
275
+ memory_location = metadata.get("location", "unknown")
276
+
255
277
  # 添加认知信息(如果存在)
256
278
  cognition_info = ""
257
279
  if cognition_id is not None:
258
280
  cognition_memory = await self.get_related_cognition(cognition_id)
259
281
  if cognition_memory:
260
- cognition_info = f"\n Related cognition: {cognition_memory.description}"
261
-
282
+ cognition_info = (
283
+ f"\n Related cognition: {cognition_memory.description}"
284
+ )
285
+
262
286
  formatted_results.append(
263
287
  f"- [{memory_tag}]: {content} [day: {memory_day}, time: {memory_time}, "
264
288
  f"location: {memory_location}]{cognition_info}"
@@ -272,50 +296,49 @@ class StreamMemory:
272
296
  top_k: int = 100, # 默认返回较大数量以确保获取当天所有记忆
273
297
  ) -> str:
274
298
  """Search all memory events from today
275
-
299
+
276
300
  Args:
277
301
  query: Optional query text, returns all memories of the day if empty
278
302
  tag: Optional memory tag for filtering specific types of memories
279
303
  top_k: Number of most relevant memories to return, defaults to 100
280
-
304
+
281
305
  Returns:
282
306
  str: Formatted text of today's memories
283
307
  """
284
308
  if self._simulator is None:
285
309
  return "Simulator not initialized"
286
-
310
+
287
311
  current_day = int(await self._simulator.get_simulator_day())
288
-
312
+
289
313
  # 使用 search 方法,设置 day_range 为当天
290
314
  return await self.search(
291
- query=query,
292
- tag=tag,
293
- top_k=top_k,
294
- day_range=(current_day, current_day)
315
+ query=query, tag=tag, top_k=top_k, day_range=(current_day, current_day)
295
316
  )
296
317
 
297
- async def add_cognition_to_memory(self, memory_id: Union[int, list[int]], cognition: str) -> None:
318
+ async def add_cognition_to_memory(
319
+ self, memory_id: Union[int, list[int]], cognition: str
320
+ ) -> None:
298
321
  """为已存在的记忆添加认知
299
-
322
+
300
323
  Args:
301
324
  memory_id: 要添加认知的记忆ID,可以是单个ID或ID列表
302
325
  cognition: 认知描述
303
326
  """
304
327
  # 将单个ID转换为列表以统一处理
305
328
  memory_ids = [memory_id] if isinstance(memory_id, int) else memory_id
306
-
329
+
307
330
  # 找到所有对应的记忆
308
331
  target_memories = []
309
332
  for memory in self._memories:
310
333
  if id(memory) in memory_ids:
311
334
  target_memories.append(memory)
312
-
335
+
313
336
  if not target_memories:
314
337
  raise ValueError(f"No memories found with ids {memory_ids}")
315
-
338
+
316
339
  # 添加认知记忆
317
340
  cognition_id = await self._add_memory(MemoryTag.COGNITION, cognition)
318
-
341
+
319
342
  # 更新所有原记忆的认知ID
320
343
  for target_memory in target_memories:
321
344
  target_memory.cognition_id = cognition_id
@@ -324,9 +347,13 @@ class StreamMemory:
324
347
  """获取所有流式信息"""
325
348
  return list(self._memories)
326
349
 
350
+
327
351
  class StatusMemory:
328
352
  """组合现有的三种记忆类型"""
329
- def __init__(self, profile: ProfileMemory, state: StateMemory, dynamic: DynamicMemory):
353
+
354
+ def __init__(
355
+ self, profile: ProfileMemory, state: StateMemory, dynamic: DynamicMemory
356
+ ):
330
357
  self.profile = profile
331
358
  self.state = state
332
359
  self.dynamic = dynamic
@@ -340,23 +367,32 @@ class StatusMemory:
340
367
  self.watchers = {} # 新增
341
368
  self._lock = asyncio.Lock() # 新增
342
369
 
370
+ @property
371
+ def faiss_query(
372
+ self,
373
+ ) -> FaissQuery:
374
+ assert self._faiss_query is not None
375
+ return self._faiss_query
376
+
343
377
  def set_simulator(self, simulator):
344
378
  self._simulator = simulator
345
379
 
346
380
  async def initialize_embeddings(self) -> None:
347
381
  """初始化所有需要 embedding 的字段"""
348
382
  if not self._embedding_model or not self._faiss_query:
349
- logger.warning("Search components not initialized, skipping embeddings initialization")
383
+ logger.warning(
384
+ "Search components not initialized, skipping embeddings initialization"
385
+ )
350
386
  return
351
387
 
352
388
  # 获取所有状态信息
353
389
  profile, state, dynamic = await self.export()
354
-
390
+
355
391
  # 为每个需要 embedding 的字段创建 embedding
356
392
  for key, value in profile[0].items():
357
393
  if self.should_embed(key):
358
394
  semantic_text = self._generate_semantic_text(key, value)
359
- doc_ids = await self._faiss_query.add_documents(
395
+ doc_ids = await self.faiss_query.add_documents(
360
396
  agent_id=self._agent_id,
361
397
  documents=semantic_text,
362
398
  extra_tags={
@@ -369,7 +405,7 @@ class StatusMemory:
369
405
  for key, value in state[0].items():
370
406
  if self.should_embed(key):
371
407
  semantic_text = self._generate_semantic_text(key, value)
372
- doc_ids = await self._faiss_query.add_documents(
408
+ doc_ids = await self.faiss_query.add_documents(
373
409
  agent_id=self._agent_id,
374
410
  documents=semantic_text,
375
411
  extra_tags={
@@ -378,11 +414,11 @@ class StatusMemory:
378
414
  },
379
415
  )
380
416
  self._embedding_field_to_doc_id[key] = doc_ids[0]
381
-
417
+
382
418
  for key, value in dynamic[0].items():
383
419
  if self.should_embed(key):
384
420
  semantic_text = self._generate_semantic_text(key, value)
385
- doc_ids = await self._faiss_query.add_documents(
421
+ doc_ids = await self.faiss_query.add_documents(
386
422
  agent_id=self._agent_id,
387
423
  documents=semantic_text,
388
424
  extra_tags={
@@ -415,7 +451,7 @@ class StatusMemory:
415
451
 
416
452
  def set_semantic_templates(self, templates: Dict[str, str]):
417
453
  """设置语义模板
418
-
454
+
419
455
  Args:
420
456
  templates: 键值对形式的模板字典,如 {"name": "my name is {}", "age": "I am {} years old"}
421
457
  """
@@ -423,14 +459,14 @@ class StatusMemory:
423
459
 
424
460
  def _generate_semantic_text(self, key: str, value: Any) -> str:
425
461
  """生成语义文本
426
-
462
+
427
463
  如果key存在于模板中,使用自定义模板
428
464
  否则使用默认模板 "my {key} is {value}"
429
465
  """
430
466
  if key in self._semantic_templates:
431
467
  return self._semantic_templates[key].format(value)
432
468
  return f"Your {key} is {value}"
433
-
469
+
434
470
  @lock_decorator
435
471
  async def search(
436
472
  self, query: str, top_k: int = 3, filter: Optional[dict] = None
@@ -447,12 +483,12 @@ class StatusMemory:
447
483
  """
448
484
  if not self._embedding_model:
449
485
  return "Embedding model not initialized"
450
-
486
+
451
487
  filter_dict = {"type": "profile_state"}
452
488
  if filter is not None:
453
489
  filter_dict.update(filter)
454
490
  top_results: list[tuple[str, float, dict]] = (
455
- await self._faiss_query.similarity_search( # type:ignore
491
+ await self.faiss_query.similarity_search( # type:ignore
456
492
  query=query,
457
493
  agent_id=self._agent_id,
458
494
  k=top_k,
@@ -463,9 +499,7 @@ class StatusMemory:
463
499
  # 格式化输出
464
500
  formatted_results = []
465
501
  for content, score, metadata in top_results:
466
- formatted_results.append(
467
- f"- {content} "
468
- )
502
+ formatted_results.append(f"- {content} ")
469
503
 
470
504
  return "\n".join(formatted_results)
471
505
 
@@ -478,8 +512,11 @@ class StatusMemory:
478
512
  return self._embedding_fields.get(key, False)
479
513
 
480
514
  @lock_decorator
481
- async def get(self, key: Any,
482
- mode: Union[Literal["read only"], Literal["read and write"]] = "read only") -> Any:
515
+ async def get(
516
+ self,
517
+ key: Any,
518
+ mode: Union[Literal["read only"], Literal["read and write"]] = "read only",
519
+ ) -> Any:
483
520
  """从记忆中获取值
484
521
 
485
522
  Args:
@@ -499,7 +536,7 @@ class StatusMemory:
499
536
  process_func = lambda x: x
500
537
  else:
501
538
  raise ValueError(f"Invalid get mode `{mode}`!")
502
-
539
+
503
540
  for mem in [self.state, self.profile, self.dynamic]:
504
541
  try:
505
542
  value = await mem.get(key)
@@ -509,16 +546,20 @@ class StatusMemory:
509
546
  raise KeyError(f"No attribute `{key}` in memories!")
510
547
 
511
548
  @lock_decorator
512
- async def update(self, key: Any, value: Any,
513
- mode: Union[Literal["replace"], Literal["merge"]] = "replace",
514
- store_snapshot: bool = False,
515
- protect_llm_read_only_fields: bool = True) -> None:
549
+ async def update(
550
+ self,
551
+ key: Any,
552
+ value: Any,
553
+ mode: Union[Literal["replace"], Literal["merge"]] = "replace",
554
+ store_snapshot: bool = False,
555
+ protect_llm_read_only_fields: bool = True,
556
+ ) -> None:
516
557
  """更新记忆值并在必要时更新embedding"""
517
558
  if protect_llm_read_only_fields:
518
559
  if any(key in _attrs for _attrs in [STATE_ATTRIBUTES]):
519
560
  logger.warning(f"Trying to write protected key `{key}`!")
520
561
  return
521
-
562
+
522
563
  for mem in [self.state, self.profile, self.dynamic]:
523
564
  try:
524
565
  original_value = await mem.get(key)
@@ -526,16 +567,16 @@ class StatusMemory:
526
567
  await mem.update(key, value, store_snapshot)
527
568
  if self.should_embed(key) and self._embedding_model:
528
569
  semantic_text = self._generate_semantic_text(key, value)
529
-
570
+
530
571
  # 删除旧的 embedding
531
572
  orig_doc_id = self._embedding_field_to_doc_id[key]
532
573
  if orig_doc_id:
533
- await self._faiss_query.delete_documents(
574
+ await self.faiss_query.delete_documents(
534
575
  to_delete_ids=[orig_doc_id],
535
576
  )
536
-
577
+
537
578
  # 添加新的 embedding
538
- doc_ids = await self._faiss_query.add_documents(
579
+ doc_ids = await self.faiss_query.add_documents(
539
580
  agent_id=self._agent_id,
540
581
  documents=semantic_text,
541
582
  extra_tags={
@@ -544,11 +585,11 @@ class StatusMemory:
544
585
  },
545
586
  )
546
587
  self._embedding_field_to_doc_id[key] = doc_ids[0]
547
-
588
+
548
589
  if key in self.watchers:
549
590
  for callback in self.watchers[key]:
550
591
  asyncio.create_task(callback())
551
-
592
+
552
593
  elif mode == "merge":
553
594
  if isinstance(original_value, set):
554
595
  original_value.update(set(value))
@@ -565,7 +606,7 @@ class StatusMemory:
565
606
  await mem.update(key, value, store_snapshot)
566
607
  if self.should_embed(key) and self._embedding_model:
567
608
  semantic_text = self._generate_semantic_text(key, value)
568
- doc_ids = await self._faiss_query.add_documents(
609
+ doc_ids = await self.faiss_query.add_documents(
569
610
  agent_id=self._agent_id,
570
611
  documents=f"{key}: {str(original_value)}",
571
612
  extra_tags={
@@ -635,6 +676,7 @@ class StatusMemory:
635
676
  if _snapshot:
636
677
  await _mem.load(snapshots=_snapshot, reset_memory=reset_memory)
637
678
 
679
+
638
680
  class Memory:
639
681
  """
640
682
  A class to manage different types of memory (state, profile, dynamic).
@@ -745,7 +787,6 @@ class Memory:
745
787
  if k not in PROFILE_ATTRIBUTES:
746
788
  logger.warning(f"key `{k}` is not a correct `profile` field!")
747
789
  continue
748
-
749
790
  try:
750
791
  # 处理配置元组格式
751
792
  if isinstance(v, tuple):
@@ -787,7 +828,6 @@ class Memory:
787
828
  self._profile = ProfileMemory(
788
829
  msg=_profile_config, activate_timestamp=activate_timestamp
789
830
  )
790
-
791
831
  if base is not None:
792
832
  for k, v in base.items():
793
833
  if k not in STATE_ATTRIBUTES:
@@ -798,12 +838,10 @@ class Memory:
798
838
  self._state = StateMemory(
799
839
  msg=_state_config, activate_timestamp=activate_timestamp
800
840
  )
801
-
841
+
802
842
  # 组合 StatusMemory,并传递 embedding_fields 信息
803
843
  self._status = StatusMemory(
804
- profile=self._profile,
805
- state=self._state,
806
- dynamic=self._dynamic
844
+ profile=self._profile, state=self._state, dynamic=self._dynamic
807
845
  )
808
846
  self._status.set_embedding_fields(self._embedding_fields)
809
847
  self._status.set_search_components(self._faiss_query, self._embedding_model)
@@ -839,7 +877,7 @@ class Memory:
839
877
  @property
840
878
  def status(self) -> StatusMemory:
841
879
  return self._status
842
-
880
+
843
881
  @property
844
882
  def stream(self) -> StreamMemory:
845
883
  return self._stream
@@ -872,7 +910,7 @@ class Memory:
872
910
  f"FaissQuery access before assignment, please `set_faiss_query` first!"
873
911
  )
874
912
  return self._faiss_query
875
-
913
+
876
914
  async def initialize_embeddings(self):
877
915
  """初始化embedding"""
878
916
  await self._status.initialize_embeddings()
@@ -1,3 +1,10 @@
1
+ from .message_interceptor import (MessageBlockBase, MessageBlockListenerBase,
2
+ MessageInterceptor)
1
3
  from .messager import Messager
2
4
 
3
- __all__ = ["Messager"]
5
+ __all__ = [
6
+ "Messager",
7
+ "MessageBlockBase",
8
+ "MessageBlockListenerBase",
9
+ "MessageInterceptor",
10
+ ]