pycityagent 2.0.0a49__cp312-cp312-macosx_11_0_arm64.whl → 2.0.0a51__cp312-cp312-macosx_11_0_arm64.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -11,22 +11,32 @@ import logging
11
11
 
12
12
  logger = logging.getLogger("pycityagent")
13
13
 
14
- class GovernmentAgent(InstitutionAgent):
15
- def __init__(self,
16
- name: str,
17
- llm_client: Optional[LLM] = None,
18
- simulator: Optional[Simulator] = None,
19
- memory: Optional[Memory] = None,
20
- economy_client: Optional[EconomyClient] = None,
21
- messager: Optional[Messager] = None,
22
- avro_file: Optional[dict] = None,
23
- ) -> None:
24
- super().__init__(name=name, llm_client=llm_client, simulator=simulator, memory=memory, economy_client=economy_client, messager=messager, avro_file=avro_file)
14
+
15
+ class GovernmentAgent(InstitutionAgent):
16
+ def __init__(
17
+ self,
18
+ name: str,
19
+ llm_client: Optional[LLM] = None,
20
+ simulator: Optional[Simulator] = None,
21
+ memory: Optional[Memory] = None,
22
+ economy_client: Optional[EconomyClient] = None,
23
+ messager: Optional[Messager] = None,
24
+ avro_file: Optional[dict] = None,
25
+ ) -> None:
26
+ super().__init__(
27
+ name=name,
28
+ llm_client=llm_client,
29
+ simulator=simulator,
30
+ memory=memory,
31
+ economy_client=economy_client,
32
+ messager=messager,
33
+ avro_file=avro_file,
34
+ )
25
35
  self.initailzed = False
26
36
  self.last_time_trigger = None
27
37
  self.time_diff = 30 * 24 * 60 * 60
28
38
  self.forward_times = 0
29
-
39
+
30
40
  async def month_trigger(self):
31
41
  now_time = await self.simulator.get_time()
32
42
  if self.last_time_trigger is None:
@@ -36,25 +46,31 @@ class GovernmentAgent(InstitutionAgent):
36
46
  self.last_time_trigger = now_time
37
47
  return True
38
48
  return False
39
-
49
+
40
50
  async def gather_messages(self, agent_ids, content):
41
51
  infos = await super().gather_messages(agent_ids, content)
42
- return [info['content'] for info in infos]
52
+ return [info["content"] for info in infos]
43
53
 
44
54
  async def forward(self):
45
55
  if await self.month_trigger():
46
56
  citizens = await self.memory.get("citizens")
47
57
  while True:
48
- agents_forward = await self.gather_messages(citizens, 'forward')
58
+ agents_forward = await self.gather_messages(citizens, "forward")
49
59
  if np.all(np.array(agents_forward) > self.forward_times):
50
60
  break
51
61
  await asyncio.sleep(1)
52
62
  citizens_agent_id = await self.memory.get("citizens_agent_id")
53
- incomes = await self.gather_messages(citizens, 'income_currency') # uuid
54
- _, post_tax_incomes = await self.economy_client.calculate_taxes_due(self._agent_id, citizens_agent_id, incomes, enable_redistribution=False)
55
- for uuid, income, post_tax_income in zip(citizens, incomes, post_tax_incomes):
63
+ incomes = await self.gather_messages(citizens, "income_currency") # uuid
64
+ _, post_tax_incomes = await self.economy_client.calculate_taxes_due(
65
+ self._agent_id, citizens_agent_id, incomes, enable_redistribution=False
66
+ )
67
+ for uuid, income, post_tax_income in zip(
68
+ citizens, incomes, post_tax_incomes
69
+ ):
56
70
  tax_paid = income - post_tax_income
57
71
  await self.send_message_to_agent(uuid, f"tax_paid@{tax_paid}")
58
72
  self.forward_times += 1
59
73
  for uuid in citizens:
60
- await self.send_message_to_agent(uuid, f"government_forward@{self.forward_times}")
74
+ await self.send_message_to_agent(
75
+ uuid, f"government_forward@{self.forward_times}"
76
+ )
@@ -1,5 +1,8 @@
1
1
  import random
2
- from pycityagent.cityagent import SocietyAgent, FirmAgent, GovernmentAgent, BankAgent, NBSAgent
2
+
3
+ from pycityagent.cityagent import (BankAgent, FirmAgent, GovernmentAgent,
4
+ NBSAgent, SocietyAgent)
5
+
3
6
 
4
7
  async def initialize_social_network(simulation):
5
8
  """
@@ -7,25 +10,27 @@ async def initialize_social_network(simulation):
7
10
  """
8
11
  try:
9
12
  print("Initializing social network...")
10
-
13
+
11
14
  # 定义可能的关系类型
12
15
  relation_types = ["family", "colleague", "friend"]
13
-
16
+
14
17
  # 获取所有智能体ID
15
18
  agent_ids = simulation.agent_uuids
16
19
  for agent_id in agent_ids:
17
20
  # 为每个智能体随机选择2-5个好友
18
21
  num_friends = random.randint(2, 5)
19
22
  possible_friends = [aid for aid in agent_ids if aid != agent_id]
20
- friends = random.sample(possible_friends, min(num_friends, len(possible_friends)))
21
-
23
+ friends = random.sample(
24
+ possible_friends, min(num_friends, len(possible_friends))
25
+ )
26
+
22
27
  # 初始化好友关系
23
28
  await simulation.update(agent_id, "friends", friends)
24
-
29
+
25
30
  # 初始化与每个好友的关系类型和关系强度
26
31
  relationships = {}
27
32
  relation_type_map = {}
28
-
33
+
29
34
  for friend_id in friends:
30
35
  # 随机选择关系类型
31
36
  relation_type = random.choice(relation_types)
@@ -36,31 +41,36 @@ async def initialize_social_network(simulation):
36
41
  strength = random.randint(40, 70) # 同事关系强度中等
37
42
  else: # friend
38
43
  strength = random.randint(30, 80) # 朋友关系强度范围较广
39
-
44
+
40
45
  relationships[friend_id] = strength
41
46
  relation_type_map[friend_id] = relation_type
42
-
47
+
43
48
  # 更新关系强度和类型
44
49
  await simulation.update(agent_id, "relationships", relationships)
45
50
  await simulation.update(agent_id, "relation_types", relation_type_map)
46
-
51
+
47
52
  # 初始化空的聊天历史和互动记录
48
- await simulation.update(agent_id, "chat_histories", {friend_id: [] for friend_id in friends})
49
- await simulation.update(agent_id, "interactions", {friend_id: [] for friend_id in friends})
50
-
53
+ await simulation.update(
54
+ agent_id, "chat_histories", {friend_id: [] for friend_id in friends}
55
+ )
56
+ await simulation.update(
57
+ agent_id, "interactions", {friend_id: [] for friend_id in friends}
58
+ )
59
+
51
60
  print("Social network initialization completed!")
52
61
  return True
53
-
62
+
54
63
  except Exception as e:
55
64
  print(f"Error initializing social network: {str(e)}")
56
65
  return False
57
-
66
+
67
+
58
68
  async def bind_agent_info(simulation):
59
69
  """
60
70
  绑定智能体的信息,包括公民、公司、政府、银行和NBS的ID
61
71
  """
62
72
  print("Binding agent info...")
63
- infos = await simulation.gather('id')
73
+ infos = await simulation.gather("id")
64
74
  citizen_uuids = await simulation.filter(types=[SocietyAgent])
65
75
  firm_uuids = await simulation.filter(types=[FirmAgent])
66
76
  government_uuids = await simulation.filter(types=[GovernmentAgent])
@@ -80,19 +90,19 @@ async def bind_agent_info(simulation):
80
90
  elif k in nbs_uuids:
81
91
  nbs_id = v
82
92
  for citizen_uuid in citizen_uuids:
83
- await simulation.update(citizen_uuid, 'firm_id', firm_id)
84
- await simulation.update(citizen_uuid, 'government_id', government_id)
85
- await simulation.update(citizen_uuid, 'bank_id', bank_id)
86
- await simulation.update(citizen_uuid, 'nbs_id', nbs_id)
93
+ await simulation.update(citizen_uuid, "firm_id", firm_id)
94
+ await simulation.update(citizen_uuid, "government_id", government_id)
95
+ await simulation.update(citizen_uuid, "bank_id", bank_id)
96
+ await simulation.update(citizen_uuid, "nbs_id", nbs_id)
87
97
  for firm_uuid in firm_uuids:
88
- await simulation.update(firm_uuid, 'employees', citizen_uuids)
89
- await simulation.update(firm_uuid, 'employees_agent_id', citizen_agent_ids)
98
+ await simulation.update(firm_uuid, "employees", citizen_uuids)
99
+ await simulation.update(firm_uuid, "employees_agent_id", citizen_agent_ids)
90
100
  for government_uuid in government_uuids:
91
- await simulation.update(government_uuid, 'citizens', citizen_uuids)
92
- await simulation.update(government_uuid, 'citizens_agent_id', citizen_agent_ids)
101
+ await simulation.update(government_uuid, "citizens", citizen_uuids)
102
+ await simulation.update(government_uuid, "citizens_agent_id", citizen_agent_ids)
93
103
  for bank_uuid in bank_uuids:
94
- await simulation.update(bank_uuid, 'citizens', citizen_uuids)
95
- await simulation.update(bank_uuid, 'citizens_agent_id', citizen_agent_ids)
104
+ await simulation.update(bank_uuid, "citizens", citizen_uuids)
105
+ await simulation.update(bank_uuid, "citizens_agent_id", citizen_agent_ids)
96
106
  for nbs_uuid in nbs_uuids:
97
- await simulation.update(nbs_uuid, 'firm_id', firm_id)
98
- print("Agent info binding completed!")
107
+ await simulation.update(nbs_uuid, "firm_id", firm_id)
108
+ print("Agent info binding completed!")
@@ -1,8 +1,9 @@
1
1
  import random
2
- from mosstool.map._map_util.const import AOI_START_ID
2
+ from collections import deque
3
+
3
4
  import numpy as np
4
5
  import pycityproto.city.economy.v2.economy_pb2 as economyv2
5
- from collections import deque
6
+ from mosstool.map._map_util.const import AOI_START_ID
6
7
 
7
8
  pareto_param = 8
8
9
  payment_max_skill_multiplier = 950
@@ -13,46 +14,63 @@ clipped_skills = np.minimum(pmsm, (pmsm - 1) * pareto_samples + 1)
13
14
  sorted_clipped_skills = np.sort(clipped_skills, axis=1)
14
15
  agent_skills = list(sorted_clipped_skills.mean(axis=0))
15
16
 
17
+
16
18
  def memory_config_societyagent():
17
19
  EXTRA_ATTRIBUTES = {
18
- "city": 'New York',
19
-
20
+ "city": "New York",
20
21
  # 需求信息
21
- "type": (str, 'citizen'),
22
- "needs": (dict, {
23
- 'hungry': random.random(), # 饥饿感
24
- 'tired': random.random(), # 疲劳感
25
- 'safe': random.random(), # 安全需
26
- 'social': random.random(), # 社会需求
27
- }, True),
22
+ "type": (str, "citizen"),
23
+ "needs": (
24
+ dict,
25
+ {
26
+ "hungry": random.random(), # 饥饿感
27
+ "tired": random.random(), # 疲劳感
28
+ "safe": random.random(), # 安全需
29
+ "social": random.random(), # 社会需求
30
+ },
31
+ True,
32
+ ),
28
33
  "current_need": (str, "none", True),
29
34
  "current_plan": (list, [], True),
30
35
  "current_step": (dict, {"intention": "", "type": ""}, True),
31
- "execution_context" : (dict, {}, True),
36
+ "execution_context": (dict, {}, True),
32
37
  "plan_history": (list, [], True),
33
-
34
38
  # cognition
35
- "emotion": (dict, {"sadness": 5, "joy": 5, "fear": 5, "disgust": 5, "anger": 5, "surprise": 5}, True),
39
+ "emotion": (
40
+ dict,
41
+ {
42
+ "sadness": 5,
43
+ "joy": 5,
44
+ "fear": 5,
45
+ "disgust": 5,
46
+ "anger": 5,
47
+ "surprise": 5,
48
+ },
49
+ True,
50
+ ),
36
51
  "attitude": (dict, {}, True),
37
52
  "thought": (str, "Currently nothing good or bad is happening", True),
38
53
  "emotion_types": (str, "Relief", True),
39
54
  "incident": (list, [], True),
40
-
41
- "city": (str, 'Texas', True),
42
- "work_skill": (float, random.choice(agent_skills), True), # 工作技能, 即每小时的工资
43
- "tax_paid": (float, 0.0, True), # 纳税
44
- "consumption_currency": (float, 0.0, True), # 月消费
45
- "goods_demand": (int, 0, True),
55
+ "city": (str, "Texas", True),
56
+ "work_skill": (
57
+ float,
58
+ random.choice(agent_skills),
59
+ True,
60
+ ), # 工作技能, 即每小时的工资
61
+ "tax_paid": (float, 0.0, True), # 纳税
62
+ "consumption_currency": (float, 0.0, True), # 月消费
63
+ "goods_demand": (int, 0, True),
46
64
  "goods_consumption": (int, 0, True),
47
- "work_propensity": (float, 0.0, True),
65
+ "work_propensity": (float, 0.0, True),
48
66
  "consumption_propensity": (float, 0.0, True),
49
- "income_currency": (float, 0.0, True), # 月收入
67
+ "income_currency": (float, 0.0, True), # 月收入
50
68
  "to_income": (float, 0.0, True),
51
69
  "to_consumption_currency": (float, 0.0, True),
52
70
  "firm_id": (int, 0, True),
53
71
  "government_id": (int, 0, True),
54
72
  "bank_id": (int, 0, True),
55
- 'nbs_id': (int, 0, True),
73
+ "nbs_id": (int, 0, True),
56
74
  "dialog_queue": (deque(maxlen=3), [], True),
57
75
  "firm_forward": (int, 0, True),
58
76
  "bank_forward": (int, 0, True),
@@ -61,142 +79,236 @@ def memory_config_societyagent():
61
79
  "forward": (int, 0, True),
62
80
  "depression": (float, 0.0, True),
63
81
  "ubi_opinion": (list, [], True),
64
-
65
- #social
82
+ # social
66
83
  "friends": (list, [], True), # 好友列表
67
84
  "relationships": (dict, {}, True), # 与每个好友的关系强度
68
85
  "relation_types": (dict, {}, True),
69
86
  "chat_histories": (dict, {}, True), # 所有聊天历史记录
70
87
  "interactions": (dict, {}, True), # 所有互动记录
71
- "to_discuss":(dict, {}, True),
72
-
88
+ "to_discuss": (dict, {}, True),
73
89
  # economy
74
90
  "working_experience": (list, [], True),
75
91
  "work_hour_month": (float, 160, True),
76
92
  "work_hour_finish": (float, 0, True),
77
-
78
93
  # mobility
79
94
  "environment": (str, "The environment outside is good", True),
80
95
  }
81
96
 
82
97
  PROFILE = {
83
- "name": random.choice(["Alice", "Bob", "Charlie", "David", "Eve", "Frank", "Grace", "Helen", "Ivy", "Jack", "Kelly", "Lily", "Mike", "Nancy", "Oscar", "Peter", "Queen", "Rose", "Sam", "Tom", "Ulysses", "Vicky", "Will", "Xavier", "Yvonne", "Zack"]),
98
+ "name": random.choice(
99
+ [
100
+ "Alice",
101
+ "Bob",
102
+ "Charlie",
103
+ "David",
104
+ "Eve",
105
+ "Frank",
106
+ "Grace",
107
+ "Helen",
108
+ "Ivy",
109
+ "Jack",
110
+ "Kelly",
111
+ "Lily",
112
+ "Mike",
113
+ "Nancy",
114
+ "Oscar",
115
+ "Peter",
116
+ "Queen",
117
+ "Rose",
118
+ "Sam",
119
+ "Tom",
120
+ "Ulysses",
121
+ "Vicky",
122
+ "Will",
123
+ "Xavier",
124
+ "Yvonne",
125
+ "Zack",
126
+ ]
127
+ ),
84
128
  "gender": random.choice(["male", "female"]),
85
129
  "age": random.randint(18, 65),
86
- "education": random.choice(["Doctor", "Master", "Bachelor", "College", "High School"]),
87
- "skill": random.choice(["Good at problem-solving", "Good at communication", "Good at creativity", "Good at teamwork", "Other"]),
88
- "occupation": random.choice(["Student", "Teacher", "Doctor", "Engineer", "Manager", "Businessman", "Artist", "Athlete", "Other"]),
130
+ "education": random.choice(
131
+ ["Doctor", "Master", "Bachelor", "College", "High School"]
132
+ ),
133
+ "skill": random.choice(
134
+ [
135
+ "Good at problem-solving",
136
+ "Good at communication",
137
+ "Good at creativity",
138
+ "Good at teamwork",
139
+ "Other",
140
+ ]
141
+ ),
142
+ "occupation": random.choice(
143
+ [
144
+ "Student",
145
+ "Teacher",
146
+ "Doctor",
147
+ "Engineer",
148
+ "Manager",
149
+ "Businessman",
150
+ "Artist",
151
+ "Athlete",
152
+ "Other",
153
+ ]
154
+ ),
89
155
  "family_consumption": random.choice(["low", "medium", "high"]),
90
156
  "consumption": random.choice(["sightly low", "low", "medium", "high"]),
91
- "personality": random.choice(["outgoint", "introvert", "ambivert", "extrovert"]),
92
- "income": '0',
157
+ "personality": random.choice(
158
+ ["outgoint", "introvert", "ambivert", "extrovert"]
159
+ ),
160
+ "income": "0",
93
161
  "currency": random.randint(1000, 100000),
94
162
  "residence": random.choice(["city", "suburb", "rural"]),
95
- "race": random.choice(["Chinese", "American", "British", "French", "German", "Japanese", "Korean", "Russian", "Other"]),
96
- "religion": random.choice(["none", "Christian", "Muslim", "Buddhist", "Hindu", "Other"]),
97
- "marital_status": random.choice(["not married", "married", "divorced", "widowed"]),
163
+ "race": random.choice(
164
+ [
165
+ "Chinese",
166
+ "American",
167
+ "British",
168
+ "French",
169
+ "German",
170
+ "Japanese",
171
+ "Korean",
172
+ "Russian",
173
+ "Other",
174
+ ]
175
+ ),
176
+ "religion": random.choice(
177
+ ["none", "Christian", "Muslim", "Buddhist", "Hindu", "Other"]
178
+ ),
179
+ "marital_status": random.choice(
180
+ ["not married", "married", "divorced", "widowed"]
181
+ ),
98
182
  }
99
183
 
100
184
  BASE = {
101
- "home": {"aoi_position": {"aoi_id": AOI_START_ID + random.randint(1000, 10000)}},
102
- "work": {"aoi_position": {"aoi_id": AOI_START_ID + random.randint(1000, 10000)}},
185
+ "home": {
186
+ "aoi_position": {"aoi_id": AOI_START_ID + random.randint(1000, 10000)}
187
+ },
188
+ "work": {
189
+ "aoi_position": {"aoi_id": AOI_START_ID + random.randint(1000, 10000)}
190
+ },
103
191
  }
104
192
 
105
193
  return EXTRA_ATTRIBUTES, PROFILE, BASE
106
194
 
195
+
107
196
  def memory_config_firm():
108
- EXTRA_ATTRIBUTES = {'type': (int, economyv2.ORG_TYPE_FIRM),
109
- 'price': (float, float(np.mean(agent_skills))),
110
- 'inventory': (int, 0),
111
- 'employees': (list, []),
112
- 'employees_agent_id': (list, []),
113
- 'nominal_gdp': (list, []), # useless
114
- 'real_gdp': (list, []),
115
- 'unemployment': (list, []),
116
- 'wages': (list, []),
117
- 'prices': (list, [float(np.mean(agent_skills))]),
118
- "working_hours": (list, []),
119
- "depression": (list, []),
120
- "consumption_currency": (list, []),
121
- "income_currency": (list, []),
122
- "locus_control": (list, []),
123
- 'bracket_cutoffs': (list, list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400])/12)),
124
- "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
125
- 'interest_rate': (float, 0.03),
126
- 'citizens': (list, []),
127
- 'citizens_agent_id': (list, []),
128
- 'firm_id': (int, 0),}
129
- return EXTRA_ATTRIBUTES, {'currency': 1e12}, {}
197
+ EXTRA_ATTRIBUTES = {
198
+ "type": (int, economyv2.ORG_TYPE_FIRM),
199
+ "price": (float, float(np.mean(agent_skills))),
200
+ "inventory": (int, 0),
201
+ "employees": (list, []),
202
+ "employees_agent_id": (list, []),
203
+ "nominal_gdp": (list, []), # useless
204
+ "real_gdp": (list, []),
205
+ "unemployment": (list, []),
206
+ "wages": (list, []),
207
+ "prices": (list, [float(np.mean(agent_skills))]),
208
+ "working_hours": (list, []),
209
+ "depression": (list, []),
210
+ "consumption_currency": (list, []),
211
+ "income_currency": (list, []),
212
+ "locus_control": (list, []),
213
+ "bracket_cutoffs": (
214
+ list,
215
+ list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400]) / 12),
216
+ ),
217
+ "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
218
+ "interest_rate": (float, 0.03),
219
+ "citizens": (list, []),
220
+ "citizens_agent_id": (list, []),
221
+ "firm_id": (int, 0),
222
+ }
223
+ return EXTRA_ATTRIBUTES, {"currency": 1e12}, {}
224
+
130
225
 
131
226
  def memory_config_government():
132
- EXTRA_ATTRIBUTES = {'type': (int, economyv2.ORG_TYPE_GOVERNMENT),
133
- # 'bracket_cutoffs': (list, list(np.array([0, 97, 394.75, 842, 1607.25, 2041, 5103])*100/12)),
134
- 'bracket_cutoffs': (list, list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400])/12)),
135
- "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
136
- 'citizens': (list, []),
137
- 'citizens_agent_id': (list, []),
138
- 'nominal_gdp': (list, []), # useless
139
- 'real_gdp': (list, []),
140
- 'unemployment': (list, []),
141
- 'wages': (list, []),
142
- 'prices': (list, [float(np.mean(agent_skills))]),
143
- "working_hours": (list, []),
144
- "depression": (list, []),
145
- "consumption_currency": (list, []),
146
- "income_currency": (list, []),
147
- "locus_control": (list, []),
148
- 'inventory': (int, 0),
149
- 'interest_rate': (float, 0.03),
150
- 'price': (float, float(np.mean(agent_skills))),
151
- 'employees': (list, []),
152
- 'employees_agent_id': (list, []),
153
- 'firm_id': (int, 0),}
154
- return EXTRA_ATTRIBUTES, {'currency': 1e12}, {}
227
+ EXTRA_ATTRIBUTES = {
228
+ "type": (int, economyv2.ORG_TYPE_GOVERNMENT),
229
+ # 'bracket_cutoffs': (list, list(np.array([0, 97, 394.75, 842, 1607.25, 2041, 5103])*100/12)),
230
+ "bracket_cutoffs": (
231
+ list,
232
+ list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400]) / 12),
233
+ ),
234
+ "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
235
+ "citizens": (list, []),
236
+ "citizens_agent_id": (list, []),
237
+ "nominal_gdp": (list, []), # useless
238
+ "real_gdp": (list, []),
239
+ "unemployment": (list, []),
240
+ "wages": (list, []),
241
+ "prices": (list, [float(np.mean(agent_skills))]),
242
+ "working_hours": (list, []),
243
+ "depression": (list, []),
244
+ "consumption_currency": (list, []),
245
+ "income_currency": (list, []),
246
+ "locus_control": (list, []),
247
+ "inventory": (int, 0),
248
+ "interest_rate": (float, 0.03),
249
+ "price": (float, float(np.mean(agent_skills))),
250
+ "employees": (list, []),
251
+ "employees_agent_id": (list, []),
252
+ "firm_id": (int, 0),
253
+ }
254
+ return EXTRA_ATTRIBUTES, {"currency": 1e12}, {}
255
+
155
256
 
156
257
  def memory_config_bank():
157
- EXTRA_ATTRIBUTES = {'type': (int, economyv2.ORG_TYPE_BANK),
158
- 'interest_rate': (float, 0.03),
159
- 'citizens': (list, []),
160
- 'citizens_agent_id': (list, []),
161
- 'bracket_cutoffs': (list, list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400])/12)), #useless
162
- "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
163
- 'inventory': (int, 0),
164
- 'nominal_gdp': (list, []), # useless
165
- 'real_gdp': (list, []),
166
- 'unemployment': (list, []),
167
- 'wages': (list, []),
168
- 'prices': (list, [float(np.mean(agent_skills))]),
169
- "working_hours": (list, []),
170
- "depression": (list, []),
171
- "consumption_currency": (list, []),
172
- "income_currency": (list, []),
173
- "locus_control": (list, []),
174
- 'price': (float, float(np.mean(agent_skills))),
175
- 'employees': (list, []),
176
- 'employees_agent_id': (list, []),
177
- 'firm_id': (int, 0),}
178
- return EXTRA_ATTRIBUTES, {'currency': 1e12}, {}
258
+ EXTRA_ATTRIBUTES = {
259
+ "type": (int, economyv2.ORG_TYPE_BANK),
260
+ "interest_rate": (float, 0.03),
261
+ "citizens": (list, []),
262
+ "citizens_agent_id": (list, []),
263
+ "bracket_cutoffs": (
264
+ list,
265
+ list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400]) / 12),
266
+ ), # useless
267
+ "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
268
+ "inventory": (int, 0),
269
+ "nominal_gdp": (list, []), # useless
270
+ "real_gdp": (list, []),
271
+ "unemployment": (list, []),
272
+ "wages": (list, []),
273
+ "prices": (list, [float(np.mean(agent_skills))]),
274
+ "working_hours": (list, []),
275
+ "depression": (list, []),
276
+ "consumption_currency": (list, []),
277
+ "income_currency": (list, []),
278
+ "locus_control": (list, []),
279
+ "price": (float, float(np.mean(agent_skills))),
280
+ "employees": (list, []),
281
+ "employees_agent_id": (list, []),
282
+ "firm_id": (int, 0),
283
+ }
284
+ return EXTRA_ATTRIBUTES, {"currency": 1e12}, {}
285
+
179
286
 
180
287
  def memory_config_nbs():
181
- EXTRA_ATTRIBUTES = {'type': (int, economyv2.ORG_TYPE_NBS),
182
- 'nominal_gdp': (list, []),
183
- 'real_gdp': (list, []),
184
- 'unemployment': (list, []),
185
- 'wages': (list, []),
186
- 'prices': (list, [float(np.mean(agent_skills))]),
187
- "working_hours": (list, []),
188
- "depression": (list, []),
189
- "consumption_currency": (list, []),
190
- "income_currency": (list, []),
191
- "locus_control": (list, []),
192
- 'citizens': (list, []),
193
- 'citizens_agent_id': (list, []),
194
- 'firm_id': (int, 0),
195
- 'bracket_cutoffs': (list, list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400])/12)), #useless
196
- "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
197
- 'inventory': (int, 0),
198
- 'interest_rate': (float, 0.03),
199
- 'price': (float, float(np.mean(agent_skills))),
200
- 'employees': (list, []),
201
- 'employees_agent_id': (list, []),}
202
- return EXTRA_ATTRIBUTES, {}, {}
288
+ EXTRA_ATTRIBUTES = {
289
+ "type": (int, economyv2.ORG_TYPE_NBS),
290
+ "nominal_gdp": (list, []),
291
+ "real_gdp": (list, []),
292
+ "unemployment": (list, []),
293
+ "wages": (list, []),
294
+ "prices": (list, [float(np.mean(agent_skills))]),
295
+ "working_hours": (list, []),
296
+ "depression": (list, []),
297
+ "consumption_currency": (list, []),
298
+ "income_currency": (list, []),
299
+ "locus_control": (list, []),
300
+ "citizens": (list, []),
301
+ "citizens_agent_id": (list, []),
302
+ "firm_id": (int, 0),
303
+ "bracket_cutoffs": (
304
+ list,
305
+ list(np.array([0, 9875, 40125, 85525, 163300, 207350, 518400]) / 12),
306
+ ), # useless
307
+ "bracket_rates": (list, [0.1, 0.12, 0.22, 0.24, 0.32, 0.35, 0.37]),
308
+ "inventory": (int, 0),
309
+ "interest_rate": (float, 0.03),
310
+ "price": (float, float(np.mean(agent_skills))),
311
+ "employees": (list, []),
312
+ "employees_agent_id": (list, []),
313
+ }
314
+ return EXTRA_ATTRIBUTES, {}, {}