pycityagent 2.0.0a52__cp310-cp310-macosx_11_0_arm64.whl → 2.0.0a53__cp310-cp310-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- pycityagent/agent/agent.py +48 -62
- pycityagent/agent/agent_base.py +66 -53
- pycityagent/cityagent/bankagent.py +5 -7
- pycityagent/cityagent/blocks/__init__.py +0 -2
- pycityagent/cityagent/blocks/cognition_block.py +149 -172
- pycityagent/cityagent/blocks/economy_block.py +90 -129
- pycityagent/cityagent/blocks/mobility_block.py +56 -29
- pycityagent/cityagent/blocks/needs_block.py +163 -145
- pycityagent/cityagent/blocks/other_block.py +17 -9
- pycityagent/cityagent/blocks/plan_block.py +44 -56
- pycityagent/cityagent/blocks/social_block.py +70 -51
- pycityagent/cityagent/blocks/utils.py +2 -0
- pycityagent/cityagent/firmagent.py +6 -7
- pycityagent/cityagent/governmentagent.py +7 -9
- pycityagent/cityagent/memory_config.py +48 -48
- pycityagent/cityagent/nbsagent.py +6 -29
- pycityagent/cityagent/societyagent.py +204 -119
- pycityagent/environment/sim/client.py +10 -1
- pycityagent/environment/sim/clock_service.py +2 -2
- pycityagent/environment/sim/pause_service.py +61 -0
- pycityagent/environment/simulator.py +17 -12
- pycityagent/llm/embeddings.py +0 -24
- pycityagent/memory/faiss_query.py +29 -26
- pycityagent/memory/memory.py +720 -272
- pycityagent/pycityagent-sim +0 -0
- pycityagent/simulation/agentgroup.py +92 -99
- pycityagent/simulation/simulation.py +115 -40
- pycityagent/tools/tool.py +7 -9
- pycityagent/workflow/block.py +11 -4
- {pycityagent-2.0.0a52.dist-info → pycityagent-2.0.0a53.dist-info}/METADATA +1 -1
- {pycityagent-2.0.0a52.dist-info → pycityagent-2.0.0a53.dist-info}/RECORD +35 -35
- pycityagent/cityagent/blocks/time_block.py +0 -116
- {pycityagent-2.0.0a52.dist-info → pycityagent-2.0.0a53.dist-info}/LICENSE +0 -0
- {pycityagent-2.0.0a52.dist-info → pycityagent-2.0.0a53.dist-info}/WHEEL +0 -0
- {pycityagent-2.0.0a52.dist-info → pycityagent-2.0.0a53.dist-info}/entry_points.txt +0 -0
- {pycityagent-2.0.0a52.dist-info → pycityagent-2.0.0a53.dist-info}/top_level.txt +0 -0
@@ -17,24 +17,22 @@ agent_skills = list(sorted_clipped_skills.mean(axis=0))
|
|
17
17
|
|
18
18
|
def memory_config_societyagent():
|
19
19
|
EXTRA_ATTRIBUTES = {
|
20
|
-
"city": "New York",
|
21
|
-
# 需求信息
|
22
20
|
"type": (str, "citizen"),
|
23
|
-
"
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
},
|
31
|
-
True,
|
32
|
-
),
|
21
|
+
"city": (str, "New York", True),
|
22
|
+
|
23
|
+
# Needs Model
|
24
|
+
"hunger_satisfaction": (float, random.random(), True), # 饥饿满意度
|
25
|
+
"energy_satisfaction": (float, random.random(), True), # 精力满意度
|
26
|
+
"safety_satisfaction": (float, random.random(), True), # 安全满意度
|
27
|
+
"social_satisfaction": (float, random.random(), True), # 社交满意度
|
33
28
|
"current_need": (str, "none", True),
|
29
|
+
|
30
|
+
# Plan Behavior Model
|
34
31
|
"current_plan": (list, [], True),
|
35
32
|
"current_step": (dict, {"intention": "", "type": ""}, True),
|
36
33
|
"execution_context": (dict, {}, True),
|
37
34
|
"plan_history": (list, [], True),
|
35
|
+
|
38
36
|
# cognition
|
39
37
|
"emotion": (
|
40
38
|
dict,
|
@@ -46,25 +44,25 @@ def memory_config_societyagent():
|
|
46
44
|
"anger": 5,
|
47
45
|
"surprise": 5,
|
48
46
|
},
|
49
|
-
|
47
|
+
False,
|
50
48
|
),
|
51
49
|
"attitude": (dict, {}, True),
|
52
50
|
"thought": (str, "Currently nothing good or bad is happening", True),
|
53
51
|
"emotion_types": (str, "Relief", True),
|
54
|
-
|
55
|
-
|
52
|
+
|
53
|
+
# economy
|
56
54
|
"work_skill": (
|
57
55
|
float,
|
58
56
|
random.choice(agent_skills),
|
59
57
|
True,
|
60
|
-
), #
|
61
|
-
"tax_paid": (float, 0.0, True), #
|
62
|
-
"consumption_currency": (float, 0.0, True), #
|
58
|
+
), # work skill
|
59
|
+
"tax_paid": (float, 0.0, True), # tax paid
|
60
|
+
"consumption_currency": (float, 0.0, True), # consumption
|
63
61
|
"goods_demand": (int, 0, True),
|
64
62
|
"goods_consumption": (int, 0, True),
|
65
63
|
"work_propensity": (float, 0.0, True),
|
66
64
|
"consumption_propensity": (float, 0.0, True),
|
67
|
-
"income_currency": (float, 0.0, True), #
|
65
|
+
"income_currency": (float, 0.0, True), # monthly income
|
68
66
|
"to_income": (float, 0.0, True),
|
69
67
|
"to_consumption_currency": (float, 0.0, True),
|
70
68
|
"firm_id": (int, 0, True),
|
@@ -79,23 +77,25 @@ def memory_config_societyagent():
|
|
79
77
|
"forward": (int, 0, True),
|
80
78
|
"depression": (float, 0.0, True),
|
81
79
|
"ubi_opinion": (list, [], True),
|
82
|
-
# social
|
83
|
-
"friends": (list, [], True), # 好友列表
|
84
|
-
"relationships": (dict, {}, True), # 与每个好友的关系强度
|
85
|
-
"relation_types": (dict, {}, True),
|
86
|
-
"chat_histories": (dict, {}, True), # 所有聊天历史记录
|
87
|
-
"interactions": (dict, {}, True), # 所有互动记录
|
88
|
-
"to_discuss": (dict, {}, True),
|
89
|
-
# economy
|
90
80
|
"working_experience": (list, [], True),
|
91
81
|
"work_hour_month": (float, 160, True),
|
92
82
|
"work_hour_finish": (float, 0, True),
|
83
|
+
|
84
|
+
# social
|
85
|
+
"friends": (list, [], True), # friends list
|
86
|
+
"relationships": (dict, {}, True), # relationship strength with each friend
|
87
|
+
"relation_types": (dict, {}, True),
|
88
|
+
"chat_histories": (dict, {}, True), # all chat histories
|
89
|
+
"interactions": (dict, {}, True), # all interaction records
|
90
|
+
"to_discuss": (dict, {}, True),
|
91
|
+
|
93
92
|
# mobility
|
94
93
|
"environment": (str, "The environment outside is good", True),
|
94
|
+
"number_poi_visited": (int, 1, True),
|
95
95
|
}
|
96
96
|
|
97
97
|
PROFILE = {
|
98
|
-
"name": random.choice(
|
98
|
+
"name": (str,random.choice(
|
99
99
|
[
|
100
100
|
"Alice",
|
101
101
|
"Bob",
|
@@ -124,13 +124,13 @@ def memory_config_societyagent():
|
|
124
124
|
"Yvonne",
|
125
125
|
"Zack",
|
126
126
|
]
|
127
|
-
),
|
128
|
-
"gender": random.choice(["male", "female"]),
|
129
|
-
"age": random.randint(18, 65),
|
130
|
-
"education": random.choice(
|
127
|
+
), True),
|
128
|
+
"gender": (str, random.choice(["male", "female"]), True),
|
129
|
+
"age": (int, random.randint(18, 65), True),
|
130
|
+
"education": (str, random.choice(
|
131
131
|
["Doctor", "Master", "Bachelor", "College", "High School"]
|
132
|
-
),
|
133
|
-
"skill": random.choice(
|
132
|
+
), True),
|
133
|
+
"skill": (str, random.choice(
|
134
134
|
[
|
135
135
|
"Good at problem-solving",
|
136
136
|
"Good at communication",
|
@@ -138,8 +138,8 @@ def memory_config_societyagent():
|
|
138
138
|
"Good at teamwork",
|
139
139
|
"Other",
|
140
140
|
]
|
141
|
-
),
|
142
|
-
"occupation": random.choice(
|
141
|
+
), True),
|
142
|
+
"occupation": (str, random.choice(
|
143
143
|
[
|
144
144
|
"Student",
|
145
145
|
"Teacher",
|
@@ -151,16 +151,16 @@ def memory_config_societyagent():
|
|
151
151
|
"Athlete",
|
152
152
|
"Other",
|
153
153
|
]
|
154
|
-
),
|
155
|
-
"family_consumption": random.choice(["low", "medium", "high"]),
|
156
|
-
"consumption": random.choice(["sightly low", "low", "medium", "high"]),
|
157
|
-
"personality": random.choice(
|
154
|
+
), True),
|
155
|
+
"family_consumption": (str, random.choice(["low", "medium", "high"]), True),
|
156
|
+
"consumption": (str, random.choice(["sightly low", "low", "medium", "high"]), True),
|
157
|
+
"personality": (str, random.choice(
|
158
158
|
["outgoint", "introvert", "ambivert", "extrovert"]
|
159
|
-
),
|
159
|
+
), True),
|
160
160
|
"income": "0",
|
161
161
|
"currency": random.randint(1000, 100000),
|
162
|
-
"residence": random.choice(["city", "suburb", "rural"]),
|
163
|
-
"race": random.choice(
|
162
|
+
"residence": (str, random.choice(["city", "suburb", "rural"]), True),
|
163
|
+
"race": (str, random.choice(
|
164
164
|
[
|
165
165
|
"Chinese",
|
166
166
|
"American",
|
@@ -172,13 +172,13 @@ def memory_config_societyagent():
|
|
172
172
|
"Russian",
|
173
173
|
"Other",
|
174
174
|
]
|
175
|
-
),
|
176
|
-
"religion": random.choice(
|
175
|
+
), True),
|
176
|
+
"religion": (str, random.choice(
|
177
177
|
["none", "Christian", "Muslim", "Buddhist", "Hindu", "Other"]
|
178
|
-
),
|
179
|
-
"marital_status": random.choice(
|
178
|
+
), True),
|
179
|
+
"marital_status": (str, random.choice(
|
180
180
|
["not married", "married", "divorced", "widowed"]
|
181
|
-
),
|
181
|
+
), True),
|
182
182
|
}
|
183
183
|
|
184
184
|
BASE = {
|
@@ -9,14 +9,11 @@ from pycityagent.economy import EconomyClient
|
|
9
9
|
from pycityagent.llm.llm import LLM
|
10
10
|
from pycityagent.memory import Memory
|
11
11
|
from pycityagent.message import Messager
|
12
|
-
from pycityagent.tools import ExportMlflowMetrics
|
13
12
|
|
14
13
|
logger = logging.getLogger("pycityagent")
|
15
14
|
|
16
15
|
|
17
16
|
class NBSAgent(InstitutionAgent):
|
18
|
-
export_metrics = ExportMlflowMetrics(log_batch_size=3)
|
19
|
-
|
20
17
|
def __init__(
|
21
18
|
self,
|
22
19
|
name: str,
|
@@ -60,15 +57,13 @@ class NBSAgent(InstitutionAgent):
|
|
60
57
|
|
61
58
|
async def forward(self):
|
62
59
|
if await self.month_trigger():
|
63
|
-
citizens = await self.memory.get("citizens")
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
break
|
68
|
-
await asyncio.sleep(1)
|
60
|
+
citizens = await self.memory.status.get("citizens")
|
61
|
+
agents_forward = []
|
62
|
+
if not np.all(np.array(agents_forward) > self.forward_times):
|
63
|
+
return
|
69
64
|
work_propensity = await self.gather_messages(citizens, "work_propensity")
|
70
65
|
working_hours = np.mean(work_propensity) * self.num_labor_hours
|
71
|
-
firm_id = await self.memory.get("firm_id")
|
66
|
+
firm_id = await self.memory.status.get("firm_id")
|
72
67
|
price = await self.economy_client.get(firm_id, "price")
|
73
68
|
prices = await self.economy_client.get(self._agent_id, "prices")
|
74
69
|
initial_price = prices[0]
|
@@ -116,23 +111,5 @@ class NBSAgent(InstitutionAgent):
|
|
116
111
|
self.forward_times += 1
|
117
112
|
for uuid in citizens:
|
118
113
|
await self.send_message_to_agent(
|
119
|
-
uuid, f"nbs_forward@{self.forward_times}"
|
120
|
-
)
|
121
|
-
|
122
|
-
metrics = {
|
123
|
-
"nominal_gdp": nominal_gdp,
|
124
|
-
"working_hours": working_hours,
|
125
|
-
"price": price,
|
126
|
-
"depression": depression,
|
127
|
-
"consumption": consumption_currency,
|
128
|
-
"income": income_currency,
|
129
|
-
}
|
130
|
-
for k, v in metrics.items():
|
131
|
-
await self.export_metrics(
|
132
|
-
metric={
|
133
|
-
"key": k,
|
134
|
-
"value": v,
|
135
|
-
"step": self.forward_times,
|
136
|
-
},
|
137
|
-
clear_cache=True,
|
114
|
+
uuid, f"nbs_forward@{self.forward_times}", "economy"
|
138
115
|
)
|