pycityagent 2.0.0a51__cp310-cp310-macosx_11_0_arm64.whl → 2.0.0a53__cp310-cp310-macosx_11_0_arm64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (36) hide show
  1. pycityagent/agent/agent.py +48 -62
  2. pycityagent/agent/agent_base.py +66 -53
  3. pycityagent/cityagent/bankagent.py +5 -7
  4. pycityagent/cityagent/blocks/__init__.py +0 -2
  5. pycityagent/cityagent/blocks/cognition_block.py +149 -172
  6. pycityagent/cityagent/blocks/economy_block.py +90 -129
  7. pycityagent/cityagent/blocks/mobility_block.py +56 -29
  8. pycityagent/cityagent/blocks/needs_block.py +163 -145
  9. pycityagent/cityagent/blocks/other_block.py +17 -9
  10. pycityagent/cityagent/blocks/plan_block.py +44 -56
  11. pycityagent/cityagent/blocks/social_block.py +70 -51
  12. pycityagent/cityagent/blocks/utils.py +2 -0
  13. pycityagent/cityagent/firmagent.py +6 -7
  14. pycityagent/cityagent/governmentagent.py +7 -9
  15. pycityagent/cityagent/memory_config.py +48 -48
  16. pycityagent/cityagent/nbsagent.py +6 -29
  17. pycityagent/cityagent/societyagent.py +204 -119
  18. pycityagent/environment/sim/client.py +10 -1
  19. pycityagent/environment/sim/clock_service.py +2 -2
  20. pycityagent/environment/sim/pause_service.py +61 -0
  21. pycityagent/environment/simulator.py +17 -12
  22. pycityagent/llm/embeddings.py +0 -24
  23. pycityagent/memory/faiss_query.py +29 -26
  24. pycityagent/memory/memory.py +720 -272
  25. pycityagent/pycityagent-sim +0 -0
  26. pycityagent/simulation/agentgroup.py +92 -99
  27. pycityagent/simulation/simulation.py +115 -40
  28. pycityagent/tools/tool.py +7 -10
  29. pycityagent/workflow/block.py +11 -4
  30. {pycityagent-2.0.0a51.dist-info → pycityagent-2.0.0a53.dist-info}/METADATA +2 -2
  31. {pycityagent-2.0.0a51.dist-info → pycityagent-2.0.0a53.dist-info}/RECORD +35 -35
  32. {pycityagent-2.0.0a51.dist-info → pycityagent-2.0.0a53.dist-info}/WHEEL +1 -1
  33. pycityagent/cityagent/blocks/time_block.py +0 -116
  34. {pycityagent-2.0.0a51.dist-info → pycityagent-2.0.0a53.dist-info}/LICENSE +0 -0
  35. {pycityagent-2.0.0a51.dist-info → pycityagent-2.0.0a53.dist-info}/entry_points.txt +0 -0
  36. {pycityagent-2.0.0a51.dist-info → pycityagent-2.0.0a53.dist-info}/top_level.txt +0 -0
@@ -8,7 +8,6 @@ from pycityagent.agent import Agent
8
8
  from pycityagent.economy import EconomyClient
9
9
  from pycityagent.llm.llm import LLM
10
10
  from pycityagent.memory import Memory
11
- from pycityagent.message import Messager
12
11
  from pycityagent.workflow import Block
13
12
  from pycityagent.tools import UpdateWithSimulator
14
13
 
@@ -20,7 +19,7 @@ logger = logging.getLogger("pycityagent")
20
19
 
21
20
 
22
21
  class PlanAndActionBlock(Block):
23
- """主动工作流"""
22
+ """Active workflow based on needs model and plan behavior model"""
24
23
 
25
24
  longTermDecisionBlock: MonthPlanBlock
26
25
  needsBlock: NeedsBlock
@@ -55,87 +54,23 @@ class PlanAndActionBlock(Block):
55
54
  llm=llm, memory=memory, simulator=simulator, economy_client=economy_client
56
55
  )
57
56
  self.otherBlock = OtherBlock(llm=llm, memory=memory)
58
-
59
- async def check_and_update_step(self):
60
- status = await self.memory.get("status")
61
- if status == 2:
62
- # 正在运动
63
- logger.info("Agent is moving")
64
- await asyncio.sleep(1)
65
- return False
66
-
67
- # 获取上一步信息
68
- current_step = await self.memory.get("current_step")
69
- if current_step["intention"] == "" or current_step["type"] == "":
70
- # 没有上一步,直接返回
71
- return True
72
- time_now = int(await self.simulator.get_time())
73
- step_start_time = current_step["start_time"]
74
- step_consumed_time = current_step["evaluation"]["consumed_time"]
75
- time_end_plan = step_start_time + int(step_consumed_time) * 60
76
- if time_now >= time_end_plan:
77
- # 上一步执行完成
78
- current_plan = await self.memory.get("current_plan")
79
- current_step["evaluation"]["consumed_time"] = (
80
- time_now - step_start_time
81
- ) / 60
82
- current_step_index = next(
83
- (
84
- i
85
- for i, step in enumerate(current_plan["steps"])
86
- if step["intention"] == current_step["intention"]
87
- and step["type"] == current_step["type"]
88
- ),
89
- None,
90
- )
91
- current_plan["steps"][current_step_index] = current_step
92
- await self.memory.update("current_plan", current_plan)
93
- if current_step_index is not None and current_step_index + 1 < len(
94
- current_plan["steps"]
95
- ):
96
- next_step = current_plan["steps"][current_step_index + 1]
97
- await self.memory.update("current_step", next_step)
98
- else:
99
- # 标记计划完成
100
- current_plan["completed"] = True
101
- current_plan["end_time"] = await self.simulator.get_time(
102
- format_time=True
103
- )
104
- await self.memory.update("current_plan", current_plan)
105
- await self.memory.update("current_step", {"intention": "", "type": ""})
106
- logger.info("Current plan execution completed.\n")
107
- return True
108
- # 上一步未执行完成
109
- return False
110
-
111
- async def forward(self):
112
- # 与模拟器同步智能体的状态
113
- await self._agent.update_with_sim()
114
- # 检测上一步是否执行完成
115
- if not await self.check_and_update_step():
116
- return
117
-
118
- # 长期决策
119
- await self.longTermDecisionBlock.forward()
120
-
121
- # 需求更新
122
- time_now = await self.simulator.get_time(format_time=True)
123
- logger.info(f"Current time: {time_now}")
124
- await self.needsBlock.forward()
125
- current_need = await self.memory.get("current_need")
126
- logger.info(f"Current need: {current_need}")
127
-
128
- # 计划生成
129
- current_plan = await self.memory.get("current_plan")
57
+
58
+ async def plan_generation(self):
59
+ """Generate plan"""
60
+ current_plan = await self.memory.status.get("current_plan")
61
+ current_need = await self.memory.status.get("current_need")
130
62
  if current_need != "none" and not current_plan:
131
63
  await self.planBlock.forward()
132
- current_plan = await self.memory.get("current_plan")
133
- execution_context = await self.memory.get("execution_context")
134
- current_step = await self.memory.get("current_step")
135
- # 检查 current_step 是否有效(不为空)
64
+
65
+ async def step_execution(self):
66
+ """Execute the current step"""
67
+ current_plan = await self.memory.status.get("current_plan")
68
+ execution_context = await self.memory.status.get("execution_context")
69
+ current_step = await self.memory.status.get("current_step")
70
+ # check current_step is valid (not empty)
136
71
  if current_step and current_step.get("type") and current_step.get("intention"):
137
72
  step_type = current_step.get("type")
138
- position = await self.memory.get("position")
73
+ position = await self.memory.status.get("position")
139
74
  if "aoi_position" in position:
140
75
  current_step["position"] = position["aoi_position"]["aoi_id"]
141
76
  current_step["start_time"] = int(await self.simulator.get_time())
@@ -144,22 +79,50 @@ class PlanAndActionBlock(Block):
144
79
  )
145
80
  result = None
146
81
  if step_type == "mobility":
147
- result = await self.mobilityBlock.forward(
148
- current_step, execution_context
149
- )
82
+ if self.enable_mobility:
83
+ result = await self.mobilityBlock.forward(
84
+ current_step, execution_context
85
+ )
86
+ else:
87
+ result = {
88
+ 'success': False,
89
+ 'evaluation': f'Mobility Behavior is disabled',
90
+ 'consumed_time': 0,
91
+ 'node_id': None
92
+ }
150
93
  elif step_type == "social":
151
- result = await self.socialBlock.forward(current_step, execution_context)
94
+ if self.enable_social:
95
+ result = await self.socialBlock.forward(
96
+ current_step, execution_context
97
+ )
98
+ else:
99
+ result = {
100
+ 'success': False,
101
+ 'evaluation': f'Social Behavior is disabled',
102
+ 'consumed_time': 0,
103
+ 'node_id': None
104
+ }
152
105
  elif step_type == "economy":
153
- result = await self.economyBlock.forward(
106
+ if self.enable_economy:
107
+ result = await self.economyBlock.forward(
108
+ current_step, execution_context
109
+ )
110
+ else:
111
+ result = {
112
+ 'success': False,
113
+ 'evaluation': f'Economy Behavior is disabled',
114
+ 'consumed_time': 0,
115
+ 'node_id': None
116
+ }
117
+ elif step_type == "other":
118
+ result = await self.otherBlock.forward(
154
119
  current_step, execution_context
155
120
  )
156
- elif step_type == "other":
157
- result = await self.otherBlock.forward(current_step, execution_context)
158
121
  if result != None:
159
122
  logger.info(f"Execution result: {result}")
160
123
  current_step["evaluation"] = result
161
124
 
162
- # 更新current_step信息,plan信息以及execution_context信息
125
+ # Update current_step, plan, and execution_context information
163
126
  current_step_index = next(
164
127
  (
165
128
  i
@@ -170,30 +133,51 @@ class PlanAndActionBlock(Block):
170
133
  None,
171
134
  )
172
135
  current_plan["steps"][current_step_index] = current_step
173
- await self.memory.update("current_step", current_step)
174
- await self.memory.update("current_plan", current_plan)
175
- await self.memory.update("execution_context", execution_context)
136
+ await self.memory.status.update("current_step", current_step)
137
+ await self.memory.status.update("current_plan", current_plan)
138
+ await self.memory.status.update("execution_context", execution_context)
176
139
 
140
+ async def forward(self):
141
+ # Long-term decision
142
+ await self.longTermDecisionBlock.forward()
177
143
 
178
- class MindBlock(Block):
179
- """认知工作流"""
144
+ # update needs
145
+ await self.needsBlock.forward()
146
+
147
+ # plan generation
148
+ await self.plan_generation()
180
149
 
150
+ # step execution
151
+ await self.step_execution()
152
+
153
+ class MindBlock(Block):
154
+ """Cognition workflow"""
181
155
  cognitionBlock: CognitionBlock
182
156
 
183
157
  def __init__(self, llm: LLM, memory: Memory, simulator: Simulator):
184
158
  super().__init__(name="mind_block", llm=llm, memory=memory, simulator=simulator)
185
- self.cognitionBlock = CognitionBlock(
186
- llm=llm, memory=memory, simulator=simulator
187
- )
159
+ self.cognitionBlock = CognitionBlock(llm=self.llm, memory=self.memory, simulator=simulator)
188
160
 
189
161
  async def forward(self):
190
162
  await self.cognitionBlock.forward()
191
163
 
192
-
193
164
  class SocietyAgent(CitizenAgent):
194
165
  mindBlock: MindBlock
195
166
  planAndActionBlock: PlanAndActionBlock
196
167
  update_with_sim = UpdateWithSimulator()
168
+ configurable_fields = ["enable_cognition", "enable_mobility", "enable_social", "enable_economy"]
169
+ default_values = {
170
+ "enable_cognition": True,
171
+ "enable_mobility": True,
172
+ "enable_social": True,
173
+ "enable_economy": True,
174
+ }
175
+ fields_description = {
176
+ "enable_cognition": "Enable cognition workflow",
177
+ "enable_mobility": "Enable mobility workflow",
178
+ "enable_social": "Enable social workflow",
179
+ "enable_economy": "Enable economy workflow",
180
+ }
197
181
 
198
182
  def __init__(
199
183
  self,
@@ -211,27 +195,115 @@ class SocietyAgent(CitizenAgent):
211
195
  economy_client=economy_client,
212
196
  )
213
197
  self.mindBlock = MindBlock(
214
- llm=self._llm_client, memory=self._memory, simulator=self._simulator
198
+ llm=self._llm_client, memory=self.memory, simulator=self._simulator
215
199
  )
216
200
  self.planAndActionBlock = PlanAndActionBlock(
217
201
  agent=self,
218
202
  llm=self._llm_client,
219
- memory=self._memory,
203
+ memory=self.memory,
220
204
  simulator=self._simulator,
221
205
  economy_client=self._economy_client,
222
206
  )
223
207
  self.step_count = -1
208
+ self.cognition_update = -1
209
+
210
+ # config
211
+ self.enable_cognition = True
212
+ self.enable_mobility = True
213
+ self.enable_social = True
214
+ self.enable_economy = True
224
215
 
225
216
  # Main workflow
226
217
  async def forward(self):
227
- logger.info(f"Agent {self._uuid} forward")
228
218
  self.step_count += 1
229
- # 多工作流并发执行
230
- task_list = [
231
- asyncio.create_task(self.mindBlock.forward()),
232
- asyncio.create_task(self.planAndActionBlock.forward()),
233
- ]
234
- await asyncio.gather(*task_list)
219
+ logger.info(f"Agent {self._uuid} forward [step_count: {self.step_count}]")
220
+ # sync agent status with simulator
221
+ await self.update_with_sim()
222
+
223
+ # check last step
224
+ if not await self.check_and_update_step():
225
+ return
226
+
227
+ await self.planAndActionBlock.forward()
228
+
229
+ if self.enable_cognition:
230
+ await self.mindBlock.forward()
231
+
232
+ async def check_and_update_step(self):
233
+ """Check if the previous step has been completed"""
234
+ status = await self.memory.status.get("status")
235
+ if status == 2:
236
+ # Agent is moving
237
+ logger.info("Agent is moving")
238
+ await asyncio.sleep(1)
239
+ return False
240
+
241
+ # Get the previous step information
242
+ current_step = await self.memory.status.get("current_step")
243
+ if current_step["intention"] == "" or current_step["type"] == "":
244
+ # No previous step, return directly
245
+ return True
246
+ time_now = int(await self.simulator.get_time())
247
+ step_start_time = current_step["start_time"]
248
+ step_consumed_time = current_step["evaluation"]["consumed_time"]
249
+ time_end_plan = step_start_time + int(step_consumed_time) * 60
250
+ if time_now >= time_end_plan:
251
+ # The previous step has been completed
252
+ current_plan = await self.memory.status.get("current_plan")
253
+ current_step["evaluation"]["consumed_time"] = (
254
+ time_now - step_start_time
255
+ ) / 60
256
+ current_plan["stream_nodes"].append(current_step["evaluation"]["node_id"])
257
+ if current_step["evaluation"]["success"]:
258
+ # Last step is completed
259
+ current_step_index = next(
260
+ (
261
+ i
262
+ for i, step in enumerate(current_plan["steps"])
263
+ if step["intention"] == current_step["intention"]
264
+ and step["type"] == current_step["type"]
265
+ ),
266
+ None,
267
+ )
268
+ current_plan["steps"][current_step_index] = current_step
269
+ await self.memory.status.update("current_plan", current_plan)
270
+ if current_step_index is not None and current_step_index + 1 < len(
271
+ current_plan["steps"]
272
+ ):
273
+ next_step = current_plan["steps"][current_step_index + 1]
274
+ await self.memory.status.update("current_step", next_step)
275
+ else:
276
+ # Whole plan is completed
277
+ current_plan["completed"] = True
278
+ current_plan["end_time"] = await self.simulator.get_time(
279
+ format_time=True
280
+ )
281
+ if self.enable_cognition:
282
+ # Update emotion for the plan
283
+ related_memories = await self.memory.stream.get_by_ids(current_plan["stream_nodes"])
284
+ incident = f"You have successfully completed the plan: {related_memories}"
285
+ conclusion = await self.mindBlock.cognitionBlock.emotion_update(incident)
286
+ await self.memory.stream.add_cognition(description=conclusion)
287
+ await self.memory.stream.add_cognition_to_memory(current_plan["stream_nodes"], conclusion)
288
+ await self.memory.status.update("current_plan", current_plan)
289
+ await self.memory.status.update("current_step", {"intention": "", "type": ""})
290
+ return True
291
+ else:
292
+ current_plan["failed"] = True
293
+ current_plan["end_time"] = await self.simulator.get_time(
294
+ format_time=True
295
+ )
296
+ if self.enable_cognition:
297
+ # Update emotion for the plan
298
+ related_memories = await self.memory.stream.get_by_ids(current_plan["stream_nodes"])
299
+ incident = f"You have failed to complete the plan: {related_memories}"
300
+ conclusion = await self.mindBlock.cognitionBlock.emotion_update(incident)
301
+ await self.memory.stream.add_cognition(description=conclusion)
302
+ await self.memory.stream.add_cognition_to_memory(current_plan["stream_nodes"], conclusion)
303
+ await self.memory.status.update("current_plan", current_plan)
304
+ await self.memory.status.update("current_step", {"intention": "", "type": ""})
305
+ # The previous step has not been completed
306
+ return False
235
307
 
236
308
  async def process_agent_chat_response(self, payload: dict) -> str:
237
309
  if payload["type"] == "social":
@@ -256,9 +328,16 @@ class SocietyAgent(CitizenAgent):
256
328
 
257
329
  if not content:
258
330
  return ""
331
+
332
+ # 添加记忆
333
+ description = f"You received a social message: {content}"
334
+ await self.memory.stream.add_social(description=description)
335
+ if self.enable_cognition:
336
+ # 更新情绪
337
+ await self.mindBlock.cognitionBlock.emotion_update(description)
259
338
 
260
339
  # Get chat histories and ensure proper format
261
- chat_histories = await self._memory.get("chat_histories") or {}
340
+ chat_histories = await self.memory.status.get("chat_histories") or {}
262
341
  if not isinstance(chat_histories, dict):
263
342
  chat_histories = {}
264
343
 
@@ -271,14 +350,14 @@ class SocietyAgent(CitizenAgent):
271
350
 
272
351
  # Check propagation limit
273
352
  if propagation_count > 5:
274
- await self._memory.update("chat_histories", chat_histories)
353
+ await self.memory.status.update("chat_histories", chat_histories)
275
354
  logger.info(
276
355
  f"Message propagation limit reached ({propagation_count} > 5), stopping propagation"
277
356
  )
278
357
  return ""
279
358
 
280
359
  # Get relationship score
281
- relationships = await self._memory.get("relationships") or {}
360
+ relationships = await self.memory.status.get("relationships") or {}
282
361
  relationship_score = relationships.get(sender_id, 50)
283
362
 
284
363
  # Decision prompt
@@ -286,11 +365,12 @@ class SocietyAgent(CitizenAgent):
286
365
  - Received message: "{content}"
287
366
  - Our relationship score: {relationship_score}/100
288
367
  - My profile: {{
289
- "gender": "{await self._memory.get("gender") or ""}",
290
- "education": "{await self._memory.get("education") or ""}",
291
- "personality": "{await self._memory.get("personality") or ""}",
292
- "occupation": "{await self._memory.get("occupation") or ""}"
368
+ "gender": "{await self.memory.status.get("gender") or ""}",
369
+ "education": "{await self.memory.status.get("education") or ""}",
370
+ "personality": "{await self.memory.status.get("personality") or ""}",
371
+ "occupation": "{await self.memory.status.get("occupation") or ""}"
293
372
  }}
373
+ - My current emotion: {await self.memory.status.get("emotion_types")}
294
374
  - Recent chat history: {chat_histories.get(sender_id, "")}
295
375
 
296
376
  Should I respond to this message? Consider:
@@ -311,18 +391,19 @@ class SocietyAgent(CitizenAgent):
311
391
  )
312
392
 
313
393
  if should_respond.strip().upper() != "YES":
314
- await self._memory.update("chat_histories", chat_histories)
394
+ await self.memory.status.update("chat_histories", chat_histories)
315
395
  return ""
316
396
 
317
397
  response_prompt = f"""Based on:
318
398
  - Received message: "{content}"
319
399
  - Our relationship score: {relationship_score}/100
320
400
  - My profile: {{
321
- "gender": "{await self._memory.get("gender") or ""}",
322
- "education": "{await self._memory.get("education") or ""}",
323
- "personality": "{await self._memory.get("personality") or ""}",
324
- "occupation": "{await self._memory.get("occupation") or ""}"
401
+ "gender": "{await self.memory.status.get("gender") or ""}",
402
+ "education": "{await self.memory.status.get("education") or ""}",
403
+ "personality": "{await self.memory.status.get("personality") or ""}",
404
+ "occupation": "{await self.memory.status.get("occupation") or ""}"
325
405
  }}
406
+ - My current emotion: {await self.memory.status.get("emotion_types")}
326
407
  - Recent chat history: {chat_histories.get(sender_id, "")}
327
408
 
328
409
  Generate an appropriate response that:
@@ -346,7 +427,7 @@ class SocietyAgent(CitizenAgent):
346
427
  if response:
347
428
  # Update chat history with response
348
429
  chat_histories[sender_id] += f",me: {response}"
349
- await self._memory.update("chat_histories", chat_histories)
430
+ await self.memory.status.update("chat_histories", chat_histories)
350
431
 
351
432
  # Send response
352
433
  serialized_response = json.dumps(
@@ -371,4 +452,8 @@ class SocietyAgent(CitizenAgent):
371
452
  value = float(value)
372
453
  else:
373
454
  value = int(value)
374
- await self.memory.update(key, value)
455
+ description = f"You received a economic message: Your {key} has changed from {await self.memory.status.get(key)} to {value}"
456
+ await self.memory.status.update(key, value)
457
+ await self.memory.stream.add_economic(description=description)
458
+ if self.enable_cognition:
459
+ await self.mindBlock.cognitionBlock.emotion_update(description)
@@ -10,7 +10,7 @@ from .road_service import RoadService
10
10
  from .social_service import SocialService
11
11
  from .economy_services import EconomyPersonService, EconomyOrgService
12
12
  from .light_service import LightService
13
-
13
+ from .pause_service import PauseService
14
14
  from ..utils.grpc import create_aio_channel
15
15
 
16
16
  __all__ = ["CityClient"]
@@ -44,6 +44,7 @@ class CityClient:
44
44
  self._economy_person_service = EconomyPersonService(aio_channel)
45
45
  self._economy_org_service = EconomyOrgService(aio_channel)
46
46
  self._light_service = LightService(aio_channel)
47
+ self._pause_service = PauseService(aio_channel)
47
48
 
48
49
  @staticmethod
49
50
  def from_sidecar(sidecar: OnlyClientSidecar, name: str = NAME):
@@ -61,6 +62,14 @@ class CityClient:
61
62
  """
62
63
  return self._clock_service
63
64
 
65
+ @property
66
+ def pause_service(self):
67
+ """
68
+ 模拟器暂停服务子模块
69
+ Simulator pause service submodule
70
+ """
71
+ return self._pause_service
72
+
64
73
  @property
65
74
  def lane_service(self):
66
75
  """
@@ -30,10 +30,10 @@ class ClockService:
30
30
  Getting current simulation clock
31
31
 
32
32
  Args:
33
- - req (dict): https://cityproto.sim.fiblab.net/#city.clock.v1.NowRequest
33
+ - req (dict): https://cityproto.readthedocs.io/en/latest/docs.html#nowrequest
34
34
 
35
35
  Returns:
36
- - https://cityproto.sim.fiblab.net/#city.clock.v1.NowResponse
36
+ - https://cityproto.readthedocs.io/en/latest/docs.html#nowresponse
37
37
  """
38
38
  if type(req) != clock_service.NowRequest:
39
39
  req = ParseDict(req, clock_service.NowRequest())
@@ -0,0 +1,61 @@
1
+ from collections.abc import Awaitable, Coroutine
2
+ from typing import Any, Dict, Union, cast
3
+
4
+ import grpc
5
+ from google.protobuf.json_format import ParseDict
6
+ from pycityproto.city.pause.v1 import pause_service_pb2 as pause_service
7
+ from pycityproto.city.pause.v1 import pause_service_pb2_grpc as pause_grpc
8
+
9
+ from ..utils.protobuf import async_parse
10
+
11
+ __all__ = ["PauseService"]
12
+
13
+
14
+ class PauseService:
15
+ """
16
+ 城市模拟暂停服务
17
+ City simulation pause service
18
+ """
19
+
20
+ def __init__(self, aio_channel: grpc.aio.Channel):
21
+ self._aio_stub = pause_grpc.PauseServiceStub(aio_channel)
22
+
23
+ async def pause(
24
+ self,
25
+ ) -> Coroutine[Any, Any, Union[Dict[str, Any], pause_service.PauseResponse]]:
26
+ """
27
+ 暂停模拟
28
+ Pause the simulation
29
+
30
+ Args:
31
+ - req (dict): https://cityproto.readthedocs.io/en/latest/docs.html#pauserequest
32
+
33
+ Returns:
34
+ - https://cityproto.readthedocs.io/en/latest/docs.html#pauseresponse
35
+ """
36
+ req = pause_service.PauseRequest()
37
+ res = cast(
38
+ Awaitable[pause_service.PauseResponse],
39
+ self._aio_stub.Pause(req),
40
+ )
41
+ return
42
+
43
+ async def resume(
44
+ self,
45
+ ) -> Coroutine[Any, Any, Union[Dict[str, Any], pause_service.ResumeResponse]]:
46
+ """
47
+ 恢复模拟
48
+ Resume the simulation
49
+
50
+ Args:
51
+ - req (dict): https://cityproto.readthedocs.io/en/latest/docs.html#resumerequest
52
+
53
+ Returns:
54
+ - https://cityproto.readthedocs.io/en/latest/docs.html#resumeresponse
55
+ """
56
+ req = pause_service.ResumeRequest()
57
+ res = cast(
58
+ Awaitable[pause_service.ResumeResponse],
59
+ self._aio_stub.Resume(req),
60
+ )
61
+ return
@@ -162,35 +162,40 @@ class Simulator:
162
162
  Returns:
163
163
  - time Union[int, str]: 时间 time in second(int) or formatted time(str)
164
164
  """
165
- t_sec = await self._client.clock_service.Now({})
166
- t_sec = cast(dict[str, int], t_sec)
167
- self.time = t_sec["t"]
165
+ now = await self._client.clock_service.Now({})
166
+ now = cast(dict[str, int], now)
167
+ self.time = now["t"]
168
168
  if format_time:
169
169
  current_date = datetime.now().date()
170
170
  start_of_day = datetime.combine(current_date, datetime.min.time())
171
- current_time = start_of_day + timedelta(seconds=t_sec["t"])
171
+ current_time = start_of_day + timedelta(seconds=now["t"])
172
172
  formatted_time = current_time.strftime(format)
173
173
  return formatted_time
174
174
  else:
175
- # BUG: 返回的time是float类型
176
- return t_sec["t"]
175
+ return int(now["t"])
176
+
177
+ async def pause(self):
178
+ await self._client.pause_service.pause()
179
+
180
+ async def resume(self):
181
+ await self._client.pause_service.resume()
177
182
 
178
183
  async def get_simulator_day(self) -> int:
179
184
  """
180
185
  获取模拟器到第几日
181
186
  """
182
- t_sec = await self._client.clock_service.Now({})
183
- t_sec = cast(dict[str, int], t_sec)
184
- day = t_sec["t"] // 86400
187
+ now = await self._client.clock_service.Now({})
188
+ now = cast(dict[str, int], now)
189
+ day = now["day"]
185
190
  return day
186
191
 
187
192
  async def get_simulator_second_from_start_of_day(self) -> int:
188
193
  """
189
194
  获取模拟器从00:00:00到当前的秒数
190
195
  """
191
- t_sec = await self._client.clock_service.Now({})
192
- t_sec = cast(dict[str, int], t_sec)
193
- return t_sec["t"] % 86400
196
+ now = await self._client.clock_service.Now({})
197
+ now = cast(dict[str, int], now)
198
+ return now["t"] % 86400
194
199
 
195
200
  async def get_person(self, person_id: int) -> dict:
196
201
  return await self._client.person_service.GetPerson(
@@ -196,30 +196,6 @@ class SimpleEmbedding(Embeddings):
196
196
  """Embed query text."""
197
197
  return self._embed(text)
198
198
 
199
- # def save(self, file_path: str):
200
- # """保存模型"""
201
- # state = {
202
- # "vector_dim": self.vector_dim,
203
- # "cache_size": self.cache_size,
204
- # "vocab": self._vocab,
205
- # "idf": self._idf,
206
- # "doc_count": self._doc_count,
207
- # }
208
- # with open(file_path, "w") as f:
209
- # json.dump(state, f)
210
-
211
- # def load(self, file_path: str):
212
- # """加载模型"""
213
- # with open(file_path, "r") as f:
214
- # state = json.load(f)
215
- # self.vector_dim = state["vector_dim"]
216
- # self.cache_size = state["cache_size"]
217
- # self._vocab = state["vocab"]
218
- # self._idf = state["idf"]
219
- # self._doc_count = state["doc_count"]
220
- # self._cache = {} # 清空缓存
221
-
222
-
223
199
  if __name__ == "__main__":
224
200
  # se = SentenceEmbedding(
225
201
  # pretrained_model_name_or_path="ignore/BAAI--bge-m3", cache_dir="ignore"